Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential
Abstract
:1. Introduction
2. Results and Discussions
2.1. Chromatographic Analysis
2.2. Antioxidant Activity of Stachys sp. Extracts
2.3. Antimicrobial Activity of Stachys sp. Extracts
2.3.1. Antibacterial Activity Using the Agar-Well Diffusion Method
2.3.2. Antibacterial Activity Using the Broth Microdilution Method
2.3.3. Antibiofilm Activity
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Preparation of Stachys sp. Extracts
3.4. LC-MS/MS Analysis of Polyphenols
3.5. LC-MS/MS Analysis of Rosmarinis Acid
3.6. Total Polyphenols Content
3.7. Flavonoid Content
3.8. Caffeic Acid Derivative Content
3.9. Antioxidant Activity
3.9.1. DPPH Radical Scavenging Assay
3.9.2. FRAP Assay
3.9.3. Nitrite-Induced Autooxidation of Hemoglobin
3.9.4. Inhibition of Lipid Peroxidation Catalyzed by Cytochrome c
3.9.5. Free Radical Generation Experiment
3.10. Determination of Antimicrobial Activity
3.10.1. Agar-Well Diffusion Method
3.10.2. Broth Microdilution Method
3.10.3. Anti-Biofilm Assay
3.11. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanjevac, M.; Zlatić, N.; Bojović, B.; Stanković, M. Pharmaceutical and biological properties of Stachys species: A review. Braz. J. Pharm. Sci. 2022, 58, e20211. [Google Scholar] [CrossRef]
- Tomou, E.M.; Barda, C.; Skaltsa, H. Genus Stachys: A review of traditional uses, phytochemistry and bioactivity. Medicines 2020, 7, 63. [Google Scholar] [CrossRef]
- Sârbu, I.; Stefan, N.; Oprea, A. Plante Vasculare din România. Determinator Ilustrat de Teren (Vascular Plants of Romania); Publishing House: Bucharest, Romania, 2013; pp. 656–660. [Google Scholar]
- Gille, E.; Cretu, R.M.; Stefanache, C.P.; Gavril, G.L.; Sidoroff, M.E. Medicinal and Aromatic Plants from the Wild Flora of Dobrogea (Romania); Piatra Neamt, Romania, Cuza University: Iassy, Romania, 2020. [Google Scholar]
- Ardelean, A.; Mohan, G. Flora Medicinala a Romaniei; Editura ALL: Bucuresti, Romania, 2008; p. 20. [Google Scholar]
- Dragulescu, C.; Marculescu, A. Plantele in Medicina Populara Romaneasca; Editura Universitatii Transilvania: Brasov, Romania, 2020; pp. 89–90. [Google Scholar]
- Stegarus, D.I.; Lengyel, E.; Apostolescu, G.F.; Botoran, O.R.; Tanase, C. Phytochemical analysis and biological activity of three Stachys species (Lamiaceae) from Romania. Plants 2021, 10, 2710. [Google Scholar] [CrossRef]
- Imbrea, I.; Butnariu, M.; Nicolin, A.; Imbrea, F.; Prodan, M. Valorising the species Stachys officinalis (L.) Trevis. from south-western Romania. Res. J. Agric. Sci. 2011, 43, 198. [Google Scholar]
- López-Fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P.; Rocchetti, G.; Lorenzo, J. Determination of polyphenols using Liquid Chromatography-Tandem Mass Spectrometry Technique (LC–MS/MS): A Review. Antioxidants 2020, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Muresan, M.; Benedec, D.; Vlase, L.; Oprean, R.; Toiu, A.; Oniga, I. Screening of polyphenolic compounds, antioxidant and antimicrobial properties of Tanacetum vulgare from Transylvania. Stud. Univ. Babes-Bolyai Chem. 2015, 60, 127–138. [Google Scholar]
- Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3130–3158. [Google Scholar] [CrossRef] [PubMed]
- Sarikurkcu, C.; Ceylan, O.; Benabdallah, A.; Tepe, B. Stachys germanica subsp. heldreichii (Boiss.) Hayek: Phytochemical analysis, antioxidant and enzyme inhibitory activities. S. Afr. J. Bot. 2020, 143, 291–300. [Google Scholar] [CrossRef]
- Vundac, V.B. Taxonomical and phytochemical characterisation of 10 Stachys taxa recorded in the Balkan Peninsula flora: A review. Plants 2019, 8, 32. [Google Scholar] [CrossRef]
- Sytar, O.; Hemmerich, I.; Zivcak, M.; Rauh, C.; Brestic, M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J. Biol. Sci. 2018, 25, 631–641. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Moroeanu, V.; Ungureanu, O.; Cretu, R.; Ionescu, E.; Tebrencu, C.E.; Ionescu, R.; Stoica, I.; Radu, G.L. Phytochemical analysis and in vitro biological activity of Betonica officinalis and Salvia officinalis extracts. Rom. Biotechnol. Lett. 2017, 22, 12751–12761. [Google Scholar]
- Bączek, K.; Kosakowska, O.; Przybył, J.L.; Węglarz, Z. Accumulation of phenolic compounds in the purple betony herb (Stachys officinalis L.) originated from cultivation. Herba Pol. 2016, 62, 7–16. [Google Scholar] [CrossRef]
- Valentova, K.; Vrba, J.; Bancirova, M.; Ulrichova, J.; Kren, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G. Therapeutic potential of rosmarinic acid: A comprehensive review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef]
- Ertas, A.; Yener, I. A comprehensive study on chemical and biological profiles of three herbal teas in Anatolia; rosmarinic and chlorogenic acids. S. Afr. J. Bot. 2020, 130, 274–281. [Google Scholar] [CrossRef]
- Elfalleh, W.; Kirkan, B.; Sarikurkcu, C. Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Ind. Crops Prod. 2019, 127, 212–216. [Google Scholar] [CrossRef]
- Carev, I.; Sarikurkcu, C. LC-MS/MS profiles and in vitro biological activities of extracts of an endemic species from Turkey: Stachys cretica ssp. anatolica. Plants 2021, 10, 1054. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Zengin, G.; Dinparast, L.; Eskandani, M. The health benefits of three Hedgenettle herbal teas (Stachys byzantina, Stachys inflata, and Stachys lavandulifolia)-profiling phenolic and antioxidant activities. Eur. J. Integr. Med. 2020, 36, 101134. [Google Scholar] [CrossRef]
- Paun, G.; Neagu, E.; Moroeanu, V.; Albu, C.; Ursu, T.M.; Zanfirescu, A.; Radu, G.L. Anti-inflammatory and antioxidant activities of the Impatiens noli-tangere and Stachys officinalis polyphenolic-rich extracts. Rev. Bras. Farmacog. 2018, 28, 57–64. [Google Scholar] [CrossRef]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.C.; Silaghi-Dumitre scu, R.; Tilea, I. Evaluation of antioxidant and antimicrobial activities and phenolic profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Rana, R.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Khanavi, M.; Hajimahmoodi, M.; Cheraghi-Niroomand, M.; Kargar, Z.; Ajani, Y.; Hadjiakhoondi, A.; Oveisi, M.R. Comparison of the antioxidant activity and total phenolic contents in some Stachys species. Afr. J. Biotechol. 2009, 8, 1143–1147. [Google Scholar]
- Mitic, S.S.; Stojkovic, M.B.; Pavlovic, J.L.; Mitic, M.N.; Stojanovic, B.T. Antioxidant activity, phenolic and mineral content of Stachys germanica L. (Lamiaceae). Oxid. Commun. 2012, 35, 1011–1020. [Google Scholar]
- Romanian Pharmacopoeia Commission National Medicines Agency. Romanian Pharmacopoeia, 10th ed.; Medical Publishing House: Bucharest, Romania, 1993; p. 335. [Google Scholar]
- Nikolova, M. Screening of radical scavenging activity and polyphenol content of Bulgarian plant species. Pharmacogn. Res. 2011, 3, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Hajimehdipoor, H.; Gohari, A.R.; Ajani, Y.; Saeidnia, S. Comparative study of the total phenol content and antioxidant activity of some medicinal herbal extracts. Res. J. Pharmacog. (RJP) 2014, 1, 21–25. [Google Scholar]
- Toplan, G.G.; Taşkin, T.; Mataraci, K.E.; Genc, G.E. Antioxidant, and antimicrobial activities of various extracts from Stachys cretica subsp. bulgarica Rech.f., Stachys byzantina K. Koch and Stachys thirkei K. Koch. Istanb. J. Pharm. 2021, 51, 341–347. [Google Scholar] [CrossRef]
- Hajdari, A.; Novak, J.; Mustafa, B.; Franz, C. Essential oil composition and antioxidant activity of Stachys sylvatica L. (Lamiaceae) from different wild populations in Kosovo. Nat. Prod. Res. 2012, 26, 1676–1681. [Google Scholar] [CrossRef] [PubMed]
- Zagrean-Tuza, C.; Dorneanu, S.; Mot, A.C. The strange case of polyphenols inhibiting the Briggs-Rauscher reaction: PHmodulated reactivity of the superoxide radical. Free Radic. Biol. Med. 2020, 46, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, M.; Sajjadi, S.E.; Zarei, H.R. Anxiolytic effects of Stachys lavandulifolia Vahl on the elevated plus-maze model of anxiety in mice. J. Ethnopharmacol. 2003, 89, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Nagamatsu, T.; Ito, M.; Hattori, T.; Suzuki, Y. Acotoside, a component of Stachys sieboldii MIQ, may be a promising antinephritic agent. 1) Effects of acetoside on crescentic-type anti-GBM nephritis in rats. Jpn. J. Pharmacol. 1994, 65, 143–151. [Google Scholar] [CrossRef]
- Lazarevic, J.S.; Ðordevic, A.S.; Kitic, D.V.; Zlatkovic, B.K.; Stojanovic, G.S. Chemical composition and antimicrobial activity of the essential oil of Stachys officinalis (L.) Trevis. (Lamiaceae). Chem. Biodivers. 2013, 10, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Morteza-semnani, K.; Mahdavi, M.R.; Rahimi, F. Antimicrobial studies on extracts of four species of Stachys. Indian J. Pharm. Sci. 2008, 70, 403–406. [Google Scholar] [CrossRef]
- Serbetci, T.; Demirci, B.; Güzel, C.B.; Kültür, S.; Ergüven, M.; Baser, K.H. Essential oil composition, antimicrobial and cytotoxic activities of two endemic Stachys cretica subspecies (Lamiaceae) from Turkey. Nat. Prod. Commun. 2010, 5, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Skaltsa, H.D.; Demetzos, C.; Lazari, D.; Sokovic, M. Essential oil analysis and antimicrobial activity of eight Stachys species from Greece. Phytochemistry 2003, 64, 743–752. [Google Scholar] [CrossRef]
- Ferhat, M.; Erol, E.; Beladjila, K.A.; Çetintaş, Y.; Duru, M.E.; Öztürk, M.; Kabouche, A.; Kabouche, Z. Antioxidant, anticholinesterase, and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm. Biol. 2017, 55, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Reeves, D.S.; White, L.O. Principles of methods of assaying antibiotics. In Pharmaceutical Microbiology, 3rd ed.; Hugo, W.B., Russel, A.D., Eds.; Blackwell Scientific Publication: Oxford, UK, 1983; pp. 140–162. [Google Scholar]
- Napolitano, A.; Di Napoli, M.; Castagliuolo, G.; Badalamenti, N.; Cicio, A.; Bruno, M.; Piacente, S.; Maresca, V.; Cianciullo, P.; Capasso, L.; et al. The chemical composition of the aerial parts of Stachys spreitzenhoferi (Lamiaceae) extract growing in Kythira Island (Greece) and its antioxidant, antimicrobial, anti-inflammatory and antiproliferative properties. Phytochemistry 2022, 203, 113373. [Google Scholar] [CrossRef]
- Dulger, G.; Aki, C. Antimicrobial activity of the leaves of endemic Stachys pseudopinardii in Turkey. Trop. J. Pharm. Res. 2009, 8, 371–375. [Google Scholar] [CrossRef]
- Olawuwo, O.S.; Famuyide, I.M.; McGaw, L.J. Antibacterial and antibiofilm activity of selected medicinal plant leaf extracts against pathogens implicated in poultry diseases. Front. Vet. Sci. 2022, 9, 820304. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, H.; Zhu, S.; Ma, C.; Wang, Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011, 76, 98–403. [Google Scholar] [CrossRef]
- Kabir, F.; Katayama, S.; Tanji, N.; Nakamura, S. Antimicrobial effects of chlorogenic acid and related compounds. J. Korean Soc. Appl. Biol. Chem. 2014, 57, M359–M365. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Hanganu, D.; Olah, N.K.; Mocan, A.; Vlase, L.; Benedec, D.; Raita, O.; Toma, C. Comparative polyphenolic content and antioxidant activities of two Romanian Lysimachia species. Rev. Chim. 2016, 67, 227–231. [Google Scholar]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.M.; Nadăș, G.C.; Matei, I.A.; Filip, G.A.; Crișan, G. The effect of extraction methods on phytochemicals and biological activities of green coffee beans extracts. Plants 2023, 12, 712. [Google Scholar] [CrossRef]
- Rusu, M.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process optimization for improved phenolic compounds recovery from walnut (Juglans regia L.) septum: Phytochemical profile and biological activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2005; p. 221. [Google Scholar]
- Oniga, I.; Vlase, L.; Toiu, A.; Benedec, D.; Duda, M. Evaluation of phenolic acid derivatives and essential oil content in some Melissa officinalis L. varieties. Farmacia 2010, 58, 764–769. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Slinkard, K.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Vundac, V.B.; Brantner, A.H.; Miško, P. Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chem. 2007, 104, 1277–1281. [Google Scholar] [CrossRef]
- Niculae, M.; Hanganu, D.; Oniga, I.; Benedec, D.; Ielciu, I.; Giupana, R.; Sandru, C.D.; Ciocârlan, N.; Spinu, M. phytochemical profile and antimicrobial potential of extracts obtained from Thymus marschallianus Willd. Molecules 2019, 24, 3101. [Google Scholar] [CrossRef] [PubMed]
- Hathazi, D.; Scurtu, F.; Bischin, C.; Mot, A.; Attia, A.; Kongsted, J.; Silaghi-Dumitrescu, R. The Reaction of oxy hemoglobin with nitrite: Mechanism, antioxidant-modulated effect, and implications for blood substitute evaluation. Molecules 2018, 23, 350. [Google Scholar] [CrossRef]
- Obasi, T.C.; Benedec, D.; Hanganu, D.; Gheldiu, A.M.; Vlase, L.; Oniga, I.; Pușcaș, C.; Silaghi-Dumitrescu, R.; Oprean, R. Free radical scavenging activity and total polyphenol content of Securidaca Longipedunculata roots and leaves extracts. Farmacia 2020, 68, 116–120. [Google Scholar] [CrossRef]
- Soliman, S.S.M.; Semreen, M.H.; El-Keblawy, A.A.; Abdullah, A.; Uppuluri, P.; Ibrahim, A.S. Assessment of herbal drugs for promising anti-Candida activity. BMC Complement. Altern. Med. 2017, 17, 257. [Google Scholar] [CrossRef]
- Meccatti, V.M.; Santos, L.F.; de Carvalho, L.S.; Souza, C.B.; Carvalho, C.A.T.; Marcucci, M.C.; Abu Hasna, A.; de Oliveira, L.D. Antifungal action of herbal plants’ glycolic extracts against Candida species. Molecules 2023, 28, 2857. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | m/z Value (Precursor) | m/z Value (Daughter Ions; Collision Energy) | tR ± SD (min) | S. officinalis | S. germanica | S. byzantina | S. sylvatica | S. palustris | S. recta |
---|---|---|---|---|---|---|---|---|---|
Gallic acid | 169 | 169 (0.5 V) | 1.50 ± 0.01 | - | - | - | - | 141.5 ± 8.4 | - |
Rosmarinic acid | 359 | 160.7; 178.6; 196.7 (0.9 V) | 2.20 ± 0.01 | 43.4 ± 0.5 | 7.8 ± 0.01 | 3.0 ± 0.02 | 1.9 ± 0.02 | 2.4 ± 0.01 | 2.6 ± 0.05 |
Protocatechuic acid | 153 | 153 (0.5 V) | 2.80 ± 0.01 | 94.6 ± 0.5 | 83.5 ± 0.4 | 28.6 ± 0.3 | 100.7 ± 9.2 | 94.2 ± 1.7 | 157.8 ± 2.1 |
Gentisic acid | 153 | 108.7 (0.9 V) | 3.52 ± 0.04 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 | <0.2 |
Caftaric acid | 311 | 148.6; 178.6 (0.9 V) | 3.54 ± 0.05 | 4.7 ± 0.2 | - | - | - | - | - |
Chlorogenic acid | 353 | 178.7; 190.7 (0.9 V) | 5.62 ± 0.05 | 1131.8 ± 15.8 | 4205.2 ± 44.7 | 2012.1 ± 37.8 | 5552.7 ± 47.2 | 3595.2 ± 24.7 | 6761.4 ± 58.5 |
Vanillic acid | 167 | 167 (0.5 V) | 6.70 ± 0.01 | 83.5 ± 0.7 | 21.1 ± 0.1 | 16.4 ± 0.3 | 16.6 ± 0.2 | 6.2 ± 0.08 | 20.3 ± 0.5 |
Syringic acid | 197 | 197 (0.5 V) | 8.40 ± 0.01 | 82.7 ± 0.2 | - | 7.0 ± 0.06 | 8.6 ± 0.1 | 4.4 ± 0.3 | - |
p-Coumaric acid | 163 | 118.7 (0.9 V) | 9.48 ± 0.08 | 27.8 ± 0.1 | 6.2 ± 0.08 | 4.4 ± 0.08 | 6.2 ± 0.3 | 14.0 ± 0.4 | 32.0 ± 0.9 |
Ferulic acid | 193 | 133.7; 148.7; 177.6 (0.9 V) | 12.80 ± 0.10 | 11.1 ± 0.4 | 5.0 ± 0.02 | 3.5 ± 0.04 | 3.0 ± 0.06 | 6.0 ± 0.2 | <0.2 |
Isoquercitrin | 463 | 254.9; 270.9; 300.7; 342.8 (1.2 V) | 19.60 ± 0.1 | 18.9 ± 0.1 | 233.1 ± 6.8 | - | 86.2 ± 3.7 | - | 72.8 ± 2.1 |
Rutin | 609 | 254.9; 270.9; 300.7; 342.8 (1.2 V) | 20.20 ± 0.15 | <0.2 | - | - | - | - | - |
Quercitrin | 447 | 178.8; 300.7 (1.2 V) | 23.64 ± 0.13 | - | - | - | - | <0.2 | - |
Luteolin | 285 | 150.6; 174.6; 198.6; 240.7 (1.5 V) | 29.10 ± 0.19 | 15.7 ± 0.2 | 26.8 ± 0.1 | 12.2 ± 0.1 | <0.2 | 3.9 ± 0.2 | <0.2 |
Apigenin | 269 | 148.6; 150.6; 224.7; 226.7 (1.5 V) | 33.10 ± 0.15 | 84.2 ± 1.7 | 21.4 ± 0.2 | 27.3 ± 0.6 | 13.6 ± 0.2 | <0.2 | <0.2 |
Stachys sp. Extracts | TPC (mg GAE/mL) | Flavonoids (mg RE/mL) | Caffeic Acid Derivatives (mg CAE/mL) |
---|---|---|---|
S. officinalis (SO) | 2.51 ± 0.09 a | 1.18 ± 0.01 d | 0.20 ± 0.01 g |
S. germanica (SG) | 5.98 ± 0.21 a | 3.30 ± 0.11 f | 0.88 ± 0.01 i |
S. byzantina (SB) | 6.40 ± 0.11 | 3.90 ± 0.21 | 0.89 ± 0.05 |
S. sylvatica (SS) | 4.00 ± 0.13 a | 1.22 ± 0.06 d,f | 0.20 ± 0.03 h |
S. palustris (SP) | 5.35 ± 0.29 b,c | 3.14 ± 0.17 f | 0.72 ± 0.06 g,i |
S. recta (SR) | 3.78 ± 0.17 a,c | 1.13 ± 0.09 e | 0.23 ± 0.08 h,i |
Stachys sp. Extracts | DPPH (IC50 µg/mL) | FRAP (μM TE/mL) | NHA mg CATE/g |
---|---|---|---|
S. officinalis | 139.16 ± 3.80 a | 280.17 ± 1.83 b | 23.44 ± 3.24 |
S. germanica | 54.18 ± 1.16 a | 688.21 ± 5.91 | 66.59 ± 5.37 |
S. byzantina | 53.61 ± 1.19 a | 354.88 ± 3.11 b | 27.06 ± 3.00 |
S. sylvatica | 76.04 ± 0.35 a | 218.01 ± 0.98 b | 20.01 ± 6.78 |
S. palustris | 54.82 ± 1.33 a | 502.43 ± 5.56 b | 59.38 ± 2.54 |
S. recta | 84.94 ± 1.45 a | 305.15 ± 2.84 b | 37.49 ± 1.96 |
Trolox | 11.19 ± 0.09 | - | - |
Inhibition Zone Diameter (IZD, mm) | |||||
---|---|---|---|---|---|
Stachys sp. Extracts | Staphylococcus aureus | Listeria monocytogenes | Escherichia coli | Salmonella enteritidis | Candida albicans |
S. officinalis | 16 ± 0.50 b | 14 ± 1.00 a | 10 ± 1.00 a | 10 ± 0.25 a | 12 ± 0.50 d |
S. germanica | 20 ± 0.25 a | 18 ± 0.50 a | 8 ± 0.25 a | 10 ± 0.50 a | 10 ± 0.50 d |
S. byzantina | 20 ± 0.25 a | 18 ± 0.00 a | 8 ± 0.50 a | 8 ± 0.50 a | 12 ± 1.00 d |
S. sylvatica | 16 ± 0.75 b | 16 ± 0.25 a | 8 ± 1.00 a | 8 ± 1.00 a | 10 ± 0.50 d |
S. palustris | 18 ± 0.50 c | 16 ± 1.00 a | 8 ± 0.00 a | 8 ± 0.25 a | 12 ± 0.50 d |
S. recta | 16 ± 0.00 b | 16 ± 1.00 a | 10 ± 0.25 a | 12 ± 0.50 b | 12 ± 0.00 d |
Gentamicin | 18 ± 0.25 | 22 ± 0.50 | 18 ± 0.25 | 19 ± 1.00 | - |
Fluconazole | - | - | - | - | 21 ± 0.00 |
Stachys sp. Extracts | Staphylococcus aureus | Listeria monocytogenes | Escherichia coli | Salmonella enteriditis | Candida albicans | |||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | |
S. officinalis | 0.705 | 1.411 | 1.411 | 1.411 | 1.411 | 1.411 | 1.411 | 1.411 | 0.352 | 1.411 |
S. germanica | 0.423 | 0.423 | 0.847 | 1.695 | 3.39 | 3.39 | 3.39 | 3.39 | 1.695 | 3.39 |
S. byzantina | 0.468 | 0.468 | 1.875 | 3.75 | 3.75 | 3.75 | 3.75 | 3.75 | 0.937 | 3.75 |
S. sylvatica | 1.20 | 2.40 | 1.20 | 2.40 | 2.40 | 2.40 | 2.40 | 2.40 | 1.20 | 2.40 |
S. palustris | 0.817 | 1.635 | 1.635 | 3.27 | 3.27 | 3.27 | 3.27 | 3.27 | 0.817 | 3.27 |
S. recta | 1.12 | 2.24 | 1.12 | 2.24 | 2.24 | 2.24 | 2.24 | 2.24 | 0.56 | 2.24 |
Gentamicin MIC (mg/L) | 3 | 4 | 3 | 3 | - | |||||
Fluconazole MIC (mg/L) | - | - | - | - | 8 |
% Inhibition | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Stachys sp. Extracts | Staphylococcus aureus | Listeria monocytogenes | Escherichia coli | Salmonella enteriditis | Candida albicans | |||||
T0 | T24 | T0 | T24 | T0 | T24 | T0 | T24 | T0 | T24 | |
S. officinalis | + | - | + | - | + | - | - | + | ++ | + |
S. germanica | ++ | ++ | ++ | + | + | - | - | + | + | + |
S. byzantina | ++ | ++ | + | + | + | - | - | ++ | ++ | + |
S. sylvatica | ++ | + | + | + | ++ | + | - | - | ++ | - |
S. palustris | ++ | + | ++ | + | + | - | - | + | ++ | - |
S. recta | + | + | + | - | + | - | - | - | ++ | - |
Gentamicin | + | ++ | + | ++ | - | ++ | - | ++ | - | - |
Fluconazole | - | - | - | - | - | - | - | - | ++ | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedec, D.; Oniga, I.; Hanganu, D.; Tiperciuc, B.; Nistor, A.; Vlase, A.-M.; Vlase, L.; Pușcaș, C.; Duma, M.; Login, C.C.; et al. Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics 2023, 12, 1644. https://doi.org/10.3390/antibiotics12111644
Benedec D, Oniga I, Hanganu D, Tiperciuc B, Nistor A, Vlase A-M, Vlase L, Pușcaș C, Duma M, Login CC, et al. Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics. 2023; 12(11):1644. https://doi.org/10.3390/antibiotics12111644
Chicago/Turabian StyleBenedec, Daniela, Ilioara Oniga, Daniela Hanganu, Brîndușa Tiperciuc, Adriana Nistor, Ana-Maria Vlase, Laurian Vlase, Cristina Pușcaș, Mihaela Duma, Cristian Cezar Login, and et al. 2023. "Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential" Antibiotics 12, no. 11: 1644. https://doi.org/10.3390/antibiotics12111644
APA StyleBenedec, D., Oniga, I., Hanganu, D., Tiperciuc, B., Nistor, A., Vlase, A. -M., Vlase, L., Pușcaș, C., Duma, M., Login, C. C., Niculae, M., & Silaghi-Dumitrescu, R. (2023). Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics, 12(11), 1644. https://doi.org/10.3390/antibiotics12111644