Trend of Changes in Chloramphenicol Resistance during the Years 2017–2020: A Retrospective Report from Israel
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antibiotic Susceptibility Testing
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nitzan, O.; Suponitzky, U.; Kennes, Y.; Chazan, B.; Raul, R.; Colodner, R. Is chloramphenicol making a comeback? Isr. Med. Assoc. J. 2010, 12, 371. [Google Scholar] [PubMed]
- Eliakim-Raz, N.; Lador, A.; Leibovici-Weissman, Y.; Elbaz, M.; Paul, M.; Leibovici, L. Efficacy and safety of chloramphenicol: Joining the revival of old antibiotics? Systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2015, 70, 979–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, J.; Bartz, Q.R.; Smith, R.M.; Joslyn, D.A.; Burkholder, P.R. Chloromycetin, a new antibiotic from a soil actinomycete. Science 1947, 106, 417. [Google Scholar] [CrossRef] [PubMed]
- Feder, H.M., Jr.; Osier, C.; Maderazo, E.G. Chloramphenicol: A review of its use in clinical practice. Rev. Infect. Dis. 1981, 3, 479–491. [Google Scholar] [CrossRef]
- Tevyashova, A.N. Recent trends in synthesis of chloramphenicol new derivatives. Antibiotics 2021, 10, 370. [Google Scholar] [CrossRef]
- Rahal, J.J., Jr.; Simberkoff, M.S. Bactericidal and bacteriostatic action of chloramphenicol against meningeal pathogens. Antimicrob. Agents Chemother. 1979, 16, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Nitzan, O.; Kennes, Y.; Colodner, R.; Saliba, W.; EdelsteinI, H.; Raz, R.; Chazan, B. Chloramphenicol use and susceptibility patterns in Israel: A national survey. Isr. Med. Assoc. J. 2015, 17, 27–31. [Google Scholar]
- Hanekamp, J.C.; Bast, A. Antibiotics exposure and health risks: Chloramphenicol. Environ. Toxicol. Pharmacol. 2015, 39, 213–220. [Google Scholar] [CrossRef]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Izar, T. Structural basis for chloramphenicol tolerance in Streptomyces venezuelae by chloramphenicol phosphotransferase activity. Prot. Sci. 2001, 10, 1508–1513. [Google Scholar] [CrossRef]
- Bischoff, K.M.; White, D.G.; McDermott, P.F.; Zhao, S.; Gaines, S.; Maurer, J.J.; Nisbet, D.J. Characterization of chloramphenicol resistance in beta-hemolytic Escherichia coli associated with diarrhea in neonatal swine. J. Clin. Microbiol. 2002, 40, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Andaluz-Scher, L.; Medow, N.B. Chloramphenicol eye drops: An old dog in a new house. Ophthalmology 2020, 127, 1289–1291. [Google Scholar] [CrossRef] [PubMed]
- Drago, L. Chloramphenicol resurrected: A journey from antibiotic resistance in eye infections to biofilm and ocular microbiota. Microorganisms 2019, 7, 278. [Google Scholar]
- McGhee, P.C.N. An overview of topical ophthalmic drugs and the therapeutics of ocular infection. CNJ Mc. Ghee Ocul. Ther. 2008, 118, 1862–1867. [Google Scholar]
- Reta, A.; Wubie, M.; Mekuria, G. Nasal colonization and antimicrobial susceptibility pattern of Staphylococcus aureus among pre-school children in Ethiopia. BMC Res. Notes. 2017, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xian-Zhi, L.; Livermore, D.M.; Nikaido, H. Role of efflux pump (s) in intrinsic resistance of Pseudomonas aeruginosa: Resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob. Agents Chemother. 1994, 38, 732–1741. [Google Scholar]
- Angus, B.L.; Carey, A.M.; Caron, D.A.; Kropinski, A.M.; Hancock, R.E. Outer membrane permeability in Pseudomonas aeruginosa: Comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob. Agents Chemother. 1982, 1, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Middlemiss, J.K.; Poole, K. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. J. Bacteriol. 2004, 186, 1258–1269. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, S.; Singh, A.; Varma, A.; Pandey, S.; Shrivastava, N. Phenotypic and genotypic characterization of biofilm producing clinical coagulase negative staphylococci from Nepal and their antibiotic susceptibility pattern. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 1–11. [Google Scholar] [CrossRef]
- Shrestha, L.B.; Bhattarai, N.R.; Rai, K.; Khanal, B. Antibiotic resistance and mecA gene characterization of coagulase-negative staphylococci isolated from clinical samples in Nepal. Infect. Drug Resist. 2020, 13, 3163–3169. [Google Scholar] [CrossRef]
- Japoni, A.; Farshad, S.; Alborzi, A.; Kalani, M.; Rafaatpour, N.; Oboodi, B.; Pourabbas, B. Epidemiology and antibacterial susceptibility patterns of bloodstream infections, 2001–2004: An experience with BACTEC 9240 in Southern Iran. Pak. J. Biol. Sci. 2008, 11, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Čivljak, R.; Giannella, M.; Di Bella, S.; Petrosillo, N. Could chloramphenicol be used against ESKAPE pathogens? A review of in vitro data in the literature from the 21st century. Expert Rev. Anti Infect. Ther. 2014, 2, 249–264. [Google Scholar] [CrossRef] [PubMed]
2017 (N = 1005) n (%) | 2018 (N = 984) n (%) | 2019 (N = 1011) n (%) | 2020 (N = 873) n (%) | Total (N = 3873) n (%) | p Value * | |
---|---|---|---|---|---|---|
Resistant | 261 (26) | 250 (25.5) | 220 (21.9) | 185 (22.4) | 916 (24) | 0.070 |
Susceptible | 741 (74) | 732 (74.5) | 785 (78.1) | 641 (77.6) | 2899 (76) |
Blood (N = 1250) n (%) | Ear/Eye (N = 1396) n (%) | Fluids (N = 217) n (%) | Sputum (N = 1010) n (%) | p Value * | |
---|---|---|---|---|---|
Resistant | 275 (22.5) | 145 (10.4) | 5 (2.3) | 491 (49.8) | <0.001 |
Susceptible | 946 (77.5) | 1246 (89.6) | 212 (97.7) | 495 (50.2) |
Sample’s Origin | 2017 (N = 1005) n (%) | 2018 (N = 984) n (%) | 2019 (N = 1011) n (%) | 2020 (N = 873) n (%) | p Value * |
---|---|---|---|---|---|
Blood | 79 (27.6%) | 83 (25.4%) | 67 (19%) | 46 (18%) | 0.01 |
Ear/eye | 45 (11.5%) | 60 (14.8%) | 24 (6.9%) | 16 (6.5%) | <0.001 |
Sputum | 134 (50%) | 107 (53.2%) | 128 (52.2%) | 122 (44.9%) | 0.241 |
Fluids | 3 (5.2%) | 0 (0%) | 1 (1.8%) | 1 (1.9%) | 0.337 |
Ps. aeruginosa (N = 628) n (%) | CNS * (N = 610) n (%) | E. coli (N = 607) n (%) | S. aureus (N = 397) n (%) | K. pneumoniae (N = 394) n (%) | p Value ** | |
---|---|---|---|---|---|---|
Resistant | 317 (50.5) | 166 (27.3) | 59 (10.1) | 62 (15.6) | 78 (19.8) | <0.001 |
Susceptible | 311 (49.5) | 443 (72.7) | 527 (89.9) | 335 (84.4) | 316 (80.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohana, H.; Hager-Cohen, A.; Azrad, M.; Peretz, A. Trend of Changes in Chloramphenicol Resistance during the Years 2017–2020: A Retrospective Report from Israel. Antibiotics 2023, 12, 196. https://doi.org/10.3390/antibiotics12020196
Rohana H, Hager-Cohen A, Azrad M, Peretz A. Trend of Changes in Chloramphenicol Resistance during the Years 2017–2020: A Retrospective Report from Israel. Antibiotics. 2023; 12(2):196. https://doi.org/10.3390/antibiotics12020196
Chicago/Turabian StyleRohana, Hannan, Anat Hager-Cohen, Maya Azrad, and Avi Peretz. 2023. "Trend of Changes in Chloramphenicol Resistance during the Years 2017–2020: A Retrospective Report from Israel" Antibiotics 12, no. 2: 196. https://doi.org/10.3390/antibiotics12020196
APA StyleRohana, H., Hager-Cohen, A., Azrad, M., & Peretz, A. (2023). Trend of Changes in Chloramphenicol Resistance during the Years 2017–2020: A Retrospective Report from Israel. Antibiotics, 12(2), 196. https://doi.org/10.3390/antibiotics12020196