Prevalence and Risk Factors Associated with Multidrug Resistance and Extended-Spectrum β-lactamase Producing E. coli Isolated from Healthy and Diseased Cats
Abstract
:1. Introduction
2. Results
2.1. Cat Population
2.2. Prevalence of E. coli Isolates
2.3. Antimicrobial Susceptibility Testing
2.4. MDR and ESBL-Producing E. coli
2.5. Risk Factors for MDR and ESBL-Producing E. coli
3. Discussion
4. Materials and Methods
4.1. Study Design and Sampling
4.2. E. coli Isolation and Identification
4.3. Antimicrobial Susceptibility Test
4.4. ESBL-Producing E. coli Identification
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S. Antimicrobial resistance in companion animals. Anim. Health Res. Rev. 2008, 9, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Huang, Y.; Zhou, R.; Gong, S.; Yang, H.; Chen, S.; Wang, M.; Cheng, A. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. Environ. Pollut. 2020, 266, 115260. [Google Scholar] [CrossRef] [PubMed]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Weese, J.; Giguère, S.; Guardabassi, L.; Morley, P.; Papich, M.; Ricciuto, D.; Sykes, J.E. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J. Vet. Intern. Med. 2015, 29, 487–498. [Google Scholar] [CrossRef]
- Zhang, P.L.; Shen, X.; Chalmers, G.; Reid-Smith, R.J.; Slavic, D.; Dick, H.; Boerlin, P. Prevalence and mechanisms of extended-spectrum cephalosporin resistance in clinical and fecal Enterobacteriaceae isolates from dogs in Ontario, Canada. Vet. Microbiol. 2018, 213, 82–88. [Google Scholar] [CrossRef]
- Bortolami, A.; Zendri, F.; Maciuca, E.I.; Wattret, A.; Ellis, C.; Schmidt, V.; Pinchbeck, G.; Timofte, D. Diversity, virulence, and clinical significance of extended-spectrum β-lactamase-and pAmpC-producing Escherichia coli from companion animals. Front. Microbiol. 2019, 10, 1260. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.d.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef]
- Salinas, L.; Loayza, F.; Cárdenas, P.; Saraiva, C.; Johnson, T.J.; Amato, H.; Graham, J.P.; Trueba, G. Environmental spread of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and ESBL genes among children and domestic animals in Ecuador. Environ. Health Perspect. 2021, 129, 027007. [Google Scholar] [CrossRef]
- Alrukban, M.O.; Alekrish, Y.A.; Alshehri, M.H.; Bajeaifer, Y.A.; Alhamad, M.H.; Sambas, F.A.; Alsouan, A.A. Awareness of pet owners in Riyadh regarding pet-related health risks and their associated preventative measures. Vector-Borne Zoonotic Dis. 2022, 22, 419–424. [Google Scholar] [CrossRef]
- Damborg, P.; Broens, E.M.; Chomel, B.B.; Guenther, S.; Pasmans, F.; Wagenaar, J.A.; Weese, J.S.; Wieler, L.H.; Windahl, U.; Vanrompay, D. Bacterial zoonoses transmitted by household pets: State-of-the-art and future perspectives for targeted research and policy actions. J. Comp. Pathol. 2016, 155, S27–S40. [Google Scholar] [CrossRef] [Green Version]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing-Escherichia coli in dogs and cats–A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Johnson, J.R.; Miller, S.; Johnston, B.; Clabots, C.; DebRoy, C. Sharing of Escherichia coli sequence type ST131 and other multidrug-resistant and urovirulent E. coli strains among dogs and cats within a household. J. Clin. Microbiol. 2009, 47, 3721–3725. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.; Barbosa, A.; Arais, L.; Ribeiro, P.; Carneiro, V.; Cerqueira, A. Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Sidjabat, H.E.; Townsend, K.M.; Lorentzen, M.; Gobius, K.S.; Fegan, N.; Chin, J.J.-C.; Bettelheim, K.A.; Hanson, N.D.; Bensink, J.C.; Trott, D.J. Emergence and spread of two distinct clonal groups of multidrug-resistant Escherichia coli in a veterinary teaching hospital in Australia. J. Med. Microbiol. 2006, 55, 1125–1134. [Google Scholar] [CrossRef]
- Shaheen, B.; Boothe, D.; Oyarzabal, O.; Smaha, T. Antimicrobial resistance profiles and clonal relatedness of canine and feline Escherichia coli pathogens expressing multidrug resistance in the United States. J. Vet. Intern. Med. 2010, 24, 323–330. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, X.; Li, R.; Han, Y.; Hao, G.; Wang, G.; Sun, S. Companion Animals as Potential Reservoirs of Antibiotic Resistant Diarrheagenic Escherichia coli in Shandong, China. Antibiotics 2022, 11, 828. [Google Scholar] [CrossRef]
- Beetz, A.; Uvnäs-Moberg, K.; Julius, H.; Kotrschal, K. Psychosocial and psychophysiological effects of human-animal interactions: The possible role of oxytocin. Front. Psychol. 2012, 3, 234. [Google Scholar] [CrossRef]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Féria, C.; Machado, J.; Correia, J.D.; Gonçalves, J.; Gaastra, W. Virulence genes and P fimbriae PapA subunit diversity in canine and feline uropathogenic Escherichia coli. Vet. Microbiol. 2001, 82, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Awosile, B.B.; McClure, J.T.; Saab, M.E.; Heider, L.C. Antimicrobial resistance in bacteria isolated from cats and dogs from the Atlantic Provinces, Canada from 1994–2013. Can. Vet. J. 2018, 59, 885. [Google Scholar] [PubMed]
- Chan, O.S.; Baranger-Ete, M.; Lam, W.W.; Wu, P.; Yeung, M.; Lee, E.; Bond, H.; Swan, O.; Tun, H.M. A retrospective study of antimicrobial resistant bacteria associated with feline and canine urinary tract infection in Hong Kong SAR, China—A case study on implication of first-line antibiotics use. Antibiotics 2022, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-I.; Seo, K.-W.; Kim, D.-H.; Cheon, D.-S. Prevalence, co-infection and seasonality of fecal enteropathogens from diarrheic cats in the Republic of Korea (2016–2019): A retrospective study. BMC Vet. Res. 2021, 17, 1–13. [Google Scholar] [CrossRef]
- Piccolo, F.L.; Belas, A.; Foti, M.; Fisichella, V.; Marques, C.; Pomba, C. Detection of multidrug resistance and extended-spectrum/plasmid-mediated AmpC beta-lactamase genes in Enterobacteriaceae isolates from diseased cats in Italy. J. Feline Med. Surg. 2020, 22, 613–622. [Google Scholar] [CrossRef]
- Saputra, S.; Jordan, D.; Mitchell, T.; San Wong, H.; Abraham, R.J.; Kidsley, A.; Turnidge, J.; Trott, D.J.; Abraham, S. Antimicrobial resistance in clinical Escherichia coli isolated from companion animals in Australia. Vet. Microbiol. 2017, 211, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.K.; Shin, S.; Park, Y.K.; Lim, S.-K.; Moon, D.-C.; Park, K.T.; Park, Y.H. Distribution and antimicrobial resistance profiles of bacterial species in stray cats, hospital-admitted cats, and veterinary staff in South Korea. BMC Vet. Res. 2020, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Poeta, P.; Sáenz, Y.; Coelho, A.C.; Matos, M.; Vinué, L.; Rodrigues, J.; Torres, C. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet. Microbiol. 2008, 127, 97–105. [Google Scholar] [CrossRef]
- Van Duin, D.; Paterson, D.L. Multidrug-resistant bacteria in the community: Trends and lessons learned. Infect. Dis. Clin. 2016, 30, 377–390. [Google Scholar] [CrossRef]
- Rzewuska, M.; Czopowicz, M.; Kizerwetter-Świda, M.; Chrobak, D.; Błaszczak, B.; Binek, M. Multidrug resistance in Escherichia coli strains isolated from infections in dogs and cats in Poland (2007–2013). Sci. World J. 2015, 2015, 408205. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Nakai, Y.; Kataoka, Y. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 β-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol. Immunol. 2012, 56, 480–485. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, B.W.; Nayak, R.; Foley, S.L.; Kweon, O.; Deck, J.; Park, M.; Rafii, F.; Boothe, D.M. Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrob. Agents Chemother. 2011, 55, 5666–5675. [Google Scholar] [CrossRef] [Green Version]
- Huber, H.; Zweifel, C.; Wittenbrink, M.M.; Stephan, R. ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet. Microbiol. 2013, 162, 992–996. [Google Scholar] [CrossRef]
- Jackson, C.; Davis, J.; Frye, J.; Barrett, J.; Hiott, L. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals. Zoonoses Public Health 2015, 62, 479–488. [Google Scholar] [CrossRef]
- Timofte, D.; Maciuca, I.E.; Williams, N.J.; Wattret, A.; Schmidt, V. Veterinary hospital dissemination of CTX-M-15 extended-spectrum beta-lactamase–producing Escherichia coli ST410 in the United Kingdom. Microb. Drug Resist. 2016, 22, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Bogaerts, P.; Huang, T.-D.; Bouchahrouf, W.; Bauraing, C.; Berhin, C.; El Garch, F.; Glupczynski, Y.; Group, C.S. Characterization of ESBL-and AmpC-producing Enterobacteriaceae from diseased companion animals in Europe. Microb. Drug Resist. 2015, 21, 643–650. [Google Scholar] [CrossRef]
- Dahmen, S.; Haenni, M.; Châtre, P.; Madec, J.-Y. Characterization of bla CTX-M IncFII plasmids and clones of Escherichia coli from pets in France. J. Antimicrob. Chemother. 2013, 68, 2797–2801. [Google Scholar] [CrossRef] [Green Version]
- Dierikx, C.; van Duijkeren, E.; Schoormans, A.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.; van der Zwaluw, K.; Wagenaar, J.; Mevius, D. Occurrence and characteristics of extended-spectrum-β-lactamase-and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef]
- Murphy, C.; Reid-Smith, R.J.; Prescott, J.F.; Bonnett, B.N.; Poppe, C.; Boerlin, P.; Weese, J.S.; Janecko, N.; McEwen, S.A. Occurrence of antimicrobial resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study. Can. Vet. J. 2009, 50, 1047. [Google Scholar] [PubMed]
- Sun, Y.; Zeng, Z.; Chen, S.; Ma, J.; He, L.; Liu, Y.; Deng, Y.; Lei, T.; Zhao, J.; Liu, J.-H. High prevalence of blaCTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect. 2010, 16, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousfi, M.; Mairi, A.; Touati, A.; Hassissene, L.; Brasme, L.; Guillard, T.; De Champs, C. Extended spectrum β-lactamase and plasmid mediated quinolone resistance in Escherichia coli fecal isolates from healthy companion animals in Algeria. J. Infect. Chemother. 2016, 22, 431–435. [Google Scholar] [CrossRef]
- Yasir, M.; Ajlan, A.M.; Shakil, S.; Jiman-Fatani, A.A.; Almasaudi, S.B.; Farman, M.; Baazeem, Z.M.; Baabdullah, R.; Alawi, M.; Al-Abdullah, N. Molecular characterization, antimicrobial resistance and clinico-bioinformatics approaches to address the problem of extended-spectrum β-lactamase-producing Escherichia coli in western Saudi Arabia. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fadlelmula, A.; Al-Hamam, N.A.; Al-Dughaym, A.M. A potential camel reservoir for extended-spectrum β-lactamase-producing Escherichia coli causing human infection in Saudi Arabia. Trop. Anim. Health Prod. 2016, 48, 427–433. [Google Scholar] [CrossRef]
- Zogg, A.L.; Simmen, S.; Zurfluh, K.; Stephan, R.; Schmitt, S.N.; Nüesch-Inderbinen, M. High prevalence of extended-spectrum β-lactamase producing Enterobacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- Costa, D.; Poeta, P.; Briñas, L.; Sáenz, Y.; Rodrigues, J.; Torres, C. Detection of CTX-M-1 and TEM-52 β-lactamases in Escherichia coli strains from healthy pets in Portugal. J. Antimicrob. Chemother. 2004, 54, 960–961. [Google Scholar] [CrossRef] [Green Version]
- Rao, L.; Lv, L.; Zeng, Z.; Chen, S.; He, D.; Chen, X.; Wu, C.; Wang, Y.; Yang, T.; Wu, P. Increasing prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in food animals and the diversity of CTX-M genotypes during 2003–2012. Vet. Microbiol. 2014, 172, 534–541. [Google Scholar] [CrossRef]
- Puño-Sarmiento, J.; Medeiros, L.; Chiconi, C.; Martins, F.; Pelayo, J.; Rocha, S.; Blanco, J.; Blanco, M.; Zanutto, M.; Kobayashi, R. Detection of diarrheagenic Escherichia coli strains isolated from dogs and cats in Brazil. Vet. Microbiol. 2013, 166, 676–680. [Google Scholar] [CrossRef]
- Watson, V.E.; Jacob, M.E.; Flowers, J.R.; Strong, S.J.; DebRoy, C.; Gookin, J.L. Association of atypical enteropathogenic Escherichia coli with diarrhea and related mortality in kittens. J. Clin. Microbiol. 2017, 55, 2719–2735. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.; Gastmeier, P.; Kola, A.; Schwab, F. Pet animals and foreign travel are risk factors for colonisation with extended-spectrum β-lactamase-producing Escherichia coli. Infection 2012, 40, 685–687. [Google Scholar] [CrossRef]
- Van den Bunt, G.; Fluit, A.; Spaninks, M.; Timmerman, A.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.; Bonten, M. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Zhao, S.-Y.; Zhang, J.; Zhang, Y.-L.; Wang, Y.-C.; Xiao, S.-Z.; Gu, F.-F.; Guo, X.-K.; Ni, Y.-X.; Han, L.-Z. Epidemiology and risk factors for faecal extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) carriage derived from residents of seven nursing homes in western Shanghai, China. Epidemiol. Infect. 2016, 144, 695–702. [Google Scholar] [CrossRef]
- Karkaba, A.; Hill, K.; Benschop, J.; Pleydell, E.; Grinberg, A. Carriage and population genetics of extended spectrum β-lactamase-producing Escherichia coli in cats and dogs in New Zealand. Vet. Microbiol. 2019, 233, 61–67. [Google Scholar] [CrossRef]
- Hernandez, J.; Bota, D.; Farbos, M.; Bernardin, F.; Ragetly, G.; Médaille, C. Risk factors for urinary tract infection with multiple drug-resistant Escherichia coli in cats. J. Feline Med. Surg. 2014, 16, 75–81. [Google Scholar] [CrossRef]
- Baede, V.O.; Broens, E.M.; Spaninks, M.P.; Timmerman, A.J.; Graveland, H.; Wagenaar, J.A.; Duim, B.; Hordijk, J. Raw pet food as a risk factor for shedding of extended-spectrum beta-lactamase-producing Enterobacteriaceae in household cats. PLoS One 2017, 12, e0187239. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Thirtieth CLSI Supplement M100-S30; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Davis, R.; Brown, P.D. Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J. Med. Microbiol. 2016, 65, 261–271. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Brian, M.; Frosolono, M.; Murray, B.; Miranda, A.; Lopez, E.; Gomez, H.; Cleary, T. Polymerase chain reaction for diagnosis of enterohemorrhagic Escherichia coli infection and hemolytic-uremic syndrome. J. Clin. Microbiol. 1992, 30, 1801–1806. [Google Scholar] [CrossRef]
- Pitout, J.; Thomson, K.; Hanson, N.; Ehrhardt, A.; Moland, E.; Sanders, C. β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallien, P. Detection and Subtyping of ShigaToxin-Producing Escherichia coli (STEC). In PCR Detection of Microbial Pathogens; Springer: Berlin/Heidelberg, Germany, 2003; pp. 163–184. [Google Scholar]
- Pitout, J.D.; Hossain, A.; Hanson, N.D. Phenotypic and molecular detection of CTX-M-β-lactamases produced by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 2004, 42, 5715–5721. [Google Scholar] [CrossRef] [PubMed]
- Dohoo, I.R.; Martin, W.; Stryhn, H.E. Veterinary Epidemiologic Research; University of Prince Edward Island: Charlottetown, PE, Canada, 2003. [Google Scholar]
Anatomical Location | Number (%) of E. coli Isolates | Total (n = 400) | |
---|---|---|---|
Healthy Cats (n = 209) | Diseased Cats (n = 191) | ||
Anus | 55 (26.3) | 87 (45.5) | 142 (35.5) |
Skin | 3 (1.4) | 10 (5.2) | 13 (3.3) |
Ear canal | 2 (1.0) | 8 (4.2) | 10 (2.5) |
Conjunctival sac | 0 (0.0) | 5 (2.6) | 5 (1.3) |
Nares | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Total | 60 (28.7) | 110 (57.6) | 170 (42.5) |
Anatomical Location | N | No. (%) of MDR E. coli | Total | No. (%) ESBL E. coli | Total | ||
---|---|---|---|---|---|---|---|
Healthy | Diseased | Healthy | Diseased | ||||
Anus | 142 | 9 (6.3) | 14 (9.9) | 23 (16.2) | 6 (4.2) | 5 (3.5) | 11 (7.7) |
Skin | 13 | 1 (7.7) | 2 (15.4) | 3 (23.1) | 1 (7.7) | 0 (0.0) | 1 (7.7) |
Ear canal | 10 | 0 (0.0) | 3 (30.0) | 3 (30.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Conjunctival sac | 5 | 0 (0.0) | 1 (20.0) | 1 (20.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Nares | 0 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Total | 170 | 10 (5.9) | 20 (11.8) | 30 (17.6) | 7 (4.1) | 5 (2.9) | 12 (7.1) |
Cat No. | Group | Anatomical Location | Resistance Genes 1 | Virulence Genes 1 | Antimicrobial Resistance Patterns | MAR 2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
blaCTX-M | blaTEM | blaSHV | eaeA | stx1 | stx2 | hlyA | |||||
3 | Healthy | Anus | CTX-M-1 | – | – | + | – | – | – | AMP, CTX, SXT | 0.27 |
8 | Healthy | Anus | CTX-M-1 | + | – | – | – | – | – | AMP, AMC, CTX, CIP, SXT, CHL | 0.55 |
19 | Healthy | Anus | CTX-M-15 | + | – | – | – | – | – | AMP, AMC, CTX, CIP, SXT, CHL | 0.55 |
25 | Diseased | Anus | CTX-M-15 | + | – | + | – | + | + | AMP, AMC, CTX, TCY, SXT | 0.45 |
29 | Healthy | Anus | CTX-M-15 | + | – | – | – | – | – | AMP, CTX, TCY, GEN, STR | 0.45 |
29 | Healthy | Skin | CTX-M-15 | + | – | – | – | – | – | AMP, CTX, TCY, GEN, STR | 0.45 |
41 | Diseased | Anus | CTX-M-15 | – | – | + | – | – | – | AMP, CTX, GEN, | 0.27 |
44 | Healthy | Anus | CTX-M-15 | + | – | – | – | – | – | AMP, AMC, CTX, TCY, STR, SXT, CHL | 0.64 |
53 | Diseased | Anus | CTX-M-1 | – | + | – | – | – | – | AMP, AMC, CTX, CIP, SXT, CHL | 0.55 |
82 | Diseased | Anus | CTX-M-1 | – | – | – | – | – | – | AMP, CTX, TCY | 0.27 |
216 | Diseased | Anus | CTX-M-15 | – | – | + | – | + | + | AMP, CTX, SXT | 0.27 |
267 | Healthy | Anus | CTX-M-15 | – | – | + | – | – | – | AMP, CTX, SXT | 0.27 |
Factors | MDR E. coli | ESBL E. coli | ||
---|---|---|---|---|
OR 1 | p-Value | OR 1 | p-Value | |
Family use antimicrobials | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 13.1 | 0.000 | 9.7 | 0.001 |
Family member with acne | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 3.3 | 0.004 | 0.89 | 0.870 |
Hospitalization | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 3.1 | 0.009 | 1.9 | 0.337 |
Previous antimicrobials use for cat | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 3.4 | 0.006 | 4.1 | 0.040 |
Current antimicrobials use for cat | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 8.3 | 0.000 | - | - |
Child at home | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 2.4 | 0.052 | 2.9 | 0.122 |
Cat Living | ||||
Indoor | 1.00 (ref.) | 1.00 (ref.) | ||
Indoors–outdoors | 0.7 | 0.461 | 2.3 | 0.295 |
Reason being at clinic | ||||
Vaccination and/or grooming | 1.00 (ref.) | 1.00 (ref.) | ||
Treatment | 2.03 | 0.099 | 0.91 | 0.877 |
Cat care | ||||
Adult male | 1.00 (ref.) | 0.000 | 1.00 (ref.) | 0.016 |
Adult female | 0.15 | 0.000 | 0.21 | 0.025 |
Child | - | - | - | - |
All family | 0.15 | 0.013 | - | - |
Food type | ||||
Dry | 1.00 (ref.) | 0.003 | 1.00 (ref.) | 0.006 |
Wet | 0.99 | 0.992 | 2.5 | 0.456 |
Raw | 4.2 | 0.013 | 16.8 | 0.001 |
Home available | 5.2 | 0.001 | 12.1 | 0.005 |
Factors | MDR E. coli | ESBL E. coli | ||
---|---|---|---|---|
OR (95% CI) 1 | p-Value | OR (95% CI) 1 | p-Value | |
Family use antimicrobials | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 20.0 (6.29–63.69) | 0.000 | 16.6 (3.29–84.08) | 0.001 |
Previous antimicrobials use for cat | ||||
No | 1.00 (ref.) | 1.00 (ref.) | ||
Yes | 5.5 (1.83–16.36) | 0.002 | 7.8 (1.66–36.34) | 0.009 |
Child at home | ||||
No | 1.00 (ref.) | |||
Yes | 3.4 (1.14–10.30) | 0.027 | - | - |
Cat care | ||||
Adult male | 1.00 (ref.) | 0.019 | - | - |
Adult female | 0.20 (0.06–0.69) | 0.011 | - | - |
Child | - | - | - | - |
All family | 0.21 (0.03–1.29) | 0.092 | - | - |
Food type | ||||
Dry | 1.00 (ref.) | 0.006 | 1.00 (ref.) | 0.001 |
Wet | 0.93 (0.15–5.64) | 0.939 | 2.7 (0.22–33.50) | 0.431 |
Raw | 8.5 (1.74–41.70) | 0.008 | 59.7 (7.16–497.54) | 0.000 |
Home available | 6.3 (1.76–22.80) | 0.005 | 12.4 (1.94–79.63) | 0.008 |
_cons | 0.004 (0.001–0.020) | 0.000 | 0.001 (0.0001–0.005) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayez, M.; Elmoslemany, A.; Al Romaihi, A.A.; Azzawi, A.Y.; Almubarak, A.; Elsohaby, I. Prevalence and Risk Factors Associated with Multidrug Resistance and Extended-Spectrum β-lactamase Producing E. coli Isolated from Healthy and Diseased Cats. Antibiotics 2023, 12, 229. https://doi.org/10.3390/antibiotics12020229
Fayez M, Elmoslemany A, Al Romaihi AA, Azzawi AY, Almubarak A, Elsohaby I. Prevalence and Risk Factors Associated with Multidrug Resistance and Extended-Spectrum β-lactamase Producing E. coli Isolated from Healthy and Diseased Cats. Antibiotics. 2023; 12(2):229. https://doi.org/10.3390/antibiotics12020229
Chicago/Turabian StyleFayez, Mahmoud, Ahmed Elmoslemany, Ahmad A. Al Romaihi, Abdulfattah Y. Azzawi, Abdullah Almubarak, and Ibrahim Elsohaby. 2023. "Prevalence and Risk Factors Associated with Multidrug Resistance and Extended-Spectrum β-lactamase Producing E. coli Isolated from Healthy and Diseased Cats" Antibiotics 12, no. 2: 229. https://doi.org/10.3390/antibiotics12020229
APA StyleFayez, M., Elmoslemany, A., Al Romaihi, A. A., Azzawi, A. Y., Almubarak, A., & Elsohaby, I. (2023). Prevalence and Risk Factors Associated with Multidrug Resistance and Extended-Spectrum β-lactamase Producing E. coli Isolated from Healthy and Diseased Cats. Antibiotics, 12(2), 229. https://doi.org/10.3390/antibiotics12020229