Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine
Abstract
:1. Introduction
2. Medicinal Value of Spices
3. Antimicrobial Property of Spices
3.1. Cloves
3.1.1. Phytochemical of Cloves
3.1.2. Antimicrobial Activity of Cloves
3.2. Cinnamon
3.2.1. Phytochemicals of Cinnamon
3.2.2. Antimicrobial Activity of Cinnamon
3.3. Cardamom
3.3.1. Phytochemicals of Cardamom
3.3.2. Antimicrobial Activity of Cardamom
3.4. Coriander
3.4.1. Phytochemical of Coriander
3.4.2. Antimicrobial Activity of Coriander
3.5. Curry Leaf
3.5.1. Phytochemical of Curry Leaf
3.5.2. Antimicrobial Activity of Curry Leaf
3.6. Gooseberry
3.6.1. Phytochemical of Gooseberry
3.6.2. Antimicrobial Activity of Gooseberry
3.7. Garlic
3.7.1. Phytochemical of Garlic
3.7.2. Antimicrobial Activity of Garlic
3.8. Ginger
Antimicrobial Activity of Ginger
3.9. Turmeric
3.9.1. Phytochemical of Turmeric
3.9.2. Curcumin for Biogenic Nanoparticles Synthesis and Its Antimicrobial Potential
3.9.3. Antimicrobial Activity of Turmeric
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Dhiman, R.; Aggarwal, N.; Aneja, K.R.; Kaur, M. In Vitro Antimicrobial Activity of Spices and Medicinal Herbs against Selected Microbes Associated with Juices. Int. J. Microbiol. 2016, 2016, 9015802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 2001, 74, 113–123. [Google Scholar] [CrossRef]
- Silva, N.C.C.; Júnior, A.F. Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 402–413. [Google Scholar] [CrossRef]
- Subramani, R.; Narayanasamy, M.; Feussner, K.-D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech 2017, 7, 172. [Google Scholar] [CrossRef]
- Miladi, H.; Zmantar, T.; Chaabouni, Y.; Fedhila, K.; Bakhrouf, A.; Mahdouani, K.; Chaieb, K. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb. Pathog. 2016, 99, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.-N.; Tang, G.-Y.; Li, H.-B. Antibacterial and Antifungal Activities of Spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawat, S. Antimicrobial activity of Neem, Tulsi, Henna and Amla against pathogenic bacteria. J. Chem. Pharm. Res. 2015, 7, 1056–1059. [Google Scholar]
- Meshaal, A.K.; Hetta, H.F.; Yahia, R.; Abualnaja, K.M.; Mansour, A.T.; Al-Kadmy, I.M.S.; Alghamdi, S.; Dablool, A.S.; Bin Emran, T.; Sedky, H.; et al. In Vitro Antimicrobial Activity of Medicinal Plant Extracts against Some Bacterial Pathogens Isolated from Raw and Processed Meat. Life 2021, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Mutlu-Ingok, A.; Karbancioglu-Guler, F. Cardamom, Cumin, and Dill Weed Essential Oils: Chemical Compositions, Antimicrobial Activities, and Mechanisms of Action against Campylobacter spp. Molecules 2017, 22, 1191. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, D.; Singh, A.; Lekhak, B.; Basnyat, S.; Gautam, L.S. Study on Antibacterial Activity of Common Spices. Nepal J. Sci. Technol. 2012, 12, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Mekinić, I.G.; Skroza, D.; Ljubenkov, I.; Katalinić, V.; Šimat, V. Antioxidant and Antimicrobial Potential of Phenolic Metabolites from Traditionally Used Mediterranean Herbs and Spices. Foods 2019, 8, 579. [Google Scholar] [CrossRef] [PubMed]
- Revati, S.; Bipin, C.; Chitra, P.; Minakshi, B. Basic research In vitro antibacterial activity of seven Indian spices against high level gentamicin resistant strains of enterococci. Arch. Med. Sci. 2015, 4, 863–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trigo-Gutierrez, J.; Vega-Chacón, Y.; Soares, A.; Mima, E. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 7130. [Google Scholar] [CrossRef] [PubMed]
- Cheraghipour, K.; Ezatpour, B.; Masoori, L.; Marzban, A.; Sepahvand, A.; Rouzbahani, A.K.; Moridnia, A.; Khanizadeh, S.; Mahmoudvand, H. Anti-Candida Activity of Curcumin: A Systematic Review. Curr. Cancer Drug Targets 2021, 18, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, Y.; Lee, R.J.; Xiang, G. Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications. Int. J. Nanomed. 2020, 15, 3099–3120. [Google Scholar] [CrossRef]
- Barua, N.; Buragohain, A.K. Therapeutic Potential of Curcumin as an Antimycobacterial Agent. Biomolecules 2021, 11, 1278. [Google Scholar] [CrossRef] [PubMed]
- Gantait, S.; Mahanta, M.; Bera, S.; Verma, S.K. Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: A nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses. 3 Biotech 2021, 11, 62. [Google Scholar] [CrossRef]
- Variya, B.C.; Bakrania, A.K.; Patel, S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res. 2016, 111, 180–200. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Pistelli, L.; Mancianti, F. Antimicrobial Activity of Five Essential Oils against Bacteria and Fungi Responsible for Urinary Tract Infections. Molecules 2018, 23, 1668. [Google Scholar] [CrossRef] [Green Version]
- Kalleli, F.; Rebey, I.B.; Wannes, W.A.; Boughalleb, F.; Hammami, M.; Tounsi, M.S.; M’Hamdi, M. Chemical composition and antioxidant potential of essential oil and methanol extract from Tunisian and French fennel (Foeniculum vulgare Mill.) seeds. J. Food Biochem. 2019, 43, e12935. [Google Scholar] [CrossRef]
- Amalraj, A.; Gopi, S. Biological activities and medicinal properties of Asafoetida: A review. J. Tradit. Complement. Med. 2016, 7, 347–359. [Google Scholar] [CrossRef]
- Aggarwal, N.K.; Dhiman, R.; Kaur, M. Comparative Evaluation of Antimicrobial Activities of Commonly Used Indian Spices Against Microbes Associated with Juices. Res. J. Microbiol. 2015, 10, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.A. Health Benefits of Culinary Herbs and Spices. J. AOAC Int. 2019, 102, 395–411. [Google Scholar] [CrossRef]
- Abers, M.; Schroeder, S.; Goelz, L.; Sulser, A.; Rose, T.S.; Puchalski, K.; Langland, J. Antimicrobial activity of the volatile substances from essential oils. BMC Complement. Med. Ther. 2021, 21, 124. [Google Scholar] [CrossRef]
- Tabassum, N.; Vidyasagar, G.M. Antifungal investigations on plant essential oils. A review. Int. J. Pharm. Pharm. Sci. 2013, 5, 19–28. [Google Scholar]
- Ikegbunam, M.; Ukamaka, M.; Emmanuel, O. Evaluation of the Antifungal Activity of Aqueous and Alcoholic Extracts of Six Spices. Am. J. Plant Sci. 2016, 07, 118–125. [Google Scholar] [CrossRef]
- Shaikh, U.; Abrar, M.; Shaikh, M.; Danish, A.; Kalam, A. A Review: Household Herbs Have Antifungal Activity. World J. Pharm. Sci. 2018, 7, 659–665. [Google Scholar] [CrossRef]
- Simões, C.M.O.; Mariot, A. Farmacognosia: Da Planta ao Medicamento; Editora da UFSC; Editora da UFRGS, Florianópolis SC Porto Alegre RS: Florianópolis, Brazil, 2003. [Google Scholar]
- Salehi, B.; Kumar, N.V.A.; Şener, B.; Sharifi-Rad, M.; Kılıç, M.; Mahady, G.B.; Vlaisavljevic, S.; Iriti, M.; Kobarfard, F.; Setzer, W.N.; et al. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus. Int. J. Mol. Sci. 2018, 19, 1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batool, S.; Khera, R.A.; Hanif, M.A.; Ayub, M.A. Bay Leaf. Med. Plants South Asia 2019, 63–74. [Google Scholar] [CrossRef]
- Srinivasan, K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: Traditional uses, chemical constituents, and nutraceutical effects. Food Qual. Saf. 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Sharangi, A.B.; Datta, S. Medicinal properties of spices. Indian J. Arecanut Spices Med. Plants 2005, 7, 42–49. [Google Scholar]
- Kumari, K.; Sachan, A.K.; Kumar, S.; Singh, D.; Anupam Kr Sachan, C. Medicinal uses of spices used in our traditional culture: World wide. J. Med. Plants Stud. 2018, 6, 116–122. [Google Scholar]
- Fifi, A.C.; Axelrod, C.H.; Chakraborty, P.; Saps, M. Herbs and Spices in the Treatment of Functional Gastrointestinal Disorders: A Review of Clinical Trials. Nutrients 2018, 10, 1715. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.-Y.; Chuang, C.-H.; Chen, H.-C.; Wan, C.-J.; Chen, T.-L.; Lin, L.-Y. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT–Food Sci. Technol. 2014, 55, 329–334. [Google Scholar] [CrossRef]
- Gupta, C.; Prakash, D. Comparative Study of the Antimicrobial Activity of Clove Oil and Clove Extract on Oral Pathogens. Dent.-Open J. 2021, 7, 12–15. [Google Scholar] [CrossRef]
- Ismail, M.M.; Essam, T.M.; Mohamed, A.F.; Mourad, F.E. Screening for the antimicrobial activities of alcoholic and aqueous extracts of some common spices in Egypt. Int. J. Microbiol. Res. 2012, 3, 200–207. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- PHYTOCHEMICAL EVALUATION AND PHARMACOLOGICAL ACTIVITY OF SYZYGIUM AROMATICUM: A COMPREHENSIVE REVIEW | International Journal of Pharmacy and Pharmaceutical Sciences. Available online: https://innovareacademics.in/journals/index.php/ijpps/article/view/2055 (accessed on 23 December 2022).
- Hemalatha, R.; Nivetha, P.; Mohanapriya, C.; Sharmila, G.; Muthukumaran, C.; Gopinath, M. Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract. J. Food Sci. Technol. 2015, 53, 1189–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batiha, G.E.-S.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Parashar, P.; Mittal, M.; Mehra, V.; Khatri, M.; Rajguru, S. Antibacterial potential of Elletaria cardamomum, Syzygium aromaticum and Piper nigrum, their synergistic effects and phytochemical determination. J. Pharm. Res. 2014, 1091–1097. [Google Scholar]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.; Reinders, R. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranasinghe, P.; Jayawardana, R.; Galappaththy, P.; Constantine, G.R.; Gunawardana, N.D.V.; Katulanda, P. Efficacy and safety of ‘true’ cinnamon(Cinnamomum zeylanicum) as a pharmaceutical agent in diabetes: A systematic review and meta-analysis. Diabet. Med. 2012, 29, 1480–1492. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Denkova-Kostova, R.; Teneva, D.; Tomova, T.; Goranov, B.; Denkova, Z.; Shopska, V.; Slavchev, A.; Hristova-Ivanova, Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). Z. Nat. C J. Biosci. 2020, 76, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.V.; Gan, S.H. Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complement. Altern. Med. 2014, 2014, 642942. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Maurya, S.; Delampasona, M.; Catalan, C.A. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem. Toxicol. 2007, 45, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Tung, Y.-T.; Yen, P.-L.; Lin, C.-Y.; Chang, S.-T. Anti-inflammatory activities of essential oils and their constituents from different provenances of indigenous cinnamon (Cinnamomum osmophloeum) leaves. Pharm. Biol. 2010, 48, 1130–1136. [Google Scholar] [CrossRef] [Green Version]
- Matan, N.; Rimkeeree, H.; Mawson, A.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int. J. Food Microbiol. 2006, 107, 180–185. [Google Scholar] [CrossRef]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Hili, P.; Evans, C.S.; Veness, R.G. Antimicrobial action of essential oils: The effect of dimethylsulphoxide on the activity of cinnamon oil. Lett. Appl. Microbiol. 1997, 24, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parthasarathy, H.; Experimental, S.T.-A.J. Evaluation of antimicrobial activity of Azadirachta indica, Syzygium aromaticum and Cinnamomum zeyalnicumagainst oral microflora. Am. J. Econ. Sociol. 2013, 27, 13–16. [Google Scholar]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Raj, S.; Kamaraj, D. Phytochemical variations among four distinct varieties of Indian cardamom Elettaria cardamomum (L.) Maton. Nat. Prod. Res. 2019, 34, 1919–1922. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. Phytochemistry, pharmacological activities and uses of traditional medicinal plant Kaempferia galanga L.—An overview. J. Ethnopharmacol. 2020, 253, 112667. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.N.; Ulla, A.; Sumi, F.A.; Subhan, N.; Khan, T.; Sikder, B.; Hossain, H.; Reza, H.M.; Alam, A. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats. Lipids Health Dis. 2017, 16, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.; Warkentin, T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]—A critical review. J. Ethnopharmacol. 2019, 246, 112244. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kiran, S.; Marimuthu, P.; Isidorov, V.; Vinogorova, V. Antioxidant and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pods). J. Sci. Food Agric. 2007, 88, 280–289. [Google Scholar] [CrossRef]
- Ahlawat, J. Therapeutic Uses of Elettaria cardomum. Available online: https://www.semanticscholar.org/paper/Therapeutic-uses-of-Elettaria-cardomum-Sharma-Sharma/05a52d8d71256b5ccaed55bf67d4339f2dd31d85 (accessed on 23 December 2022).
- (PDF) Chemical Composition and Antimicrobial Activities of Elettaria Cardamomum L. (Manton) Essential Oil: A High Activity against a Wide Range of Food Borne and Medically Important Bacteria and Fungi. Available online: https://www.researchgate.net/publication/288824316_Chemical_Composition_and_Antimicrobial_Activities_of_Elettaria_Cardamomum_L_Manton_Essential_Oil_A_High_Activity_against_a_Wide_Range_of_Food_Borne_and_Medically_Important_Bacteria_and_Fungi (accessed on 23 December 2022).
- Savan, E.K.; Küçükbay, F.Z. Essential Oil Composition of Elettaria cardamomum Maton. J. Appl. Biol. Sci. 2013, 7, 42–45. [Google Scholar]
- Bano, S.; Ahmad, N.; Sharma, A.K. Phytochemical screening and evaluation of anti-microbial and anti-oxidant activity of Elettaria cardamom (Cardamom). J. Appl. Nat. Sci. 2016, 8, 1966–1970. [Google Scholar] [CrossRef]
- Abdullah; Asghar, A.; Butt, M.S.; Shahid, M.; Huang, Q. Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. J. Food Sci. Technol. 2017, 54, 2306–2315. [Google Scholar] [CrossRef]
- Chemical Composition and Antimicrobial Activities of Elettaria Cardamomum L. (Manton) Essential Oil: A High Activity against a Wide Range of Food Borne and Medically Important Bacteria and Fungi Citefactor.org-Journal|Research Paper|Indexing|Impact Factor. Available online: https://www.citefactor.org/article/index/79962/chemical-composition-and-antimicrobial-activities-of-elettaria-cardamomum-l-manton-essential-oil-a-high-activity-against-a-wide-range-of-food-borne-and-medically-important-bacteria-and-fungi#.YwMlvHZBxPY (accessed on 23 December 2022).
- Kumar, P.K. Small Cardamom Production Technology and Future Prospects. Int. J. Agric. Sci. 2018, 10, 6943–6948. [Google Scholar]
- van Vuuren, S. Antimicrobial activity of South African medicinal plants. J. Ethnopharmacol. 2008, 119, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Domingues, F.C. Antimicrobial activity of coriander oil and its effectiveness as food preservative. Crit. Rev. Food Sci. Nutr. 2015, 57, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Aelenei, P.; Rimbu, C.M.; Guguianu, E.; Dimitriu, G.; Aprotosoaie, A.C.; Brebu, M.; Horhogea, C.E.; Miron, A. Coriander essential oil and linalool—Interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett. Appl. Microbiol. 2018, 68, 156–164. [Google Scholar] [CrossRef]
- Kačániová, M.; Galovičová, L.; Ivanišová, E.; Vukovic, N.L.; Štefániková, J.; Valková, V.; Borotová, P.; Žiarovská, J.; Terentjeva, M.; Felšöciová, S.; et al. Antioxidant, Antimicrobial and Antibiofilm Activity of Coriander (Coriandrum sativum L.) Essential Oil for Its Application in Foods. Foods 2020, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Freires, I.; Murata, R.M.; Furletti, V.F.; Sartoratto, A.; de Alencar, S.M.; Figueira, G.M.; Rodrigues, J.A.D.O.; Duarte, M.C.T.; Rosalen, P.L. Coriandrum sativum L. (Coriander) Essential Oil: Antifungal Activity and Mode of Action on Candida spp., and Molecular Targets Affected in Human Whole-Genome Expression. PLoS ONE 2014, 9, e99086. [Google Scholar] [CrossRef] [Green Version]
- Önder, A. Coriander and Its Phytoconstituents for the Beneficial Effects. In Potential of Essential Oils; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Uitterhaegen, E.; Sampaio, K.A.; Delbeke, E.I.P.; De Greyt, W.; Cerny, M.; Evon, P.; Merah, O.; Talou, T.; Stevens, C.V. Characterization of French Coriander Oil as Source of Petroselinic Acid. Molecules 2016, 21, 1202. [Google Scholar] [CrossRef]
- Rajeshwari, U.; Andallu, B. Medicinal benefits of coriander (Coriandrum sativum L). Kişnişin (Coriandrum sativum L.) Tıbbi Faydaları. Spatula DD 2011, 1, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Rastenievodstva, M.G.-B.-V. Initial Material and Main Directions of Breeding of Some Uncommon Species of Vegetables. 1982. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201302127784 (accessed on 23 December 2022).
- Pawar Vinita, A.; Bhagat, T.B.; Toshniwal, M.R.; Mokashi Nitin, D.; Khandelwal, K.R. Formulation and evaluation of dental gel containing essential oil of coriander against oral pathogens. Int. Res. J. Pharm. 2013, 4, 48–54. [Google Scholar] [CrossRef]
- Vats, A.; Sharma, P. Formulation, and evaluation of topical anti-acne formulation of coriander extract. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 97–103. [Google Scholar]
- Dastgheib, L.; Pishva, N.; Saki, N.; Khabnadideh, S.; Kardeh, B.; Torabi, F.; Arabnia, S.; Heiran, A. Efficacy of topical coriandrum sativum extract on treatment of infants with diaper dermatitis: A single blinded non-randomised controlled trial. Malays. J. Med. Sci. 2017, 24, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Ferreira, S.; Duarte, A.; Mendonça, D.I.; Domingues, F.C. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 2011, 19, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Soares, B.V.; Morais, S.M.; Fontenelle, R.O.D.S.; Queiroz, V.A.; Vila-Nova, N.S.; Pereira, C.M.C.; Brito, E.S.; Neto, M.A.S.; Brito, E.H.S.; Cavalcante, C.S.P.; et al. Antifungal Activity, Toxicity and Chemical Composition of the Essential Oil of Coriandrum sativum L. Fruits. Molecules 2012, 17, 8439–8448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begnami, A.; Duarte, M.; Furletti, V.; chemistry, V.R.-F. Antimicrobial Potential of Coriandrum sativum L. Against Different Candida Species In Vitro; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Matasyoh, J.; Maiyo, Z.; Ngure, R.; Chemistry, R.C.-F. Chemical Composition and Antimicrobial Activity of the Essential Oil of Coriandrum sativum; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Mahleyuddin, N.N.; Moshawih, S.; Ming, L.C.; Zulkifly, H.H.; Kifli, N.; Loy, M.J.; Sarker, M.R.; Al-Worafi, Y.M.; Goh, B.H.; Thuraisingam, S.; et al. Coriandrum sativum L.: A Review on Ethnopharmacology, Phytochemistry, and Cardiovascular Benefits. Molecules 2021, 27, 209. [Google Scholar] [CrossRef] [PubMed]
- Kumar Singh, H.; Alexander Charan, A.; Matthew Prasad, S.; Amit Alexander Charan, C.; Irene Charan, A. Antifungal and antibacterial activity of methanolic, ethanolic and acetonic leaf extracts of curry leaves (Murraya koenigii). J. Pharmacogn. Phytochem. 2017, 6, 1797–1802. [Google Scholar]
- Weragama, D.; Weerasingha, V.; Jayasumana, L.; Adikari, J.; Vidanarachchi, J.K.; Priyashantha, H. The physicochemical, microbiological, and organoleptic properties and antioxidant activities of cream cheeses fortified with dried curry leaves (Murraya koenigii L.) powder. Food Sci. Nutr. 2021, 9, 5774–5784. [Google Scholar] [CrossRef]
- Vats, M.; Singh, H.; Sardana, S. Phytochemical screening and antimicrobial activity of roots of Murraya koenigii (Linn.) Spreng. (Rutaceae). Braz. J. Microbiol. 2011, 42, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, D.V.R. Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds. Antioxidants 2020, 2, 101. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, P. Curry leaf (Murraya koenigii) or Cure leaf: Review of its curative properties. J. Med. Nutr. Nutraceuticals 2012, 1, 92. [Google Scholar] [CrossRef]
- (PDF) Phytochemical and Nutritional Profile of Murraya Koenigii (Linn) Spreng Leaf. Available online: https://www.researchgate.net/publication/319109403_Phytochemical_and_nutritional_profile_of_Murraya_Koenigii_Linn_Spreng_leaf (accessed on 23 December 2022).
- Malwal, M.; Sarin, R. Antimicrobial efficacy of Murraya koenigii (Linn.) Spreng. root extracts. Indian J. Nat. Prod. Resour. 2011, 2, 48–51. [Google Scholar]
- Maswada, H.F.; Abdalla, S.A. In vitro Antifungal Activity of Three Geophytic Plant Extracts against Three Post-harvest Pathogenic Fungi. Pak. J. Biol. Sci. 2013, 16, 1698–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, Y.C.; Anjum, N.; Rana, A. Chemical Composition and In vitro Antifungal and Antioxidant Activities of Essential Oil from Murraya koenigii (L.) Spreng. Leaves. Asian J. Biomed. Pharm. Sci. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens. Bioinorg. Chem. Appl. 2019, 2019, 4649506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, T.; Jain, T.; Mahar, R.; Singh, S.K.; Srivastava, P.; Shukla, S.K.; Mishra, D.K.; Bhatta, R.S.; Banerjee, D.; Kanojiya, S. Pyranocarbazoles from Murraya koenigii (L.) Spreng. as antimicrobial agents. Nat. Prod. Res. 2017, 32, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, P.S.; Vittal, R.R. In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO2method against Pseudomonas aeruginosa PAO1. Nat. Prod. Res. 2015, 29, 2295–2298. [Google Scholar] [CrossRef] [PubMed]
- Mirunalini, S.; Krishnaveni, M. Therapeutic potential of Phyllanthus emblica (amla): The ayurvedic wonder. J. Basic Clin. Physiol. Pharmacol. 2010, 21, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.; Sharma, N.; Oladeji, O.S.; Sourirajan, A.; Dev, K.; Zengin, G.; El-Shazly, M.; Kumar, V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J. Ethnopharmacol. 2022, 282. [Google Scholar] [CrossRef]
- Majeed, M.; Majeed, S.; Mundkur, L.; Nagabhushanam, K.; Arumugam, S.; Beede, K.; Ali, F. Standardized Emblica officinalis fruit extract inhibited the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase-4 and displayed antioxidant potential. J. Sci. Food Agric. 2019, 100, 509–516. [Google Scholar] [CrossRef] [Green Version]
- Pareek, S.; Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; González-aguilar, G.A.; Ramalho, S.A.; Narain, N. Indian Gooseberry (Emblica officinalis Gaertn.). In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2018; Volume II, pp. 1077–1105. [Google Scholar]
- (PDF) Aonla (Emblica officinalis) in India: A review of its Improvement, Production and Diversified Uses. Available online: https://www.researchgate.net/publication/344069385_Aonla_Emblica_officinalis_in_India_A_review_of_its_improvement_production_and_diversified_uses (accessed on 23 December 2022).
- Raghu, V.; Platel, K.; Srinivasan, K. Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. J. Food Compos. Anal. 2007, 20, 529–533. [Google Scholar] [CrossRef]
- Majeed, M.; Bhat, B.; Jadhav, A.N.; Srivastava, J.S.; Nagabhushanam, K. Ascorbic Acid and Tannins from Emblica officinalis Gaertn. Fruits—A Revisit. J. Agric. Food Chem. 2008, 57, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Raton, F.L. Kapoor, Ld. of Ayurvedic Medicinal Plants; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Khurana, S.K.; Tiwari, R.; Sharun, K.; Yatoo, M.I.; Gugjoo, M.B.; Dhama, K. Emblica officinalis (Amla) with a Particular Focus on Its Antimicrobial Potentials: A Review. J. Pure Appl. Microbiol. 2019, 13, 1995–2012. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, Y.-F.; Chen, R.-J.; Zhang, M.-Y.; Wang, Y.-F.; Yang, C.-R.; Zhang, Y.-J. Anti-Coxsackie Virus B3 Norsesquiterpenoids from the Roots of Phyllanthus emblica. J. Nat. Prod. 2009, 72, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Hossen, S.M.M.; Sarkar, R.; Mahmud, S.; Aziz, N.M.A. Medicinal Potential of Phyllanthus emblica (Linn.) Fruits Extracts: Biological and Pharmacological Activities. Br. J. Pharm. Res. 2014, 4, 1486–1499. [Google Scholar] [CrossRef]
- Meriga, B.; Mopuri, R.; MuraliKrishna, T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Med. 2012, 5, 391–395. [Google Scholar] [CrossRef] [Green Version]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Taha, M.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedeschi, P.; Nigro, M.; Travagli, A.; Catani, M.; Cavazzini, A.; Merighi, S.; Gessi, S. Therapeutic Potential of Allicin and Aged Garlic Extract in Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 6950. [Google Scholar] [CrossRef] [PubMed]
- Al-Snafi, A.E. Pharmacological effects of Allium species grown in Iraq. An overview. Int. J. Pharm. Health care Res. 2013, 1, 132–155. [Google Scholar]
- Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evidence-Based Complement. Altern. Med. 2017, 2017, 9402849. [Google Scholar] [CrossRef] [Green Version]
- Tesfaye, A. Revealing the Therapeutic Uses of Garlic (Allium sativum) and Its Potential for Drug Discovery. Sci. World J. 2021, 2021, 8817288. [Google Scholar] [CrossRef]
- Shimon, L.J.; Rabinkov, A.; Shin, I.; Miron, T.; Mirelman, D.; Wilchek, M.; Frolow, F. Two Structures of Alliinase from Alliium sativum L.: Apo Form and Ternary Complex with Aminoacrylate Reaction Intermediate Covalently Bound to the PLP Cofactor. J. Mol. Biol. 2007, 366, 611–625. [Google Scholar] [CrossRef]
- Ross, Z.M.; O’Gara, E.A.; Hill, D.J.; Sleightholme, H.V.; Maslin, D.J. Antimicrobial Properties of Garlic Oil against Human Enteric Bacteria: Evaluation of Methodologies and Comparisons with Garlic Oil Sulfides and Garlic Powder. Appl. Environ. Microbiol. 2001, 67, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Iwai, A.; Yano, T. Effect of red pepper Capsicum annuum var. conoides and garlic Allium sativum on plasma lipid levels and cecal microflora in mice fed beef tallow. Food Chem. Toxicol. 2004, 42, 1695–1700. [Google Scholar] [CrossRef]
- (PDF) Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds. Available online: https://www.researchgate.net/publication/259500174_Therapeutic_Uses_and_Pharmacological_Properties_of_Garlic_Shallot_and_Their_Biologically_Active_Compounds (accessed on 23 December 2022).
- Pârvu, M.; Moţ, C.A.; Pârvu, A.E.; Mircea, C.; Stoeber, L.; Roşca-Casian, O.; Ţigu, A.B. Allium sativum Extract Chemical Composition, Antioxidant Activity and Antifungal Effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa Causing Onychomycosis. Molecules 2019, 24, 3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fufa, B.K. Anti-bacterial and Anti-fungal Properties of Garlic Extract (Allium sativum): A Review. Microbiol. Res. J. Int. 2019, 1–5. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tu, Z.; Sha, X.; Ye, Y.; Li, Z. Flavor, antimicrobial activity, and physical properties of composite film prepared with different surfactants. Food Sci. Nutr. 2020, 8, 3099–3109. [Google Scholar] [CrossRef] [PubMed]
- Gagaoua, M.; Hoggas, N.; Hafid, K. Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Int. J. Biol. Macromol. 2015, 73, 245–252. [Google Scholar] [CrossRef]
- Kalhoro, M.T.; Zhang, H.; Kalhoro, G.M.; Wang, F.; Chen, T.; Faqir, Y.; Nabi, F. Fungicidal properties of ginger (Zingiber officinale) essential oils against Phytophthora colocasiae. Sci. Rep. 2022, 12, 2191. [Google Scholar] [CrossRef]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef] [Green Version]
- Stoner, G.D. Ginger: Is it Ready for Prime Time? Cancer Prev. Res. 2013, 6, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schadich, E.; Hlaváč, J.; Volná, T.; Varanasi, L.; Hajdúch, M.; Džubák, P. Effects of Ginger Phenylpropanoids and Quercetin on Nrf2-ARE Pathway in Human BJ Fibroblasts and HaCaT Keratinocytes. BioMed Res. Int. 2016, 2016, 2173275. [Google Scholar] [CrossRef]
- Andleeb, S.; Naseer, A.; Ali, S.; Mustafa, R.G.; Zafar, A.; Shafique, I.; Bentham Science Publisher Hsan-ul-Haq; Ismail, M.; Saleem, M.; Mansoor, Q. Biological Activities and Secondary Metabolite Screening of Rumex hastatus Extract through Fourier Transform Infrared and Raman Spectroscopy. Infect. Disord.-Drug Targets 2018, 18, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Nassan, M.; Mohamed, E. Immunopathological and Antimicrobial Effect of Black Pepper, Ginger and Thyme Extracts on Experimental Model of Acute Hematogenous Pyelonephritis in Albino Rats. Int. J. Immunopathol. Pharmacol. 2014, 27, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Chakotiya, A.S.; Tanwar, A.; Narula, A.; Sharma, R.K. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathog. 2017, 107, 254–260. [Google Scholar] [CrossRef]
- Hasan, S.; Danishuddin, M.; Khan, A.U. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: In vitro and in vivo studies. BMC Microbiol. 2015, 15, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rampogu, S.; Baek, A.; Gajula, R.G.; Zeb, A.; Bavi, R.S.; Kumar, R.; Kim, Y.; Kwon, Y.J.; Lee, K.W. Ginger (Zingiber officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: Molecular docking, molecular dynamics simulations and in vitro approaches. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Vetvicka, V.; Větvičková, J.; Fernandez-Botran, R. Effects of curcumin on Helicobacter pylori infection. Ann. Transl. Med. 2016, 4, 479. [Google Scholar] [CrossRef] [Green Version]
- (PDF) Turmeric: A Promising Spice for Phytochemical and Antimicrobial Activities. Available online: https://www.researchgate.net/publication/307544435_Turmeric_A_Promising_Spice_for_Phytochemical_and_Antimicrobial_Activities (accessed on 23 December 2022).
- Turmeric and Curcumin: Biological Actions and Medicinal Applications on JSTOR. Available online: https://www.jstor.org/stable/24107978 (accessed on 23 December 2022).
- Singh, R. Evaluation of antimicrobial activity of curcuminoids isolated from turmeric. Int. J. Pharm. Life Sci. 2012, 3, 1368–1376. [Google Scholar]
- Venkatas, J.; Daniels, A.; Singh, M. The Potential of Curcumin-Capped Nanoparticle Synthesis in Cancer Therapy: A Green Synthesis Approach. Nanomaterials 2022, 12, 3201. [Google Scholar] [CrossRef]
- Huang, F.; Gao, Y.; Zhang, Y.; Cheng, T.; Ou, H.; Yang, L.; Liu, J.; Shi, L.; Liu, J. Silver-Decorated Polymeric Micelles Combined with Curcumin for Enhanced Antibacterial Activity. ACS Appl. Mater. Interfaces 2017, 9, 16880–16889. [Google Scholar] [CrossRef] [PubMed]
- Zaharieva, M.M.; Kroumov, A.D.; Dimitrova, L.; Tsvetkova, I.; Trochopoulos, A.; Konstantinov, S.M.; Berger, M.R.; Momchilova, M.; Yoncheva, K.; Najdenski, H.M. Micellar curcumin improves the antibacterial activity of the alkylphosphocholines erufosine and miltefosine against pathogenic Staphyloccocus aureus strains. Biotechnol. Biotechnol. Equip. 2019, 33, 38–53. [Google Scholar] [CrossRef]
- Yang, Q.-Q.; Farha, A.K.; Kim, G.; Gul, K.; Gan, R.-Y.; Corke, H. Antimicrobial and anticancer applications and related mechanisms of curcumin-mediated photodynamic treatments. Trends Food Sci. Technol. 2020, 97, 341–354. [Google Scholar] [CrossRef]
- Juglal, S.; Govinden, R.; Odhav, B. Spice Oils for the Control of Co-Occurring Mycotoxin-Producing Fungi. J. Food Prot. 2002, 65, 683–687. [Google Scholar] [CrossRef] [PubMed]
- (PDF) Identification and Quantification of Some Potentially Antimicrobial Anionic Components in Miswak Extract. Available online: https://www.researchgate.net/publication/286955247_Identification_and_quantification_of_some_potentially_antimicrobial_anionic_components_in_Miswak_extract (accessed on 23 December 2022).
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free. Radic. Res. 2006, 40, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R. Antioxidant and Antimicrobial Activities of Rosemary Extracts Linked to Their Polyphenol Composition. Available online: https://www.academia.edu/36822028/Antioxidant_and_antimicrobial_activities_of_rosemary_extracts_linked_to_their_polyphenol_composition (accessed on 23 December 2022).
- Shehu, K.; Sambo, S.; Ali, U.; Polytechnic, S. Antifungal Activities of Tamarindus indica and Azadirachta indica Extracts on the Growth of Some Selected Fungal Species. Int. J. Innov. Biochem. Microbiol. Res. 2016, 4, 23–26. [Google Scholar]
- Anwar, F.; Ali, M.; Hussain, A.I.; Shahid, M. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan. Flavour Fragr. J. 2009, 24, 170–176. [Google Scholar] [CrossRef]
- Dharajiya, D.; Jasani, H.; Khatrani, T.; Kapuria, M.; Pachchigar, K.; Patel, P. Evaluation of antibacterial and antifungal activity of fenugreek (Trigonella foenum-graecum) extracts. Int. J. Pharm. Pharm. Sci. 2016, 8, 212–217. [Google Scholar]
- Shah, S.B.; Shah, S.I.A.; Sartaj, L.; Zaman, S.; Bilal, M.; Salman, M. Effect of Nigella sativa seeds extracts on clinically important bacterial and fungal species. MOJ Bioequivalence Bioavailab. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Fung, F.; Wang, H.-S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lao, Y.; Pan, Y.; Chen, Y.; Zhao, H.; Gong, L.; Xie, N.; Mo, C.-H. Synergistic Antimicrobial Effectiveness of Plant Essential Oil and Its Application in Seafood Preservation: A Review. Molecules 2021, 26, 307. [Google Scholar] [CrossRef] [PubMed]
- Félix, G.; Soto-Robles, C.A.; Nava, E.; Lugo-Medina, E. Principal Metabolites in Extracts of Different Plants Responsible for Antibacterial Effects. Chem. Res. Toxicol. 2021, 34, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2013, 54, 625–644. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, F.Y.R.; Filho, A.J.M.C.; Nunes, A.M.; de Oliveira, G.V.; Gomes, P.X.L.; Vasconcelos, G.S.; Carletti, J.; de Moraes, M.O.; de Moraes, M.E.; Vasconcelos, S.M.M.; et al. Involvement of anti-inflammatory, antioxidant, and BDNF up-regulating properties in the antipsychotic-like effect of the essential oil of Alpinia zerumbet in mice: A comparative study with olanzapine. Metab. Brain Dis. 2021, 36, 2283–2297. [Google Scholar] [CrossRef]
Common Name | Botanical Name | Active Compound | Medicinal Uses and Benefits | References |
---|---|---|---|---|
Bay leaf | Laurus nobilis | Eugenol, methyl eugenol, and elemicin | Stimulant in sprains, narcotics, and in veterinary medicine. | [30] |
Cumin | Cuminum cyminum | Aldehyde cumino | Parasiticidal, febrifuge, gastric, appetizing, used for skin diseases, flux, and canker. | [31] |
Cardamom | Elettaria cardamomum | Cineole, pinene, sabinene, and porneol | Intoxicating, energizer, flatus relieving, peptic, used in cough mixture, and used in numerous therapeutic preparations. | [32] |
Coriander | Coriandrum sativum | Geraniol | Carminative, diuretic, tonic, stimulant, stomachic, refrigerant, aphrodisiac, analgesic, and anti-inflammatory. | [32] |
Clove | Syzygium aromaticum | Eugeniol | Sorbent, ocular, gastral, flatus relieving, restorative, spasmolytic, antibacterial, used in cough syrups, and rubefacient. | [23] |
Garlic | Allium sativum | Allicin | Anti-cholesterol, antifungal, energizer, intoxicant, thermogenic, and used for coughs and asthma. | [33] |
Ginger | Zingiber officinale | Gingerol and shogaol | Gastral, flatus relieving, placatory, foretaste, stomachal, rubefacient, analgesic, used in cough syrups, and parasiticidal. | [34] |
Hing | Ferula assa-foetida | Ferulic ester | [21] | |
Oregano | Origanum vulgare | Carvacrol and thymol | Tonic, stomachic, used as a water pill, diaphoretic, and emmenagogue. | [23] |
Star Anise | Illicium verum | Shikimic acid | Astringent, carminative, deodorant, expectorant, and digestive. | [19] |
Turmeric | Curcuma longa | Curcumin | Thermogenic, palliative, analgesic, anti-inflammatory, vulnerary, depurative, antiseptic, and used in skin diseases. | [35] |
S.no. | name | extraction | pathogen | Zone of Inhibition | Reference |
---|---|---|---|---|---|
1 | Tamarindus indica | chloroform | Aspergillus niger Aspergillus flavus | 9.0 ± 0.7 11.0 ± 1.8 | [145] |
2 | Curcuma longa | Acetone Methanol Ethanol | B. cereus | 22 20 17 | [1] |
3 | Emblica officinalis | Acetone Methanol Ethanol | B. cereus Serratia sp. R. mucilaginosa A. flavus P. citrinum | 22, 19, 17 19, 14, 15 18, 16, 14 19, 17, 12 20, 18, 13 | [1] |
4 | Ocimum basilicum | Essential oil | Activity show on Many fungus | [19] | |
5 | Foeniculum vulgare | Essential oil | Bacillus subtilis Aspergillus niger | 29 28 | [146] |
6 | Allium sativum | Methanol aqueous | B. subtilis C. albicans | 16,20 12 | [107] |
7 | Coriandrum sativum | Essential oil | Activity show on Many fungus | [79] | |
8 | Asafoetida | Ethanol Methanol Aqueous | Aspergillus niger C. albicans | 15, 17, 13 16, 20, 11 | [21] |
9 | Trigonella foenum graecum | Flucanozole Hexane | Aspergillus niger Aspergillus flavus | 16, 10 21, 9 | [147] |
10 | Murraya koenigii | Methanol Ethanol Acetone aqueous | Aspergillus niger | 20 18 11 0 | [84] |
11 | Nigella sativa | Ethanol Methanol water | Aspergillus niger Aspergillus fumigatus | 15, 14, 9 17, 19, 7 | [148] |
12 | Elettaria cardamomum | Essential oil | [58] | ||
13 | Star anise | Essential oil | Activity show on Many fungus | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatri, P.; Rani, A.; Hameed, S.; Chandra, S.; Chang, C.-M.; Pandey, R.P. Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine. Antibiotics 2023, 12, 270. https://doi.org/10.3390/antibiotics12020270
Khatri P, Rani A, Hameed S, Chandra S, Chang C-M, Pandey RP. Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine. Antibiotics. 2023; 12(2):270. https://doi.org/10.3390/antibiotics12020270
Chicago/Turabian StyleKhatri, Purnima, Asha Rani, Saif Hameed, Subhash Chandra, Chung-Ming Chang, and Ramendra Pati Pandey. 2023. "Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine" Antibiotics 12, no. 2: 270. https://doi.org/10.3390/antibiotics12020270
APA StyleKhatri, P., Rani, A., Hameed, S., Chandra, S., Chang, C. -M., & Pandey, R. P. (2023). Current Understanding of the Molecular Basis of Spices for the Development of Potential Antimicrobial Medicine. Antibiotics, 12(2), 270. https://doi.org/10.3390/antibiotics12020270