Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Escherichia coli
2.2. Antimicrobial Susceptibility Profiles
2.3. Prevalence of Resistance-Related Genes
2.4. Prevalence of Virulence-Related Genes
2.5. Phylogenetic Group Frequencies
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Isolation and Identification of Escherichia coli
4.3. Antimicrobial Susceptibility Testing
4.4. Detection of Antimicrobial Resistance Genes
4.5. Virulence-Related Gene Detection
4.6. Phylogenetic Group Classification
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Nulty, K.M.; Soon, J.M.; Wallace, C.A.; Nastasijevic, I. Antimicrobial resistance monitoring and surveillance in the meat chain: A report from five countries in the European Union and European Economic Area. Trends Food Sci. Technol. 2016, 58, 1–13. [Google Scholar] [CrossRef]
- Cameron, A.; McAllister, T.A. Antimicrobial usage and resistance in beef production. J. Anim. Sci. Biotechnol. 2017, 7, 68. [Google Scholar] [CrossRef]
- Bischt, R.; Katiyar, A.; Singh, R.; Mittal, P. Antibiotic resistance- A global issue of concern. Asian J. Pharm. Clin. Res. 2009, 2, 34–39. [Google Scholar]
- Maradiaga, M.; Echeverry, A.; Miller, M.F.; den Bakker, H.C.; Nightingale, K.; Cook, P.W.; Brashears, M.T.; Brashears, M.M. Characterization of antimicrobial resistant (AMR) Salmonella enterica isolates associated with cattle at harvest in Mexico. Meat Muscle Biol. 2019, 3, 63–69. [Google Scholar] [CrossRef]
- Martínez-Vázquez, A.V.; Vázquez-Villanueva, J.; Leyva-Zapata, L.M.; Barrios-García, H.B.; Rivera, G.; Bocanegra-García, V. Multidrug resistance of Escherichia coli strains isolated from bovine feces and carcasses in Northeast, Mexico. Front. Vet. Sci. 2021, 8, 643802. [Google Scholar] [CrossRef] [PubMed]
- Badi, S.; Cremonesi, P.; Salah, M.; Ibrahim, C.; Snoussi, M.; Bignoli, G.; Luini, M.; Castiglioni, B.; Hassen, A. Antibiotic resistance phenotypes and virulence-associated genes in Escherichia coli isolated from animals and animal food products in Tunisia. FEMS Microbiol. Lett. 2018, 365, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef]
- Johnson, T.J.; Jordan, D.; Kariyawasam, S.; Stell, A.L. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect. Immun. 2010, 78, 1931–1942. [Google Scholar] [CrossRef]
- Lan, T.; Liu, H.; Meng, L.; Xing, M.; Dong, L.; Gu, M.; Wang, J.; Zheng, N. Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. Food Agric. Immunol. 2020, 31, 406–423. [Google Scholar] [CrossRef]
- Selim, S.A.; Ahmed, S.F.; Aziz, M.H.A.; Zakaria, A.M.; Klena, J.D.; Pangallo, D. Prevalence and characterization of Shiga-Toxin O157:H7 and Non-O157:H7 enterohemorrhagic Escherichia coli isolated from different sources. Biotechnol. Biotechnol. Equip. 2014, 27, 3834–3842. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Bonacors, S.; Bingen, E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Chávez, L.; Cabrera, E.; Pérez, J.A.; Garay, L.E.; Varela, J.J.; Castillo, A.; Lucia, L.; Ávila, M.G.; Cardona, M.A.; Gutiérrez, P.; et al. Quantitative distribution of Salmonella spp. and Escherichia coli on beef carcasses and raw beef at retail establishments. Int. J. Food Microbiol. 2015, 1, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Murutu, R.; Luanda, C.; Rugumisa, B.; Mwanyika, G.; Subbiah, M.; Call, D.R.; Buza, J. Detection of microbial surface contamination and antibiotic-resistant Escherichia coli on beef carcasses in Arusha, Tanzania. Afr. J. Microbiol. Res. 2016, 10, 1148–1155. [Google Scholar]
- Park, H.; Yoon, J.W.; Heo, E.J.; Ko, E.K.; Kim, K.Y.; Kim, Y.J.; Yoon, H.J.; Wee, S.H.; Park, Y.H.; Moon, J.S. Antibiotic Resistance and Virulence Potentials of Shiga Toxin-producing Escherichia coli Isolates from Raw Meats of Slaughterhouses and Retail Markets in Korea. J. Microbiol. Biotechnol. 2015, 25, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Bass, C.; Crick, P.; Cusack, D.; Locke, G.; Sumner, J. The use of microbiological surveys to evaluate the co-regulation of abattoirs in New South Wales, Australia. Food Control 2011, 22, 959–963. [Google Scholar] [CrossRef]
- Canizalez, A.; Gonzalez, E.; Vidal, J.E.; Flores, H.; León, L. Prevalence and antibiotic resistance profiles of diarrheagenic Escherichia coli strains isolated from food items in northwestern Mexico. Int. J. Food Microbiol. 2013, 164, 36–45. [Google Scholar] [CrossRef]
- Lindsay, A.G. Kucers’ the Use of Antibiotics, 6th ed.; ASM Press: London, UK, 2010; Volume 1. [Google Scholar]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2015, 84, 634–643. [Google Scholar] [CrossRef]
- WHO, World Health Organization. Neglected Zoonotic Diseases. 2015. Available online: https://www.who.int/neglected_diseases/diseases/zoonoses/en/ (accessed on 1 March 2016).
- Diario Oficial de la Federación. DOF 25/05/2010. Secretaria de Gobernación. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5144336&fecha=27/05/2010#gsc.tab=0 (accessed on 5 November 2019).
- Martínez-Vázquez, A.V.; Rivera, G.; Lira, K.; Reyes, M.A.; Bocanegra, V. Prevalence, antimicrobial resistance, and virulence genes of Escherichia coli isolated from retail meat in Tamaulipas, Mexico. J. Glob. Antimicrob. Resist. 2018, 14, 266–272. [Google Scholar] [CrossRef]
- Aguilar-Montes de Oca, S.; Talavera, M.; Soriano, E.; Barba, J.; Vazquez, J. Determination of extended spectrum β-lactamases/AmpC β-lactamases and plasmid-mediated quinolone resistance in Escherichia coli isolates obtained from bovine carcasses in Mexico. Trop. Anim. Health Prod. 2015, 47, 975–981. [Google Scholar] [CrossRef]
- Ayaz, N.D.; Genca, Y.E.; Erol, I. Phenotypic and genotypic antibiotic resistance profiles of Escherichia coli O157 from cattle and slaughterhouse wastewater isolates. Ann. Microbiol. 2015, 65, 1137–1144. [Google Scholar] [CrossRef]
- Li, R.; Tan, X.; Xiao, J.; Wang, H.; Liu, Z.; Zhou, M.; Bi, W.; Miyamoto, T. Molecular screening and characterization of Shiga toxin-producing Escherichia coli in retail foods. Food Control 2016, 60, 180–188. [Google Scholar] [CrossRef]
- Minh, S.H.; Kimura, E.; Minh, D.H.; Honjoh, K.; Miyamoto, T. Virulence characteristics of Shiga toxin-producing Escherichia coli from raw meats and clinical samples. Microbiol. Immunol. 2015, 59, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Ateba, C.N.; Mbwe, M. Detection of Escherichia coli O157:H7 virulence genes in isolates from beef, pork, water, human and animal species in the northwest province, South Africa: Public health implications. Res Microbiol. 2011, 162, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Sallam, K.I.; Mohammed, M.A.; Ahdy, A.M.; Tamura, T. Prevalence, genetic characterization and virulence genes of sorbitol-fermenting Escherichia coli O157:H- and E. coli O157:H7 isolated from retail beef. Int. J. Food Microbiol. 2013, 165, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Morcatti, C.F.; Diniz, S.A.; Silva, M.X.; Suhet, M.J.M.; Barbosa, M.S.; Pereira, L.A.; Heinemann, M.B. Phylogenetic group determination of Escherichia coli isolated from animals samples. Sci. World J. 2015, 2015, 258424. [Google Scholar]
- Mainda, G.; Lupolova, N.; Sikakwa, L.; Bessell, P.R.; Muma, J.B.; Hoyle, D.V.; McAteer, S.P.; Gibbs, K.; Williams, N.J.; Sheppard, S.K.; et al. Phylogenomic approaches to determine the zoonotic potential of Shiga toxin-producing Escherichia coli (STEC) isolated from Zambian dairy cattle. Sci. Rep. 2016, 25, 26589. [Google Scholar] [CrossRef]
- Cowan, S.T.; Steel, J. Characters of Gram-negative bacteria. In Cowan and Steel’s Manual for the Identification of Medical Bacteria; Barrow, G., Feltham, R., Eds.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Omar, K.B.; Barnard, T.G. Detection of diarrhoeagenic Escherichia coli in Clinical and environmental water sources in South Africa using single-step. World J. Microbiol. Biotechnol. 2014, 30, 2663–2671. [Google Scholar] [CrossRef]
- CLSI, Clinical and Laboratory Standards Institute. M100. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Ng, L.K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline-resistant genes. Mol. Cell. Probes 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [Green Version]
Sample Type | Sample Number | E. coli Prevalence (n (%)) | Phylogenetic Groups (n (%)) | Virulence Factors (n (%)) | |||||
---|---|---|---|---|---|---|---|---|---|
A | B1 | B2 | D | stx1 | stx2 | hlyA | |||
Water | 60 | 30 (50) | 6 (20) | 13 (43) | 9 (30) | 2 (7) | 1 (3.3) | 0 (0) | 8 (26.6) |
Surfaces | 36 | 15 (41.7) | 14 (93) | 0 (0) | 1 (7) | 0 (0) | 0 (0) | 0 (0) | 1 (6.6) |
Carcasses | 120 | 117 (97.5) | 55 (47) | 26 (22) | 17 (15) | 19 (16) | 2 (1.7) | 1 (0.8) | 1 (0.8) |
Feces | 120 | 118 (98.3) | 63 (53) | 10 (8) | 19 (16) | 26 (22) | 0 (0) | 0 (0) | 5 (4.2) |
Total | 336 | 280 (83.3) | 138 (49) | 49 (18) | 46 (16) | 47 (17) | 3 (1.0) | 1 (0.3) | 15 (5.3) |
Antimicrobial | Water (n = 30) | Surfaces (n = 15) | Carcasses (n = 117) | Feces (n = 118) | ||||
---|---|---|---|---|---|---|---|---|
R | S | R | S | R | S | R | S | |
Isolates (n (%)) | ||||||||
Amikacin | 1 (3.3) | 28 (93.3) | 0 (0) | 15 (100) | 0 (0) | 111 (95.7) | 7 (5.9) | 95 (80.5) |
Ampicillin | 9 (30) | 18 (60) | 3 (20) | 11 (93.3 | 38 (32.8) | 45 (38.8) | 51 (43.2) | 44 (37.3) |
Amoxicillin/clavulanic acid | 0 (0) | 24 (80) | 0 (0) | 14 (93.3) | 12 (10.3) | 65 (56) | 6 (5.1) | 74 (62.7) |
Cephalothin | 6 (20) | 10 (33.3) | 3 (20) | 4 (26.7) | 57 (49.1) | 13 (11.2) | 64 (54.2) | 13 (11) |
Cefepime | 0 (0) | 29 (96.7) | 0 (0) | 15 (100) | 0 (0) | 109 (94) | 1 (0.8) | 102 (86.4) |
Cefotaxime | 0 (0) | 26 (86.7) | 0 (0) | 15 (100) | 0 (0) | 94 (81) | 0 (0.0) | 93 (78.8) |
Ceftriaxone | 0 (0) | 30 (100) | 0 (0) | 15 (100) | 0 (0) | 115 (99.1) | 0 (0.0) | 117 (99.2) |
Ciprofloxacin | 0 (0) | 30 (100) | 1 (6.7) | 14 (93.3) | 2 (1.7) | 114 (98.3) | 0 (0.0) | 117 (99.2) |
Chloramphenicol | 4 (13.3) | 25 (83.3) | 2 (13.3) | 13 (86.7) | 18 (15.5) | 97 (83.6) | 13 (11.0) | 102 (86.4) |
Streptomycin | 9 (30) | 20 (66.7) | 4 (26.7) | 10 (66.7) | 61 (52.6) | 41 (35.3) | 37 (31.4) | 55 (46.6) |
Gentamicin | 0 (0) | 28 (93.3) | 0 (0) | 15 (100) | 1 (0.9) | 114 (98.3) | 3 (2.5) | 113 (95.8) |
Netilmicin | 0 (0) | 30 (100) | 0 (0) | 15 (100) | 0 (0) | 116 (100) | 1 (0.8) | 116 (98.3) |
Nitrofurantoin | 5 (16.7) | 18 (60) | 1 (6.7) | 14 (93.3) | 3 (38.8) | 68 (58.6) | 6 (5.1) | 77 (65.3) |
Levofloxacin | 0 (0) | 30 (100) | 1 (6.7) | 14 (93.3) | 1 (0.9) | 115 (99.1) | 0 (0.0) | 118 (100.0) |
Trimethoprim/sulfamethoxazole | 6 (20) | 24 (80) | 3 (20) | 12 (80) | 18 (15.5) | 93 (80.2) | 18 (15.3) | 97 (82.2) |
Tetracycline | 14 (46.7) | 14 (46.7) | 6 (40) | 8 (53.3) | 61 (52.6) | 48 (41.4) | 62 (52.5) | 53 (44.9) |
Patterns of Resistance Phenotypes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P50 | CF | AM | NF | ||||||||
P51 | TE | CF | AM | STR | STX | NF | |||||
P52 | TE | AM | STR | STX | NF | ||||||
P53 | TE | AM | STX | NF | |||||||
P54 | TE | AM | STR | CL | NF | ||||||
P59 | TE | CF | STX | AMC | |||||||
P60 | TE | CF | AM | STR | AMC | ||||||
P61 | TE | AM | STX | AMC | |||||||
P62 | TE | CF | AM | CL | AMC | ||||||
P63 | TE | AM | STX | CL | AMC | ||||||
P64 | TE | CF | AM | STR | CL | AMC | |||||
P65 | TE | CF | AM | STR | AMC | ||||||
P66 | TE | CF | AM | STR | STX | GE | AMC | ||||
P67 | TE | CF | AM | STR | STX | AMC | |||||
P68 | CF | CIP | |||||||||
P69 | TE | CF | AM | STR | STX | CIP | LEV |
Sample Type | Number of Isolates | Resistance-Related Genes (n (%)) | |||||
---|---|---|---|---|---|---|---|
tetA | tetB | aac(3) | aadA | strA | strB | ||
Water | 30 | 7 (23.3) | 2 (6.6) | 0 (0) | 1 (3.3) | 3 (10) | 6 (20) |
Surfaces | 15 | 2 (13.3) | 1 (6.6) | 0 (0) | 0 (0) | 0 (0) | 1 (6.6) |
Carcasses | 117 | 34 (28.8) | 15 (12.8) | 0 (0) | 3 (2.5) | 2 (1.7) | 26 (22.2) |
Feces | 118 | 20 (16.9) | 7 (5.9) | 0 (0) | 1 (0.8) | 1 (0.8) | 11 (9.3) |
Total | 280 | 63 (22.5) | 25 (8.9) | 0 (0) | 5 (1.7) | 6 (2.1) | 44 (15.7) |
Pathogens | Commensals | Total | |||||
---|---|---|---|---|---|---|---|
Frequency | Percentage | Frequency | Percentage | Frequency | Percentage | p-Value | |
Virulence genes | p > 0.05 | ||||||
Positive isolates | 7 | 38.9 | 11 | 61.1 | 18 | 100 | |
Negative isolates | 86 | 32.8 | 176 | 67.2 | 262 | 100 | |
Tetracycline-resistant genes | p > 0.05 | ||||||
Positive isolates | 30 | 37.0 | 51 | 63.0 | 81 | 100 | |
Negative isolates | 63 | 31.7 | 136 | 68.3 | 199 | 100 | |
Streptomycin-resistant genes | p < 0.05 | ||||||
Positive isolates | 21 | 46.7 | 24 | 53.3 | 45 | 100 | |
Negative isolates | 72 | 30.6 | 163 | 69.4 | 235 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Villanueva, J.; Vázquez, K.; Martínez-Vázquez, A.V.; Wong-González, A.; Hernández-Escareño, J.; Cabrero-Martínez, O.; Cruz-Pulido, W.L.; Guerrero, A.; Rivera, G.; Bocanegra-García, V. Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process. Antibiotics 2023, 12, 291. https://doi.org/10.3390/antibiotics12020291
Vázquez-Villanueva J, Vázquez K, Martínez-Vázquez AV, Wong-González A, Hernández-Escareño J, Cabrero-Martínez O, Cruz-Pulido WL, Guerrero A, Rivera G, Bocanegra-García V. Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process. Antibiotics. 2023; 12(2):291. https://doi.org/10.3390/antibiotics12020291
Chicago/Turabian StyleVázquez-Villanueva, José, Karina Vázquez, Ana Verónica Martínez-Vázquez, Alfredo Wong-González, Jesus Hernández-Escareño, Omar Cabrero-Martínez, Wendy Lizeth Cruz-Pulido, Abraham Guerrero, Gildardo Rivera, and Virgilio Bocanegra-García. 2023. "Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process" Antibiotics 12, no. 2: 291. https://doi.org/10.3390/antibiotics12020291
APA StyleVázquez-Villanueva, J., Vázquez, K., Martínez-Vázquez, A. V., Wong-González, A., Hernández-Escareño, J., Cabrero-Martínez, O., Cruz-Pulido, W. L., Guerrero, A., Rivera, G., & Bocanegra-García, V. (2023). Molecular and Antimicrobial Susceptibility Characterization of Escherichia coli Isolates from Bovine Slaughterhouse Process. Antibiotics, 12(2), 291. https://doi.org/10.3390/antibiotics12020291