Tigecycline Pharmacokinetic and Pharmacodynamic Profile in Patients with Chronic Obstructive Pulmonary Disease Exacerbation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Participants, and Procedures
2.2. Methods
2.2.1. Sample Preparation
2.2.2. LC-MS/MS Analysis
3. Results
3.1. Pulmonary Function
3.2. Pharmacokinetic (PK) Results
3.3. Pharmacodynamic (PD) Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Karageorgopoulos, D.E.; Dimopoulos, G. Clinical significance of the pharmacokinetic and pharmacodynamic characteristics of tigecycline. Curr. Drug Metab. 2009, 10, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/documents/product-information/tygacil-epar-product-information_en.pdf (accessed on 1 December 2022).
- Giamarellou, H.; Poulakou, G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin. Drug Metab. Toxicol. 2011, 7, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Babinchak, T. Tigecycline: An update. Diagn. Microbiol. Infect. Dis. 2013, 75, 331–336. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-increased-risk-death-tygacil-tigecycline-compared-other-antibiotics (accessed on 1 December 2022).
- Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/tygacil#product-information-section (accessed on 1 December 2022).
- De Rosa, F.G.; Corcione, S.; Di Perri, G.; Scaglione, F. Re-defining tigecycline therapy. New Microbiol. 2015, 38, 121–136. [Google Scholar]
- Bassetti, M.; Poulakou, G.; Giamarellou, H. Is there a future for tigecycline? Intensive Care Med. 2014, 40, 1039–1045. [Google Scholar] [CrossRef]
- Prasad, P.; Sun, J.; Danner, R.L.; Natanson, C. Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin. Infect. Dis. 2012, 54, 1699–1709. [Google Scholar] [CrossRef]
- Mathioudakis, A.G.; Janner, J.; Moberg, M.; Alonso-Coello, P.; Vestbo, J. A systematic evaluation of the diagnostic criteria for COPD and exacerbations used in randomised controlled trials on the management of COPD exacerbations. ERJ Open Res. 2019, 5, 00136–02019. [Google Scholar] [CrossRef]
- Available online: https://goldcopd.org/2022-gold-reports (accessed on 1 December 2022).
- Beasley, V.; Joshi, P.V.; Singanayagam, A.; Molyneaux, P.L.; Johnston, S.L.; Mallia, P. Lung microbiology and exacerbations in COPD. Int. J. Chron. Obstr. Pulm. Dis. 2012, 7, 555–569. [Google Scholar] [CrossRef]
- Taburet, A.M.; Tollier, C.; Richard, C. The effect of respiratory disorders on clinical pharmacokinetic variables. Clin. Pharmacokinet. 1990, 19, 462–490. [Google Scholar] [CrossRef]
- Wang, Y.; Bahar, M.A.; Jansen, A.M.E.; Kocks, J.W.H.; Alffenaar, J.-W.C.; Hak, E.; Wilffert, B.; Borgsteede, S.D. Improving antibacterial prescribing safety in the management of COPD exacerbations: Systematic review of observational and clinical studies on potential drug interactions associated with frequently prescribed antibacterials among COPD patients. J. Antimicrob. Chemother. 2019, 74, 2848–2864. [Google Scholar] [CrossRef] [Green Version]
- Braganza, G.; Chaudhuri, R.; Thomson, N.C. Treating patients with respiratory disease who smoke. Ther. Adv. Respir. Dis. 2008, 2, 95–107. [Google Scholar] [CrossRef]
- Trobec, K.; Kerec Kos, M.; von Haehling, S.; Springer, J.; Anker, S.D.; Lainscak, M. Pharmacokinetics of drugs in cachectic patients: A systematic review. PLoS ONE 2013, 8, e79603. [Google Scholar] [CrossRef]
- Rubino, C.M.; Bhavnani, S.M.; Forrest, A.; Dukart, G.; Dartois, N.; Cooper, A.; Korth-Bradley, J.; Ambrose, P.G. Pharmacokinetics-pharmacodynamics of tigecycline in patients with community-acquired pneumonia. Antimicrob. Agents Chemother. 2012, 56, 130–136. [Google Scholar] [CrossRef]
- Available online: https://www.fda.gov/drugs/development-resources/tigecycline-injection-products (accessed on 1 December 2022).
- Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf) (accessed on 1 December 2022).
- File, T.M., Jr.; Monte, S.V.; Schentag, J.J.; Paladino, J.A.; Klugman, K.P.; Lavin, B.; Yu, V.L.; Singer, M.E.; Adelman, M.H. A disease model descriptive of progression between chronic obstructive pulmonary disease exacerbations and community-acquired pneumonia: Roles for underlying lung disease and the pharmacokinetics/pharmacodynamics of the antibiotic. Int. J. Antimicrob. Agents 2009, 33, 58–64. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, R.; Liang, B.; Bai, N.; Liu, Y. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob. Agents Chemother. 2011, 55, 1162–1172. [Google Scholar] [CrossRef]
- Yahav, D.; Lador, A.; Paul, M.; Leibovici, L. Efficacy and safety of tigecycline: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2011, 66, 1963–1971. [Google Scholar] [CrossRef]
- Tasina, E.; Haidich, A.B.; Kokkali, S.; Arvanitidou, M. Efficacy and safety of tigecycline for the treatment of infectious diseases: A meta-analysis. Lancet Infect. Dis. 2011, 11, 834–844. [Google Scholar] [CrossRef]
- Poulakou, G.; Kontopidou, F.V.; Paramythiotou, E.; Kompoti, M.; Katsiari, M.; Mainas, E.; Nicolaou, C.; Yphantis, D.; Antoniadou, A.; Trikka-Graphakos, E.; et al. Tigecycline in the treatment of infections from multi-drug resistant gram-negative pathogens. J. Infect. 2009, 58, 273–284. [Google Scholar] [CrossRef]
- Dima, E.; Kyriakoudi, A.; Kaponi, M.; Vasileiadis, I.; Stamou, P.; Koutsoukou, A.; Koulouris, N.G.; Rovina, N. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): Current perspectives. Respir. Med. 2019, 157, 1–6. [Google Scholar] [CrossRef]
- Gotfried, M.H.; Horn, K.; Garrity-Ryan, L.; Villano, S.; Tzanis, E.; Chitra, S.; Manley, A.; Tanaka, S.K.; Rodvold, K.A. Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2017, 61, e01135-17. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Kong, L.; Wu, C.; Wu, D.; Wu, X. Pharmacokinetics of tigecycline in both plasma and sputum in patients with severe pneumonia. J. Glob. Antimicrob. Resist. 2021, 26, 1–3. [Google Scholar] [CrossRef]
- Conte, J.E., Jr.; Golden, J.A.; Kelly, M.G.; Zurlinden, E. Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline. Int. J. Antimicrob. Agents 2005, 25, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Almyroudi, M.P.; Kapralos, I.; Apostolopoulou, O.; Flevari, A.; Nicolau, D.P.; Dokoumetzidis, A. Intrapulmonary pharmacokinetics of high doses of tigecycline in patients with ventilator-associated pneumonia. Int. J. Antimicrob. Agents 2022, 59, 106487. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Yan, G.; Wang, C.; Shen, C.; Zhang, W.; Wang, W. Dose optimisation based on pharmacokinetic/pharmacodynamic target of tigecycline. J. Glob. Antimicrob. Resist. 2021, 25, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Crandon, J.L.; Kim, A.; Nicolau, D.P. Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs. J. Antimicrob. Chemother. 2009, 64, 837–839. [Google Scholar] [CrossRef]
- Koomanachai, P.; Kim, A.; Nicolau, D.P. Pharmacodynamic evaluation of tigecycline against Acinetobacter baumannii in a murine pneumonia model. J. Antimicrob. Chemother. 2009, 63, 982–987. [Google Scholar] [CrossRef]
- Rodvold, K.A.; George, J.M.; Yoo, L. Penetration of anti-infective agents into pulmonary epithelial lining fluid: Focus on antibacterial agents. Clin. Pharmacokinet. 2011, 50, 637–664. [Google Scholar] [CrossRef]
- De Pascale, G.; Montini, L.; Pennisi, M.; Bernini, V.; Maviglia, R.; Bello, G.; Spanu, T.; Tumbarello, M.; Antonelli, M. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit. Care 2014, 18, R90. [Google Scholar] [CrossRef]
- Burkhardt, O.; Rauch, K.; Kaever, V.; Hadem, J.; Kielstein, J.T.; Welte, T. Tigecycline possibly underdosed for the treatment of pneumonia: A pharmacokinetic viewpoint. Int. J. Antimicrob. Agents 2009, 34, 101–102. [Google Scholar] [CrossRef]
- Rubino, C.M.; Ma, L.; Bhavnani, S.M.; Korth-Bradley, J.; Speth, J.; Ellis-Grosse, E.; Rodvold, K.R.; Ambrose, P.G.; Drusano, G.L. Evaluation of tigecycline penetration into colon wall tissue and epithelial lining fluid using a population pharmacokinetic model and Monte Carlo simulation. Antimicrob. Agents Chemother. 2007, 51, 4085–4089. [Google Scholar] [CrossRef] [Green Version]
- Hawser, S.P. Activity of tigecycline against Streptococcus pneumoniae, an important causative pathogen of community-acquired pneumonia (CAP). J. Infect. 2010, 60, 306–308. [Google Scholar] [CrossRef]
- Xie, J.; Wang, T.; Sun, J.; Chen, S.; Cai, J.; Zhang, W.; Dong, H.; Hu, S.; Zhang, D.; Wang, X.; et al. Optimal tigecycline dosage regimen is urgently needed: Results from a pharmacokinetic/pharmacodynamic analysis of tigecycline by Monte Carlo simulation. Int. J. Infect. Dis. 2014, 18, 62–67. [Google Scholar] [CrossRef] [Green Version]
Gender (M: Male, F: Female) | Age (Years) | BMI (kg/m2) | FEV1 %on Admission | FVC% on Admission | Exacerbations/ Past Year | CRP (mg/dL) on Admission | WBC (Cells/mm3) on Admission | |
---|---|---|---|---|---|---|---|---|
Patient 1 | F | 60 | 46.0 | 51 | 51 | 0 | 7.4 | 7400 |
Patient 2 | M | 73 | 32.8 | 28 | 51 | 0 | 3.5 | 7600 |
Patient 3 | F | 51 | 34.6 | 39 | 60 | 0 | 4.2 | 5700 |
Patient 4 | F | 77 | 37.6 | 54 | 66 | 1 | 3.6 | 7400 |
Patient 5 | M | 79 | 31.3 | 24 | 53 | 1 | 3.2 | 11,500 |
Patient 6 | F | 53 | 49.3 | 37 | 49 | 2 | 4.9 | 9440 |
Patient 7 | M | 82 | 30.8 | 44 | 68 | 1 | 13.5 | 16,700 |
Patient 8 | M | 60 | 37.0 | 59 | 59 | 0 | 6.0 | 11,100 |
Patient 9 | M | 88 | 30.0 | 61 | 71 | 0 | 6.9 | 6100 |
Patient 10 | F | 62 | 25.8 | 41 | 60 | 0 | 11.2 | 4300 |
Patient 11 | M | 74 | 24.2 | 37 | 40 | 1 | 4.5 | 6000 |
Mean ± SD | 5F/6M | 69 ± 12 | 34.4 ± 7.4 | 43.18 ± 11.45 | 57.09 ± 8.84 | 0.54 | 6.25 ± 3.18 | 8476 ± 3365 |
Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 | Patient 8 | Patient 9 | Patient 10 | Patient 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cmax pl (ng/L) | 318.45 | 405.8 | 640.4 | 905.6 | 978.8 | 1649.2 | 1679.9 | 1184.3 | 444.4 | 858.8 | 1670.1 |
Cmin pl (ng/L) | 10.5 | 41.2 | 3.1 | 159.8 | 286.18 | 324.27 | 358.1 | 142.99 | 289.1 | 378.4 | 365.65 |
Cmax sp (ng/L) | 818.2 | 388.5 | 410.8 | 799.6 | 408.7 | 897.2 | 510.8 | n/a | 427.3 | 1172.0 | 586.0 |
Cmin sp (ng/L) | 293.0 | 225.3 | 271.7 | 248.3 | 344.2 | 354.8 | 322.2 | n/a | 261.4 | 450.6 | 309.1 |
AUC 0–12 pl (ng∙h/L) | 645.53 | 1661.8 | 1491.7 | 2841.73 | 4815.69 | 4553.50 | 6399.67 | 3457.45 | 4232.27 | 4717.10 | 6608.46 |
AUC 0–12 sp (ng∙h/L) | 3360.65 | 3510.8 | 4046.9 | 4199.8 | 3314.77 | 4528.12 | 4700.20 | n/a | 4024.92 | 5726.05 | 2820.6 |
Penetration Ratio | 5.20 | 1.90 | 2.70 | 1.40 | 0.68 | 0.99 | 0.70 | n/a | 0.90 | 1.20 | 0.42 |
T1/2 (h) | 2.7 | 7.9 | 1.6 | 28.8 | 23.9 | 10.3 | 33.4 | 12.1 | 25.5 | n/a | 25.5 |
tmax-sp (h) | 3 | 1 | 3 | 1 | 3 | 6 | 6 | n/a | 3 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kipourou, M.; Begou, O.; Manika, K.; Ismailos, G.; Kontou, P.; Pitsiou, G.; Gika, H.; Kioumis, I. Tigecycline Pharmacokinetic and Pharmacodynamic Profile in Patients with Chronic Obstructive Pulmonary Disease Exacerbation. Antibiotics 2023, 12, 307. https://doi.org/10.3390/antibiotics12020307
Kipourou M, Begou O, Manika K, Ismailos G, Kontou P, Pitsiou G, Gika H, Kioumis I. Tigecycline Pharmacokinetic and Pharmacodynamic Profile in Patients with Chronic Obstructive Pulmonary Disease Exacerbation. Antibiotics. 2023; 12(2):307. https://doi.org/10.3390/antibiotics12020307
Chicago/Turabian StyleKipourou, Maria, Olga Begou, Katerina Manika, Georgios Ismailos, Paschalina Kontou, Georgia Pitsiou, Helen Gika, and Ioannis Kioumis. 2023. "Tigecycline Pharmacokinetic and Pharmacodynamic Profile in Patients with Chronic Obstructive Pulmonary Disease Exacerbation" Antibiotics 12, no. 2: 307. https://doi.org/10.3390/antibiotics12020307
APA StyleKipourou, M., Begou, O., Manika, K., Ismailos, G., Kontou, P., Pitsiou, G., Gika, H., & Kioumis, I. (2023). Tigecycline Pharmacokinetic and Pharmacodynamic Profile in Patients with Chronic Obstructive Pulmonary Disease Exacerbation. Antibiotics, 12(2), 307. https://doi.org/10.3390/antibiotics12020307