Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review
Abstract
:1. Introduction
2. Methods of Review
3. Physicochemical Properties and Composition of MH, TH, KH and SH
4. Therapeutic Proprieties of MH, TH, KH and SH
4.1. Oxidative Stress, Antioxidant and Anti-Inflammatory Properties
4.2. Antibacterial, Antiviral and Antifungal Properties
4.3. Anticancer Properties
4.4. Antidiabetic Properties
4.5. Antiobesity Properties
4.6. Wound-Healing Properties
4.7. Effects on Nervous System
4.8. Effects on the Cardiovascular System
4.9. Effects on Respiratory System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben Amor, S.; Mekious, S.; Allal Benfekih, L.; Abdellattif, M.H.; Boussebaa, W.; Almalki, F.A.; Ben Hadda, T.; Kawsar, S.M. Phytochemical Characterization and Bioactivity of Different Honey Samples Collected in the Pre-Saharan Region in Algeria. Life 2022, 12, 927. [Google Scholar] [CrossRef]
- Al-kafaween, M.A.; Hilmi, A.B.M.; Jaffar, N.; Al-Jamal, H.A.N.; Zahri, M.K.; Jibril, F.I. Antibacterial and Antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J. Biol. Sci. 2020, 13, 69–76. [Google Scholar]
- Rana, S.; Mishra, M.; Yadav, D.; Subramani, S.K.; Katare, C.; Prasad, G. Medicinal uses of honey: A review on its benefits to human health. Prog. Nutr. 2018, 20, 5–14. [Google Scholar]
- Nigussie, K.; Subramanian, P.; Mebrahtu, G. Physicochemical analysis of Tigray honey: An attempt to determine major quality markers of honey. Bull. Chem. Soc. Ethiop. 2012, 26, 127–133. [Google Scholar] [CrossRef]
- Bazaid, A.S.; Alamri, A.; Almashjary, M.N.; Qanash, H.; Almishaal, A.A.; Amin, J.; Binsaleh, N.K.; Kraiem, J.; Aldarhami, A.; Alafnan, A. Antioxidant, Anticancer, Antibacterial, Antibiofilm Properties and Gas Chromatography and Mass Spectrometry Analysis of Manuka Honey: A Nature’s Bioactive Honey. Appl. Sci. 2022, 12, 9928. [Google Scholar] [CrossRef]
- Makhloufi, C.; Kerkvliet, J.D.; D’albore, G.R.; Choukri, A.; Samar, R. Characterization of Algerian honeys by palynological and physico-chemical methods. Apidologie 2010, 41, 509–521. [Google Scholar] [CrossRef]
- Al-Kafaween, M.A.; Abu Bakar, M.H.; Al-Jamal, H.A.N.; Elsahoryi, N.A.; Jaffar, N.B.; Zahri, M.K. Pseudomonas aeruginosa and Streptococcus pyogenes exposed to Malaysian trigona honey in vitro demonstrated downregulation of virulence factor. Iran. J. Biotechnol. 2020, 18, 115–123. [Google Scholar]
- Benfekih, L.A.; Bellache, M.; Aoudia, B.; Mahmoudi, A. Impact of insecticides on pollinator populations: Role of phytosanitary performance indicators in tomato crops. AGROFOR Int. J. 2018, 3, 5–13. [Google Scholar] [CrossRef]
- Clearwater, M.J.; Revell, M.; Noe, S.; Manley-Harris, M. Influence of genotype, floral stage, and water stress on floral nectar yield and composition of mānuka (Leptospermum scoparium). Ann. Bot. 2018, 121, 501–512. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- El Sohaimy, S.A.; Masry, S.; Shehata, M. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef]
- Özcan, M.M.; Ölmez, Ç. Some qualitative properties of different monofloral honeys. Food Chem. 2014, 163, 212–218. [Google Scholar] [CrossRef]
- Can, Z.; Yildiz, O.; Sahin, H.; Turumtay, E.A.; Silici, S.; Kolayli, S. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem. 2015, 180, 133–141. [Google Scholar] [CrossRef]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar] [CrossRef]
- Belay, A.; Solomon, W.; Bultossa, G.; Adgaba, N.; Melaku, S. Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chem. 2013, 141, 3386–3392. [Google Scholar] [CrossRef]
- Stagos, D.; Soulitsiotis, N.; Tsadila, C.; Papaeconomou, S.; Arvanitis, C.; Ntontos, A.; Karkanta, F.; Adamou-Androulaki, S.; Petrotos, K.; Spandidos, D.A. Antibacterial and antioxidant activity of different types of honey derived from Mount Olympus in Greece. Int. J. Mol. Med. 2018, 42, 726–734. [Google Scholar] [CrossRef]
- Pauliuc, D.; Dranca, F.; Oroian, M. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 2020, 9, 306. [Google Scholar] [CrossRef]
- Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Quiles, J.L.; Battino, M. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 2: Induction of oxidative stress, alteration of mitochondrial respiration and glycolysis, and suppression of metastatic ability. Food Funct. 2018, 9, 2158–2170. [Google Scholar] [CrossRef]
- Blasa, M.; Candiracci, M.; Accorsi, A.; Piacentini, M.P.; Albertini, M.C.; Piatti, E. Raw Millefiori honey is packed full of antioxidants. Food Chem. 2006, 97, 217–222. [Google Scholar] [CrossRef]
- Beretta, G.; Granata, P.; Ferrero, M.; Orioli, M.; Facino, R.M. Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal. Chim. Acta 2005, 533, 185–191. [Google Scholar] [CrossRef]
- Grecka, K.; Kuś, P.M.; Worobo, R.W.; Szweda, P. Study of the anti-staphylococcal potential of honeys produced in Northern Poland. Molecules 2018, 23, 260. [Google Scholar] [CrossRef]
- Bouacha, M.; Boudiar, I.; Akila, A.; Al-Kafaween, M.A.; Khallef, M. The antimutagenic effect of multifloral honey in salmonella/microsomal assay and its correlation with the total polyphenolic content. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e5557. [Google Scholar] [CrossRef]
- Abd-El Aal, A.; El-Hadidy, M.; El-Mashad, N.; El-Sebaie, A. Antimicrobial effect of bee honey in comparison to antibiotics on organisms isolated from infected burns. Ann. Burn. Fire Disasters 2007, 20, 83. [Google Scholar]
- Al-kafaween, M.A.; Al-Jamal, H.A.N. A comparative study of antibacterial and antivirulence activities of four selected honeys to Manuka honey. Iran. J. Microbiol. 2022, 14, 238–251. [Google Scholar] [CrossRef]
- Bouacha, M.; Besnaci, S.; Boudiar, I.; Al-kafaween, M.A. Impact of Storage on Honey Antibacterial and Antioxidant Activities and their Correlation with Polyphenolic Content: Doi. org/10.26538/tjnpr/v6i1. 7. Trop. J. Nat. Prod. Res. (TJNPR) 2022, 6, 34–39. [Google Scholar]
- Moniruzzaman, M.; Yung An, C.; Rao, P.V.; Hawlader, M.N.I.; Azlan, S.A.B.M.; Sulaiman, S.A.; Gan, S.H. Identification of phenolic acids and flavonoids in monofloral honey from Bangladesh by high performance liquid chromatography: Determination of antioxidant capacity. BioMed Res. Int. 2014, 2014, 737490. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M. Binding of polyphenols to plant cell wall analogues–Part 2: Phenolic acids. Food Chem. 2012, 135, 2287–2292. [Google Scholar] [CrossRef]
- Hossen, M.S.; Ali, M.Y.; Jahurul, M.; Abdel-Daim, M.M.; Gan, S.H.; Khalil, M.I. Beneficial roles of honey polyphenols against some human degenerative diseases: A review. Pharmacol. Rep. 2017, 69, 1194–1205. [Google Scholar] [CrossRef]
- Escriche, I.; Kadar, M.; Juan-Borrás, M.; Domenech, E. Suitability of antioxidant capacity, flavonoids and phenolic acids for floral authentication of honey. Impact of industrial thermal treatment. Food Chem. 2014, 142, 135–143. [Google Scholar] [CrossRef]
- Nweze, A.; Olovo, C.V.; Nweze, E.I.; John, O.O.; Paul, C. Therapeutic properties of honey. Honey Anal. New Adv. Chall 2020, 332, 1–21. [Google Scholar]
- Vazhacharickal, P.J. Biological action and health benefits of honey, propolis and royal jelly: An overview. Pharma Innov. J. 2021, 10, 28–30. [Google Scholar]
- Al-Kafaween, M.A.; Hilmi, A.B.M.; Al-Jamal, H.A.N. Physicochemical and Therapeutic Properties of Malaysian Stingless Bee Kelulut Honey in Comparison with Yemeni Sidr Honey. Anti-Infective Agents. Anti-Infect. Agents 2022, 20, 150–159. [Google Scholar]
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. De Farmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef]
- Mohd Kamal, D.A.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A Comprehensive Review. Nutrients 2021, 13, 197. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Al Guthami, F.M.; Al Gethami, A.F.; Abd Allah, F.M.; Saleh, A.A.; Fouad, E.A. Potential antibacterial activity of some Saudi Arabia honey. Vet. World 2017, 10, 233. [Google Scholar] [CrossRef]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid. Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef]
- Živkov-Baloš, M.; Popov, N.; Vidaković, S.; Ljubojević-Pelić, D.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arch. Veter Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Kropf, U.; Jamnik, M.; Bertoncelj, J.; Golob, T. Linear regression model of the ash mass fraction and electrical conductivity for Slovenian honey. Food Technol. Biotechnol. 2008, 46, 335–340. [Google Scholar]
- Rahaman, N.L.; Chua, L.S.; Sarmidi, M.R.; Aziz, R. Physicochemical and radical scavenging activities of honey samples from Malaysia. Agric. Sci. 2013, 4, 46. [Google Scholar]
- Chua, L.S.; Abdul-Rahaman, N.-L.; Sarmidi, M.R.; Aziz, R. Multi-elemental composition and physical properties of honey samples from Malaysia. Food Chem. 2012, 135, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Thrasyvoulou, A.; Tananaki, C.; Goras, G.; Karazafiris, E.; Dimou, M.; Liolios, V.; Kanelis, D.; Gounari, S. Legislation of honey criteria and standards. J. Apic. Res. 2018, 57, 88–96. [Google Scholar] [CrossRef]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, T.; Stamatovska, V.; Kalevska, T.; Dimov, I.; Assistant, G.; Nakov, G. Quality characteristics of honey: A review. Proc. Univ. Ruse 2018, 57, 31–37. [Google Scholar]
- Ahmed, S.; Othman, N.H. Review of the medicinal effects of tualang honey and a comparison with manuka honey. Malays. J. Med. Sci. MJMS 2013, 20, 6. [Google Scholar]
- Ariefdjohan, M.W.; Martin, B.R.; Lachcik, P.J.; Weaver, C.M. Acute and chronic effects of honey and its carbohydrate constituents on calcium absorption in rats. J. Agric. Food Chem. 2008, 56, 2649–2654. [Google Scholar] [CrossRef]
- Zulkhairi Amin, F.A.; Sabri, S.; Mohammad, S.M.; Ismail, M.; Chan, K.W.; Ismail, N.; Norhaizan, M.E.; Zawawi, N. Therapeutic properties of stingless bee honey in comparison with european bee honey. Adv. Pharmacol. Sci. 2018, 2018, 6179596. [Google Scholar] [CrossRef]
- Olas, B. Honey and its phenolic compounds as an effective natural medicine for cardiovascular diseases in humans? Nutrients 2020, 12, 283. [Google Scholar] [CrossRef]
- Al-Haik, M.; Al-Haddad, M.; Al-Kaf, G.; Edrees, H. Antimicrobial activities for hadhrami honey on growth of some pathogenic bacteria. Univers. J. Pharm. Res. 2017, 2, 7–12. [Google Scholar] [CrossRef]
- Emmertz, A. Mineral Composition of New Zealand Monofloral Honeys; Sveriges Lantbruksuniversitet: Uppsala, Sweden, 2010. [Google Scholar]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Physicochemical and antioxidant properties of Malaysian honeys produced by Apis cerana, Apis dorsata and Apis mellifera. BMC Complement. Altern. Med. 2013, 13, 43. [Google Scholar] [CrossRef]
- Lim, D.; Bakar, M.A.; Majid, M. Nutritional composition of stingless bee honey from different botanical origins. IOP Conf. Ser. Earth Environ. Sci. 2019, 269, 012025. [Google Scholar]
- Shamsudin, S.; Selamat, J.; Sanny, M.; AR, S.B.; Jambari, N.N.; Khatib, A. A comparative characterization of physicochemical and antioxidants properties of processed Heterotrigona itama honey from different origins and classification by chemometrics analysis. Molecules 2019, 24, 3898. [Google Scholar] [CrossRef]
- Wong, P.; Ling, H.S.; Chung, K.C.; Yau, T.M.S.; Gindi, S.R.A. Chemical Analysis on the Honey of Heterotrigona itama and Tetrigona binghami from Sarawak, Malaysia. Sains Malays. 2019, 48, 1635–1642. [Google Scholar] [CrossRef]
- Saeed, M.A.; Jayashankar, M. Physico-chemical characteristics of some Indian and Yemeni Honey. J. Bioenergy Food Sci. 2020, 7, 2832019. [Google Scholar] [CrossRef]
- Khadra, Y.; MK, N.S.A.; AA, N.N.; Shukri, R.; Nor-Khaizura, M. Physicochemical and Microbiological Quality of Selected Commercial and Traditional Honey in Klang Valley Market, Malaysia. J. Sci. Technol. 2018, 10, 71–76. [Google Scholar]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop. 2017, 20, S2723–S2738. [Google Scholar] [CrossRef]
- Morroni, G.; Alvarez-Suarez, J.M.; Brenciani, A.; Simoni, S.; Fioriti, S.; Pugnaloni, A.; Giampieri, F.; Mazzoni, L.; Gasparrini, M.; Marini, E. Comparison of the antimicrobial activities of four honeys from three countries (New Zealand, Cuba, and Kenya). Front. Microbiol. 2018, 9, 1378. [Google Scholar] [CrossRef]
- Rashid, M.R.; Nor Aripin, K.N.; Syed Mohideen, F.B.; Baharom, N.; Omar, K.; Md Taujuddin, N.M.S.; Mohd Yusof, H.H.; Addnan, F.H. The effect of Kelulut honey on fasting blood glucose and metabolic parameters in patients with impaired fasting glucose. J. Nutr. Metab. 2019, 2019, 3176018. [Google Scholar] [CrossRef]
- Stephens, J.M.; Schlothauer, R.C.; Morris, B.D.; Yang, D.; Fearnley, L.; Greenwood, D.R.; Loomes, K.M. Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chem. 2010, 120, 78–86. [Google Scholar] [CrossRef]
- Erejuwa, O.; Sulaiman, S.; Wahab, M.; Sirajudeen, K.; Salleh, M.M.; Gurtu, S. Antioxidant protection of Malaysian tualang honey in pancreas of normal and streptozotocin-induced diabetic rats. Ann. D’endocrinologie 2021, 71, 291–296. [Google Scholar] [CrossRef]
- Hegazi, A.G.; Al Guthami, F.M.; Ramadan, M.F.; Al Gethami, A.F.; Craig, A.M.; Serrano, S. Characterization of Sidr (Ziziphus spp.) Honey from Different Geographical Origins. Appl. Sci. 2022, 12, 9295. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Sulaiman, S.A.; Khalil, M.I.; Gan, S.H. Evaluation of physicochemical and antioxidant properties of sourwood and other Malaysian honeys: A comparison with manuka honey. Chem. Cent. J. 2013, 7, 138. [Google Scholar] [CrossRef] [PubMed]
- Alkhyat, S.H.; Maqtari, M.A.A. Antibacterial Potential and Physicochemical Properties of Selected Yemeni Honeys Against Clinical Wounds Bacteria and Comparative with Standard Bacteria Isolates. Glob. Adv. Res. J. 2014, 3, 49–58. [Google Scholar]
- Moniruzzaman, M.; Chowdhury, M.A.Z.; Rahman, M.A.; Sulaiman, S.A.; Gan, S.H. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to Manuka honey. BioMed Res. Int. 2014, 2014, 359890. [Google Scholar] [CrossRef]
- Taha, M.M.E.; Abdelwahab, S.I.; Elsanousi, R.; Sheikh, B.Y.; Abdulla, M.A.; Babiker, S.E.; Elraih, H.; Mohamed, E. Effectiveness of Sidr Honey on the prevention of ethanol-induced gatroulcerogenesis: Role of antioxidant and antiapoptotic mechanism. Pharmacogn. J. 2015, 7, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef]
- Khalil, M.; Alam, N.; Moniruzzaman, M.; Sulaiman, S.; Gan, S. Phenolic acid composition and antioxidant properties of Malaysian honeys. J. Food Sci. 2011, 76, C921–C928. [Google Scholar] [CrossRef]
- da Silva, I.A.A.; da Silva, T.M.S.; Camara, C.A.; Queiroz, N.; Magnani, M.; de Novais, J.S.; Soledade, L.E.B.; de Oliveira Lima, E.; de Souza, A.L.; de Souza, A.G. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem. 2013, 141, 3552–3558. [Google Scholar] [CrossRef]
- Alshammari, G.M.; Ahmed, M.A.; Alsulami, T.; Hakeem, M.J.; Ibraheem, M.A.; Al-Nouri, D.M. Phenolic Compounds, Antioxidant Activity, Ascorbic Acid, and Sugars in Honey from Ingenious Hail Province of Saudi Arabia. Appl. Sci. 2022, 12, 8334. [Google Scholar] [CrossRef]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, J.; Sil, P. Drug metabolism and oxidative stress: Cellular mechanism and new therapeutic insights. Biochem. Anal. Biochem. 2016, 5, 255. [Google Scholar] [CrossRef]
- Yang, Y.; Bazhin, A.V.; Werner, J.; Karakhanova, S. Reactive oxygen species in the immune system. Int. Rev. Immunol. 2013, 32, 249–270. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. IJBS 2008, 4, 89. [Google Scholar] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.; Sirajudeen, K.; Swamy, M.; Yaacob, M.; Sulaiman, S. Studies on the antioxidant properties of Tualang honey of Malaysia. Afr. J. Tradit. Complement. Altern. Med. 2010, 7, 59–63. [Google Scholar] [CrossRef]
- Azman, K.F.; Zakaria, R. Honey as an antioxidant therapy to reduce cognitive ageing. Iran. J. Basic Med. Sci. 2019, 22, 1368. [Google Scholar] [PubMed]
- Kishore, R.K.; Halim, A.S.; Syazana, M.N.; Sirajudeen, K. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutr. Res. 2011, 31, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Jubri, Z.; Rahim, N.B.A.; Aan, G.J. Manuka honey protects middle-aged rats from oxidative damage. Clinics 2013, 68, 1446–1454. [Google Scholar] [CrossRef]
- Saeed, M.A.; Jayashankar, M.; Tejaswini, H. Evaluation of biochemical and antioxidant properties of Indian and Yemeni honey. J. Apic. Res. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Omotayo, E.O.; Gurtu, S.; Sulaiman, S.A.; Ab Wahab, M.S.; KNS, S.; Salleh, M.S.M. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats. Int. J. Vitam. Nutr. Res. 2010, 80, 74–82. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A.; Salam, S.K.N.; Salleh, M.S.M.; Gurtu, S. Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2011, 12, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.J.; Azmi, S.M.; Yong, Y.K.; Cheah, H.L.; Lim, V.; Sandai, D.; Shaharuddin, B. Tualang honey improves human corneal epithelial progenitor cell migration and cellular resistance to oxidative stress in vitro. PLoS ONE 2014, 9, e96800. [Google Scholar] [CrossRef]
- Bashkaran, K.; Zunaina, E.; Bakiah, S.; Sulaiman, S.A.; Sirajudeen, K.; Naik, V. Anti-inflammatory and antioxidant effects of Tualang honey in alkali injury on the eyes of rabbits: Experimental animal study. BMC Complement. Altern. Med. 2011, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Kamaruzzaman, M.A.; Thanu, A.; Yusof, M.R.; Soelaiman, I.N.; Ramli, E.S. Kelulut honey ameliorates glucocorticoid induced osteoporosis via its antioxidant activity in rats. Asian Pac. J. Trop. Biomed. 2019, 9, 493. [Google Scholar]
- Budin, S.B.; Jubaidi, F.F.; Azam, S.N.F.M.N.; Yusof, N.L.M.; Taib, I.S.; Mohamed, J. Kelulut honey supplementation prevents sperm and testicular oxidative damage in streptozotocin-induced diabetic rats. J. Teknol. 2017, 79, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Asari, M.A.; Zulkaflee, M.H.; Sirajudeen, K.; Yusof, N.A.M.; Sairazi, N.S.M. Tualang honey and DHA-rich fish oil reduce the production of pro-inflammatory cytokines in the rat brain following exposure to chronic stress. J. Taibah Univ. Med. Sci. 2019, 14, 317–323. [Google Scholar] [CrossRef]
- Ghazali, W.S.W.; Romli, A.C.; Mohamed, M. Effects of honey supplementation on inflammatory markers among chronic smokers: A randomized controlled trial. BMC Complement. Altern. Med. 2017, 17, 175. [Google Scholar] [CrossRef]
- Medhi, B.; Prakash, A.; Avti, P.; Saikia, U.; Pandhi, P.; Khanduja, K. Effect of Manuka honey and sulfasalazine in combination to promote antioxidant defense system in experimentally induced ulcerative colitis model in rats. Experiment 2008, 46, 583–590. [Google Scholar]
- Minden-Birkenmaier, B.A.; Meadows, M.B.; Cherukuri, K.; Smeltzer, M.P.; Smith, R.A.; Radic, M.Z.; Bowlin, G.L. Manuka honey modulates the release profile of a dHL-60 neutrophil model under anti-inflammatory stimulation. J. Tissue Viability 2020, 29, 91–99. [Google Scholar] [CrossRef]
- Afrin, S.; Gasparrini, M.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Manna, P.P.; Battino, M.; Giampieri, F. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem. Toxicol. 2018, 121, 203–213. [Google Scholar] [CrossRef]
- Saiful Yazan, L.; Muhamad Zali, M.F.S.; Mohd Ali, R.; Zainal, N.A.; Esa, N.; Sapuan, S.; Ong, Y.S.; Tor, Y.S.; Gopalsamy, B.; Voon, F.L. Chemopreventive properties and toxicity of Kelulut honey in Sprague Dawley rats induced with Azoxymethane. BioMed Res. Int. 2016, 2016, 4036926. [Google Scholar] [CrossRef]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Total phenolic contents and colour intensity of Malaysian honeys from the Apis spp. and Trigona spp. bees. Agric. Agric. Sci. Procedia 2014, 2, 150–155. [Google Scholar] [CrossRef]
- Kuropatnicki, A.K.; Kłósek, M.; Kucharzewski, M. Honey as medicine: Historical perspectives. J. Apic. Res. 2018, 57, 113–118. [Google Scholar] [CrossRef]
- Al-kafaween, M.A.; Mohd Hilmi, A.B.; Jaffar, N.; Nagi Al-Jamal, H.A.; Zahri, M.K.; Amonov, M.; Mabrouka, B.; Elsahoryi, N.A. Effects of Trigona honey on the Gene Expression Profile of Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan J. Biol. Sci. 2020, 13, 133–138. [Google Scholar]
- Rani, G.N.; Budumuru, R.; Bandaru, N.R. Antimicrobial activity of honey with special reference to methicillin resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MSSA). J. Clin. Diagn. Res. JCDR 2017, 11, DC05. [Google Scholar] [CrossRef]
- Mohammed, S.E.A.; Kabbashi, A.S.; Koko, W.S.; Ansari, M.J.; Adgaba, N.; Al-Ghamdi, A. In vitro activity of some natural honeys against Entamoeba histolytica and Giardia lamblia trophozoites. Saudi J. Biol. Sci. 2019, 26, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Al-kafaween, M.A.; Hilmi, A.B.M.; Al-Jamal, H.A.N. The Beneficial Effects of Stingless Bee Kelulut Honey against Pseudomonas aeruginosa and Streptococcus pyogenes Planktonic and Biofilm: Doi. org/10.26538/tjnpr/v5i10. 15. Trop. J. Nat. Prod. Res. (TJNPR) 2021, 5, 1788–1796. [Google Scholar]
- Ibarguren, C.; Raya, R.R.; Apella, M.C.; Audisio, M.C. Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. J. Microbiol. 2010, 48, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Aween, M.M.; Hassan, Z.; Muhialdin, B.J.; Noor, H.M.; Eljamel, Y.A. Evaluation on antibacterial activity of Lactobacillus acidophilus strains isolated from honey. Am. J. Appl. Sci. 2012, 9, 807–817. [Google Scholar] [CrossRef]
- Mathialagan, M.; Edward, Y.; David, P.; Senthilkumar, M.; Srinivasan, M.; Mohankumar, S. Isolation, characterization and identification of probiotic lactic acid bacteria (LAB) from honey bees. Int. J Curr. Microbiol Appl. Sci. 2018, 7, 849–906. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655. [Google Scholar] [CrossRef]
- Gośliński, M.; Nowak, D.; Kłębukowska, L. Antioxidant properties and antimicrobial activity of manuka honey versus Polish honeys. J. Food Sci. Technol. 2020, 57, 1269–1277. [Google Scholar] [CrossRef]
- Girma, A.; Seo, W.; She, R.C. Antibacterial activity of varying UMF-graded Manuka honeys. PLoS ONE 2019, 14, e0224495. [Google Scholar] [CrossRef]
- Almasaudi, S.B.; Al-Nahari, A.A.; El Sayed, M.; Barbour, E.; Al Muhayawi, S.M.; Al-Jaouni, S.; Azhar, E.; Qari, M.; Qari, Y.A.; Harakeh, S. Antimicrobial effect of different types of honey on Staphylococcus aureus. Saudi J. Biol. Sci. 2017, 24, 1255–1261. [Google Scholar] [CrossRef]
- Feknous, N.; Boumendjel, M. Natural bioactive compounds of honey and their antimicrobial activity. Czech J. Food Sci. 2022, 40, 163–178. [Google Scholar] [CrossRef]
- Shenoy, V.P.; Ballal, M.; Shivananda, P.; Bairy, I. Honey as an antimicrobial agent against Pseudomonas aeruginosa isolated from infected wounds. J. Glob. Infect. Dis. 2012, 4, 102. [Google Scholar]
- Ahmadi–Motamayel, F.; Hendi, S.S.; Alikhani, M.Y.; Khamverdi, Z. Antibacterial activity of honey on cariogenic bacteria. J. Dent. 2013, 10, 10–15. [Google Scholar]
- McLoone, P.; Warnock, M.; Fyfe, L. Honey: A realistic antimicrobial for disorders of the skin. J. Microbiol. Immunol. Infect. 2016, 49, 161–167. [Google Scholar] [CrossRef]
- Mohd-Aspar, M.A.S.; Edros, R.Z.; Hamzah, N.A. Antibacterial Properties of Kelulut, Tualang and Acacia Honey against Wound-Infecting Bacteria. Pertanika J. Trop. Agric. Sci. 2019, 42, 1185–1208. [Google Scholar]
- Omar, S.; Mat-Kamir, N.F.; Sanny, M. Antibacterial activity of Malaysian produced stingless-bee honey on wound pathogens. J. Sustain. Sci. Manag. 2019, 14, 67–79. [Google Scholar]
- Ng, W.-J.; Sit, N.-W.; Ooi, P.A.-C.; Ee, K.-Y.; Lim, T.-M. The antibacterial potential of honeydew honey produced by stingless bee (Heterotrigona itama) against antibiotic resistant bacteria. Antibiotics 2020, 9, 871. [Google Scholar] [CrossRef]
- Nasir, N.-A.M.; Halim, A.S.; Singh, K.-K.B.; Dorai, A.A.; Haneef, M.-N.M. Antibacterial properties of tualang honey and its effect in burn wound management: A comparative study. BMC Complement. Altern. Med. 2010, 10, 31. [Google Scholar] [CrossRef]
- Tan, H.T.; Rahman, R.A.; Gan, S.H.; Halim, A.S.; Hassan, S.A.; Sulaiman, S.A.; BS, K.-K. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC Complement. Altern. Med. 2009, 9, 34. [Google Scholar] [CrossRef]
- Küçük, M.; Kolaylı, S.; Karaoğlu, Ş.; Ulusoy, E.; Baltacı, C.; Candan, F. Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chem. 2007, 100, 526–534. [Google Scholar] [CrossRef]
- Shahzad, A. In vitro antiviral activity of honey against varicella zoster virus (VZV): A translational medicine study for potential remedy for shingles. Transl. Biomed. 2012, 3, 2. [Google Scholar]
- Watanabe, K.; Rahmasari, R.; Matsunaga, A.; Haruyama, T.; Kobayashi, N. Anti-influenza viral effects of honey in vitro: Potent high activity of manuka honey. Arch. Med. Res. 2014, 45, 359–365. [Google Scholar] [CrossRef]
- Behbahani, M. Anti-HIV-1 activity of eight monofloral Iranian honey types. PLoS ONE 2014, 9, e108195. [Google Scholar] [CrossRef]
- Obossou, E.K.; Shikamoto, Y.; Hoshino, Y.; Kohno, H.; Ishibasi, Y.; Kozasa, T.; Taguchi, M.; Sakakibara, I.; Tonooka, K.; Shinozuka, T. Effect of manuka honey on human immunodeficiency virus type 1 reverse transcriptase activity. Nat. Prod. Res. 2022, 36, 1552–1557. [Google Scholar] [CrossRef]
- Irish, J.; Carter, D.A.; Shokohi, T.; Blair, S.E. Honey has an antifungal effect against Candida species. Med. Mycol. 2006, 44, 289–291. [Google Scholar] [CrossRef]
- Moussa, A.; Noureddine, D.; Saad, A.; Abdelmelek, M.; Abdelkader, B. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp. Asian Pac. J. Trop. Biomed. 2012, 2, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Guttentag, A.; Krishnakumar, K.; Cokcetin, N.; Hainsworth, S.; Harry, E.; Carter, D. Inhibition of dermatophyte fungi by Australian jarrah honey. Pathogens 2021, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Intaglietta, I.; Simonetti, A.; Gambacorta, E. A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int. J. Food Sci. Technol. 2013, 48, 1899–1908. [Google Scholar] [CrossRef]
- Yap, P.; Abu Bakar, M.F.; Lim, H.; Carrier, D. Antibacterial activity of polyphenol-rich extract of selected wild honey collected in Sabah, Malaysia. J. Apic. Res. 2015, 54, 163–172. [Google Scholar] [CrossRef]
- Albaridi, N.A. Antibacterial potency of honey. Int. J. Microbiol. 2019, 2019, 2464507. [Google Scholar] [CrossRef]
- Weston, R.J. The contribution of catalase and other natural products to the antibacterial activity of honey: A review. Food Chem. 2000, 71, 235–239. [Google Scholar] [CrossRef]
- Allen, K.L.; Molan, P.C.; Reid, G. A survey of the antibacterial activity of some New Zealand honeys. J. Pharm. Pharmacol. 1991, 43, 817–822. [Google Scholar] [CrossRef]
- Zainol, M.I.; Mohd Yusoff, K.; Mohd Yusof, M.Y. Antibacterial activity of selected Malaysian honey. BMC Complement. Altern. Med. 2013, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Alkafaween, M.A.; Kafaween, H.; Al-Groom, R.M. A Comparative Study of Antibacterial Activity of Citrus and Jabali Honeys with Manuka Honey. Appl. Environ. Biotechnol. 2022, 7, 28–37. [Google Scholar] [CrossRef]
- Mohan, A.; Quek, S.-Y.; Gutierrez-Maddox, N.; Gao, Y.; Shu, Q. Effect of honey in improving the gut microbial balance. Food Qual. Saf. 2017, 1, 107–115. [Google Scholar] [CrossRef]
- Mullai, V.; Menon, T. Bactericidal activity of different types of honey against clinical and environmental isolates of Pseudomonas aeruginosa. J. Altern. Complement. Med. 2007, 13, 439–442. [Google Scholar] [CrossRef]
- Henriques, A.; Jenkins, R.; Burton, N.; Cooper, R. The intracellular effects of manuka honey on Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 45–50. [Google Scholar] [CrossRef]
- Henriques, A.; Jenkins, R.; Burton, N.; Cooper, R. The effect of manuka honey on the structure of Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Campeau, M.E.; Patel, R. Antibiofilm activity of Manuka honey in combination with antibiotics. Int. J. Bacteriol. 2014, 2014, 795281. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.E.; Maddocks, S.E.; Cooper, R.A. Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. J. Antimicrob. Chemother. 2015, 70, 716–725. [Google Scholar] [CrossRef]
- Abbas, H.A. Comparative antibacterial and antibiofilm activities of manuka honey and Egyptian clover honey. Asian J. Appl. Sci. 2014, 2, 110–115. [Google Scholar]
- Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernández, T.Y.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on Manuka honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef]
- Halawani, E.M.; Shohayeb, M.M. Shaoka and Sidr honeys surpass in their antibacterial activity local and imported honeys available in Saudi markets against pathogenic and food spoilage bacteria. Aust. J. Basic Appl. Sci. 2011, 5, 187–191. [Google Scholar]
- Ng, W.; Ken, K.-W.; Kumar, R.-V.; Gunasagaran, H.; Chandramogan, V.; Lee, Y.-Y. In-vitro screening of Malaysian honey from different floral sources for antibacterial activity on human pathogenic bacteria. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 315–318. [Google Scholar] [CrossRef]
- Tumin, N.; Halim, N.; Shahjahan, M.; Noor Izani, N.; Sattar, M.A.; Khan, A.H.; Mohsin, S. Antibacterial activity of local Malaysian honey. Malays. J. Pharm. Sci. 2005, 3, 1–10. [Google Scholar]
- Aween, M.M.; Hassan, Z.; Muhialdin, B.J.; Eljamel, Y.A.; Al-Mabrok, A.S.W.; Lani, M.N. Antibacterial activity of Lactobacillus acidophilus strains isolated from honey marketed in malaysia against selected multiple antibiotic resistant (mar) gram-positive bacteria. J. Food Sci. 2012, 77, M364–M371. [Google Scholar] [CrossRef] [PubMed]
- Al Kafaween, M.A.; Hilmi, A.B.M.; Khan, R.S.; Bouacha, M.; Amonov, M. Effect of Trigona honey on Escherichia coli cell culture growth: In vitro study. J. Apitherapy 2019, 5, 10–17. [Google Scholar] [CrossRef]
- Al-kafaween, M.A.; Mohd Hilmi, A.B.; Nagi Al-Jamal, H.A.; Jaffar, N.; Al-Sayyed, H.; Zahri, M.K. Effects of Selected Malaysian Kelulut Honey on Biofilm Formation and the Gene Expression Profile of Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. Jordan J. Pharm. Sci. 2021, 14, 9–26. [Google Scholar]
- Ng, W.J.; Chan, Y.J.; Lau, Z.K.; Lye, P.Y.; Ee, K.Y. Antioxidant properties and inhibitory effects of trigona honey against Staphylococcus aureus planktonic and biofilm cultures. GEOMATE J. 2017, 13, 28–33. [Google Scholar]
- Shahjahan, M.; Halim, N.A.B.A.; NJ, N.I. Antimicrobial Properties of ’Kelulut’ (Trigona spp.) Honey. Malays. J. Med. Sci. 2007, 14, 107–108. [Google Scholar]
- Al-kafaween, M.A.; Hilmi, A.B.M.; Al-Jamal, H.A.N.; Al-Groom, R.M.; Elsahoryi, N.A.; Al-Sayyed, H. Potential Antibacterial Activity of Yemeni Sidr Honey Against Pseudomonas aeruginosa and Streptococcus pyogenes. Anti-Infect. Agents 2021, 19, 51–65. [Google Scholar] [CrossRef]
- Othman, A.S. Original Research Article Antibacterial Activity of Bee and Yemeni Sidr Honey Against Some Pathogenic Bacterial Species. Int. J. Curr. Microbiol. App. Sci 2014, 3, 1015–1025. [Google Scholar]
- Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr. 2020, 8, 445–455. [Google Scholar] [CrossRef]
- Owayss, A.A.; Elbanna, K.; Iqbal, J.; Abulreesh, H.H.; Organji, S.R.; Raweh, H.S.; Alqarni, A.S. In vitro antimicrobial activities of Saudi honeys originating from Ziziphus spina-christi L. and Acacia gerrardii Benth. trees. Food Sci. Nutr. 2020, 8, 390–401. [Google Scholar] [CrossRef]
- Othman, A.S. Determination of the antibacterial effect of some natural products against some gram-positive and gram-negative bacteria. Egypt. Pharm. J. 2016, 15, 10. [Google Scholar] [CrossRef]
- Enany, M.E.; Algammal, A.M.; Shagar, G.I.; Hanora, A.M.; Elfeil, W.K.; Elshaffy, N.M. Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. Pak. J. Pharm. Sci. 2018, 31, 1865–1870. [Google Scholar] [PubMed]
- Noori, A.; Al Ghamdi, A.; Ansari, M.J.; Al-Attal, Y.; Al-Mubarak, A.; Salom, K. Differences in composition of honey samples and their impact on the antimicrobial activities against drug multiresistant bacteria and pathogenic fungi. Arch. Med. Res. 2013, 44, 307–316. [Google Scholar]
- Bazaid, A.S.; Aldarhami, A.; Gattan, H.; Aljuhani, B. Saudi Honey: A Promising Therapeutic Agent for Treating Wound Infections. Cureus 2021, 13, e18882. [Google Scholar] [CrossRef]
- Al-Sayaghi, A.M.; Al-Kabsi, A.M.; Abduh, M.S.; Saghir, S.A.M.; Alshawsh, M.A. Antibacterial Mechanism of Action of Two Types of Honey against Escherichia coli through Interfering with Bacterial Membrane Permeability, Inhibiting Proteins, and Inducing Bacterial DNA Damage. Antibiotics 2022, 11, 1182. [Google Scholar]
- Miguel, M.; Antunes, M.D.; Faleiro, M.L. Honey as a complementary medicine. Integr. Med. Insights 2017, 12, 1178633717702869. [Google Scholar] [CrossRef]
- Ahmed, S.; Othman, N.H. The anti-cancer effects of Tualang honey in modulating breast carcinogenesis: An experimental animal study. BMC Complement. Altern. Med. 2017, 17, 208. [Google Scholar]
- Afrin, S.; Giampieri, F.; Gasparrini, M.; Forbes-Hernández, T.Y.; Cianciosi, D.; Reboredo-Rodriguez, P.; Amici, A.; Quiles, J.L.; Battino, M. The inhibitory effect of Manuka honey on human colon cancer HCT-116 and LoVo cell growth. Part 1: The suppression of cell proliferation, promotion of apoptosis and arrest of the cell cycle. Food Funct. 2018, 9, 2145–2157. [Google Scholar]
- Fernandez-Cabezudo, M.J.; El-Kharrag, R.; Torab, F.; Bashir, G.; George, J.A.; El-Taji, H.; Al-Ramadi, B.K. Intravenous administration of manuka honey inhibits tumor growth and improves host survival when used in combination with chemotherapy in a melanoma mouse model. PLoS ONE 2013, 8, e55993. [Google Scholar]
- Portokalakis, I.; Yusof, H.M.; Ghanotakis, D.; Nigam, P.S.; Owusu-Apenten, R. Manuka honey-induced cytotoxicity against MCF7 breast cancer cells is correlated to total phenol content and antioxidant power. J. Adv. Biol. Biotechnol. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Kadir, E.A.; Sulaiman, S.A.; Yahya, N.K.; Othman, N.H. Inhibitory effects of tualang honey on experimental breast cancer in rats: A preliminary study. Asian Pac. J. Cancer Prev. 2013, 14, 2249–2254. [Google Scholar]
- Ahmed, S.; Sulaiman, S.A.; Othman, N.H. Oral administration of Tualang and Manuka honeys modulates breast cancer progression in Sprague-Dawley rats model. Evid. Based Complement. Altern. Med. 2017, 2017, 5904361. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, A.N.; Norazmi, M.N.; Yaacob, N.S. Tualang honey induces apoptosis and disrupts the mitochondrial membrane potential of human breast and cervical cancer cell lines. Food Chem. Toxicol. 2011, 49, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Yaacob, N.S.; Nengsih, A.; Norazmi, M. Tualang honey promotes apoptotic cell death induced by tamoxifen in breast cancer cell lines. Evid. Based Complement. Altern. Med. 2013, 2013, 5904361. [Google Scholar] [CrossRef]
- Yaacob, N.S.; Ismail, N.F. Comparison of cytotoxicity and genotoxicity of 4-hydroxytamoxifen in combination with Tualang honey in MCF-7 and MCF-10A cells. BMC Complement. Altern. Med. 2014, 14, 106. [Google Scholar] [CrossRef]
- Hizan, N.S.; Hassan, N.H.M.; Haron, J.; Abubakar, M.B.; Mahdi, N.M.N.; Gan, S.H. Tualang honey adjunct with anastrozole improve parenchyma enhancement of breast tissue in breast cancer patients: A randomized controlled trial. Integr. Med. Res. 2018, 7, 322–327. [Google Scholar] [CrossRef]
- Al-Koshab, M.; Alabsi, A.M.; Bakri, M.M.; Naicker, M.S.; Seyedan, A. Chemopreventive activity of Tualang honey against oral squamous cell carcinoma—In vivo. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 129, 484–492. [Google Scholar] [CrossRef]
- Ghashm, A.A.; Othman, N.H.; Khattak, M.N.; Ismail, N.M.; Saini, R. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines. BMC Complement. Altern. Med. 2010, 10, 49. [Google Scholar] [CrossRef]
- Nik Man, N.M.K.; Hassan, R.; Ang, C.Y.; Abdullah, A.D.; Mohd Radzi, M.A.R.; Sulaiman, S.A. Antileukemic effect of tualang honey on acute and chronic leukemia cell lines. BioMed Res. Int. 2015, 2015, 307094. [Google Scholar] [CrossRef]
- Ahmad, I.; Jimenez, H.; Yaacob, N.S.; Yusuf, N. Tualang honey protects keratinocytes from ultraviolet radiation-induced inflammation and DNA damage. Photochem. Photobiol. 2012, 88, 1198–1204. [Google Scholar] [CrossRef]
- Ramasamy, V.; Abdullah, B.; Singh, A. Effects of Tualang Honey on Cancer Related Fatigue: A Multicenter Open-label Trial of H&N Cancer Patients. Gulf J. Oncol. 2019, 1, 43–51. [Google Scholar]
- Jamil, M.M.A.; Abd Rahman, N.A.; Adon, M.N.; Ambar, R.; Saidin, S. Local Honey (Tualang & Kelulut) Effect on Breast Cancer Cell (MCF-7). In Proceedings of the 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 21–22 October 2022; pp. 209–213. [Google Scholar]
- Yun, C.Z.; Nor, N.H.M.; Berahim, Z.; Ponnuraj, K.T. Cytotoxic Evaluation of Malaysian Kelulut Honey on Human Gingival Fibroblast Cell Line using MTT Assay. J. Dent. Indones. 2021, 28, 88–93. [Google Scholar]
- Salim, S.N.M.; Ramakreshnan, L.; Fong, C.S.; Wahab, R.A.; Rasad, M.S.B.A. In-vitro cytotoxicity of Trigona itama honey against human lung adenocarcinoma epithelial cell line (A549). Eur. J. Integr. Med. 2019, 30, 100955. [Google Scholar] [CrossRef]
- Almeer, R.; Alqarni, A.; Alqattan, S.; Abdi, S.; Alarifi, S.; Hassan, Z.; Semlali, A. Effect of honey in improving breast cancer treatment and gene expression modulation of MMPs and TIMPs in Triple-Negative Breast Cancer Cells. Pak. J. Zool. 2018, 50, 1999–2007. [Google Scholar] [CrossRef]
- Kamaratos, A.V.; Tzirogiannis, K.N.; Iraklianou, S.A.; Panoutsopoulos, G.I.; Kanellos, I.E.; Melidonis, A.I. Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers. Int. Wound J. 2014, 11, 259–263. [Google Scholar] [CrossRef]
- Almnayan, D. Immune-Modulatory Effects of Sidr Honey: Implications for Anti-Proliferative Effects on Cancer Cells. Ph.D. Thesis, Laurentian University of Sudbury, Sudbury, ON, Canada, 2020. [Google Scholar]
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, S.K.; Mandal, M. Antiproliferative effects of honey and of its polyphenols: A review. J. Biomed. Biotechnol. 2009, 2009, 830616. [Google Scholar] [CrossRef]
- Patel, S.; Cichello, S. Manuka honey: An emerging natural food with medicinal use. Nat. Prod. Bioprospect. 2013, 3, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Rohlfing, C.L.; Wiedmeyer, H.-M.; Little, R.R.; England, J.D.; Tennill, A.; Goldstein, D.E. Defining the relationship between plasma glucose and HbA1c: Analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care 2002, 25, 275–278. [Google Scholar] [CrossRef]
- Al Saeed, M. Therapeutic efficacy of conventional treatment combined with Manuka honey in the treatment of patients with diabetic foot ulcers: A randomized controlled study. Egypt. J. Hosp. Med. 2013, 53, 1064–1071. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.; Sirajudeen, K.; Salleh, M.; Gurtu, S. Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats. Int. J. Appl. Res. Nat. Prod 2012, 4, 37–41. [Google Scholar]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S.; Sirajudeen, K.N.S.; Salleh, M.S.M.; Gurtu, S. Glibenclamide or metformin combined with honey improves glycemic control in streptozotocin-induced diabetic rats. Int. J. Biol. Sci. 2011, 7, 244. [Google Scholar] [CrossRef]
- Robert, S.D.; Ismail, A. Two varieties of honey that are available in Malaysia gave intermediate glycemic index values when tested among healthy individuals. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2009, 153, 145–147. [Google Scholar] [CrossRef]
- Hussain, N.H.N.; Sulaiman, S.A.; Hassan, I.I.; Kadir, A.A.; Nor, N.M.; Ismail, S.B.; Yaacob, L.H.; Zakaria, R.; Shafie, N.S.; Haron, J. Randomized controlled trial on the effects of tualang honey and hormonal replacement therapy (HRT) on cardiovascular risk factors, hormonal profiles and bone density among postmenopausal women: A pilot study. J. Food Res. 2012, 1, 171. [Google Scholar] [CrossRef]
- Ab Wahab, S.Z.; Hussain, N.H.N.; Zakaria, R.; Kadir, A.A.; Mohamed, N.; Tohit, N.M.; Norhayati, M.N.; Hassan, I.I. Long-term effects of honey on cardiovascular parameters and anthropometric measurements of postmenopausal women. Complement. Ther. Med. 2018, 41, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Arshad, N.A.; Lin, T.S.; Yahaya, M.F. Stingless bee honey reduces anxiety and improves memory of the metabolic disease-induced rats. CNS Neurol. Disord. Drug Targets 2020, 19, 115–126. [Google Scholar] [CrossRef]
- Alharbi, H.F.; Algonaiman, R.; Barakat, H. Ameliorative and Antioxidative Potential of Lactobacillus plantarum-Fermented Oat (Avena sativa) and Fermented Oat Supplemented with Sidr Honey against Streptozotocin-Induced Type 2 Diabetes in Rats. Antioxidants 2022, 11, 1122. [Google Scholar] [CrossRef]
- Salla, H.R.; Al Habsi, F.S.; Al Sharji, W.H. A comparative study on the role of Omani honey with various food supplements on diabetes and wound healing. J. King Saud Univ. Sci. 2020, 32, 2122–2128. [Google Scholar] [CrossRef]
- Shambaugh, P.; Worthington, V.; Herbert, J. Differential effects of honey, sucrose, and fructose on blood sugar levels. J. Manip. Physiol. Ther. 1990, 13, 322–325. [Google Scholar]
- Folli, F.; Corradi, D.; Fanti, P.; Davalli, A.; Paez, A.; Giaccari, A.; Perego, C.; Muscogiuri, G. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro-and macrovascular complications: Avenues for a mechanistic-based therapeutic approach. Curr. Diabetes Rev. 2011, 7, 313–324. [Google Scholar] [CrossRef]
- Kim, J.S.; Saengsirisuwan, V.; Sloniger, J.A.; Teachey, M.K.; Henriksen, E.J. Oxidant stress and skeletal muscle glucose transport: Roles of insulin signaling and p38 MAPK. Free. Radic. Biol. Med. 2006, 41, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A.; Salam, S.K.N.; Salleh, M.S.M.; Gurtu, S. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int. J. Mol. Sci. 2010, 11, 2056–2066. [Google Scholar] [CrossRef] [PubMed]
- Ugusman, A.; Shahrin, S.A.S.; Azizan, N.H.; Pillai, S.B.; Krishnan, K.; Salamt, N.; Aminuddin, A.; Hamid, A.A.; Kumar, J.; Mokhtar, M.H. Role of Honey in Obesity Management: A Systematic Review. Front. Nutr. 2022, 9, 924097. [Google Scholar] [CrossRef]
- Mohd Rafie, A.Z.; Syahir, A.; Wan Ahmad, W.A.N.; Mustafa, M.Z.; Mariatulqabtiah, A.R. Supplementation of stingless bee honey from Heterotrigona itama improves antiobesity parameters in high-fat diet induced obese rat model. Evid. Based Complement. Altern. Med. 2018, 2018, 6371582. [Google Scholar] [CrossRef]
- Samat, S.; Kanyan Enchang, F.; Nor Hussein, F.; Wan Ismail, W.I. Four-week consumption of Malaysian honey reduces excess weight gain and improves obesity-related parameters in high fat diet induced obese rats. Evid. Based Complement. Altern. Med. 2017, 2017, 1342150. [Google Scholar] [CrossRef] [PubMed]
- Ramli, N.Z.; Chin, K.-Y.; Zarkasi, K.A.; Ahmad, F. The beneficial effects of stingless bee honey from Heterotrigona itama against metabolic changes in rats fed with high-carbohydrate and high-fat diet. Int. J. Environ. Res. Public Health 2019, 16, 4987. [Google Scholar] [CrossRef]
- Lee, D.S.; Sinno, S.; Khachemoune, A. Honey and wound healing. Am. J. Clin. Dermatol. 2011, 12, 181–190. [Google Scholar] [CrossRef]
- Zumla, A.; Lulat, A. Honey-a remedy rediscovered. J. R. Soc. Med. 1989, 82, 384–385. [Google Scholar] [CrossRef]
- Al-Waili, N.; Salom, K.; Al-Ghamdi, A.A. Honey for wound healing, ulcers, and burns; data supporting its use in clinical practice. Sci. World J. 2011, 11, 766–787. [Google Scholar] [CrossRef]
- Saikaly, S.K.; Khachemoune, A. Honey and wound healing: An update. Am. J. Clin. Dermatol. 2017, 18, 237–251. [Google Scholar] [CrossRef]
- Jull, A.B.; Cullum, N.; Dumville, J.C.; Westby, M.J.; Deshpande, S.; Walker, N. Honey as a topical treatment for wounds. Cochrane Database Syst. Rev. 2015, 3, 6–19. [Google Scholar] [CrossRef]
- Yaghoobi, R.; Kazerouni, A. Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: A review. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Majtán, J.; Kováčová, E.; Bíliková, K.; Šimúth, J. The immunostimulatory effect of the recombinant apalbumin 1–major honeybee royal jelly protein–on TNFα release. Int. Immunopharmacol. 2006, 6, 269–278. [Google Scholar] [CrossRef]
- Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 2005, 366, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Sell, S.A.; Wolfe, P.S.; Spence, A.J.; Rodriguez, I.A.; McCool, J.M.; Petrella, R.L.; Garg, K.; Ericksen, J.J.; Bowlin, G.L. A preliminary study on the potential of manuka honey and platelet-rich plasma in wound healing. Int. J. Biomater. 2012, 2012, 313781. [Google Scholar] [CrossRef]
- Tarawneh, O.; Alwahsh, W.; Abul-Futouh, H.; Al-Samad, L.A.; Hamadneh, L.; Abu Mahfouz, H.; Fadhil Abed, A. Determination of Antimicrobial and Antibiofilm Activity of Combined LVX and AMP Impregnated in p (HEMA) Hydrogel. Appl. Sci. 2021, 11, 8345. [Google Scholar] [CrossRef]
- Al-Bakri, A.G.; Mahmoud, N.N. Photothermal-induced antibacterial activity of gold nanorods loaded into polymeric hydrogel against Pseudomonas aeruginosa biofilm. Molecules 2019, 24, 2661. [Google Scholar] [CrossRef]
- Huwaitat, R.; Coulter, S.M.; Porter, S.L.; Pentlavalli, S.; Laverty, G. Antibacterial and antibiofilm efficacy of synthetic polymyxin-mimetic lipopeptides. Pept. Sci. 2021, 113, e24188. [Google Scholar] [CrossRef]
- Engemann, J.J.; Carmeli, Y.; Cosgrove, S.E.; Fowler, V.G.; Bronstein, M.Z.; Trivette, S.L.; Briggs, J.P.; Sexton, D.J.; Kaye, K.S. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin. Infect. Dis. 2003, 36, 592–598. [Google Scholar] [CrossRef]
- Tarawneh, O.; Hamadneh, I.; Huwaitat, R.; Al-Assi, A.R.; El Madani, A. Characterization of chlorhexidine-impregnated cellulose-based hydrogel films intended for the treatment of periodontitis. BioMed Res. Int. 2021, 2021, 9853977. [Google Scholar] [CrossRef]
- Jenkins, R.; Cooper, R. Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS ONE 2012, 7, e45600. [Google Scholar] [CrossRef]
- Müller, P.; Alber, D.G.; Turnbull, L.; Schlothauer, R.C.; Carter, D.A.; Whitchurch, C.B.; Harry, E.J. Synergism between Medihoney and rifampicin against methicillin-resistant Staphylococcus aureus (MRSA). PLoS ONE 2013, 8, e57679. [Google Scholar] [CrossRef]
- Sukur, S.M.; Halim, A.S.; Singh, K.K.B. Evaluations of bacterial contaminated full thickness burn wound healing in Sprague Dawley rats Treated with Tualang honey. Indian J. Plast. Surg. 2011, 44, 112–117. [Google Scholar] [CrossRef]
- Khoo, Y.-T.; Halim, A.S.; Singh, K.-K.B.; Mohamad, N.-A. Wound contraction effects and antibacterial properties of Tualang honey on full-thickness burn wounds in rats in comparison to hydrofibre. BMC Complement. Altern. Med. 2010, 10, 48. [Google Scholar] [CrossRef]
- Aznan, M.I.; Khan, O.H.; Unar, A.O.; Tuan Sharif, S.E.; Khan, A.H.; Zakaria, A.D. Effect of Tualang honey on the anastomotic wound healing in large bowel anastomosis in rats-A randomized controlled trial. BMC Complement. Altern. Med. 2015, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Lazim, N.M.; Abdullah, B.; Salim, R. The effect of Tualang honey in enhancing post tonsillectomy healing process. An open labelled prospective clinical trial. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Nordin, A.; Chowdhury, S.R.; Saim, A.B.; Idrus, R.B.H. Effect of kelulut honey on the cellular dynamics of tgfβ-induced epithelial to mesenchymal transition in primary human keratinocytes. Int. J. Environ. Res. Public Health 2020, 17, 3229. [Google Scholar] [CrossRef]
- Yazan, L.S.; Zainal, N.A.; Ali, R.M.; Zali, M.; Shyfiq, M.F.; Sze, O.Y.; Sim, T.Y.; Gopalsamy, B.; Ling, V.F.; Sapuan, S. Antiulcer Properties of Kelulut Honey against Ethanol-Induced Gastric Ulcer. Pertanika J. Sci. Technol. 2018, 26, 121–132. [Google Scholar]
- Hananeh, W.M.; Ismail, Z.B.; Alshehabat, M.A.; Abeeleh, M.A. Effects of Sidr honey on second-intention healing of contaminated full-thickness skin wounds in healthy dogs. J. Vet. Res. 2015, 59, 433–439. [Google Scholar] [CrossRef]
- Hwisa, N.T.; Katakam, P.; Chandu, B.R.; Abadi, E.G.; Shefha, E.M. Comparative in vivo evaluation of three types of honey on topical wound healing activity in rabbits. J. Appl. Pharm. Sci. 2013, 3, 139–143. [Google Scholar]
- Syarifah-Noratiqah, S.-B.; Naina-Mohamed, I.; Zulfarina, M.S.; Qodriyah, H. Natural polyphenols in the treatment of Alzheimer’s disease. Curr. Drug Targets 2018, 19, 927–937. [Google Scholar] [CrossRef]
- Navarro-Hortal, M.D.; Romero-Márquez, J.M.; Muñoz-Ollero, P.; Jiménez-Trigo, V.; Esteban-Muñoz, A.; Tutusaus, K.; Giampieri, F.; Battino, M.; Sánchez-González, C.; Rivas-García, L. Amyloid β-but not Tau-induced neurotoxicity is suppressed by Manuka honey via HSP-16.2 and SKN-1/Nrf2 pathways in an in vivo model of Alzheimer’s disease. Food Funct. 2022, 13, 11185–11199. [Google Scholar] [CrossRef]
- Azman, K.F.; Zakaria, R.; Abdul Aziz, C.B.; Othman, Z. Tualang honey attenuates noise stress-induced memory deficits in aged rats. Oxid. Med. Cell. Longev. 2016, 2016, 1549158. [Google Scholar] [CrossRef]
- Azman, K.F.; Zakaria, R.; AbdAziz, C.; Othman, Z.; Al-Rahbi, B. Tualang honey improves memory performance and decreases depressive-like behavior in rats exposed to loud noise stress. Noise Health 2015, 17, 83. [Google Scholar] [CrossRef]
- Al-Rahbi, B.; Zakaria, R.; Othman, Z.; Hassan, A.; Ahmad, A.H. Enhancement of BDNF concentration and restoration of the hypothalamic-pituitary-adrenal axis accompany reduced depressive-like behaviour in stressed ovariectomised rats treated with either Tualang honey or estrogen. Sci. World J. 2014, 2014, 310821. [Google Scholar] [CrossRef]
- Al-Rahbi, B.; Zakaria, R.; Othman, Z.; Hassan, A.; Ahmad, A.H. Protective effects of Tualang honey against oxidative stress and anxiety-like behaviour in stressed ovariectomized rats. Int. Sch. Res. Not. 2014, 2014, 521065. [Google Scholar] [CrossRef]
- Al-Rahbi, B.; Zakaria, R.; Othman, Z.; Hassan, A.; Ismail, Z.I.M.; Muthuraju, S. Tualang honey supplement improves memory performance and hippocampal morphology in stressed ovariectomized rats. Acta Histochem. 2014, 116, 79–88. [Google Scholar] [CrossRef]
- Mohd Sairazi, N.S.; KNS, S.; Asari, M.A.; Mummedy, S.; Muzaimi, M.; Sulaiman, S.A. Effect of tualang honey against KA-induced oxidative stress and neurodegeneration in the cortex of rats. BMC Complement. Altern. Med. 2017, 17, 31. [Google Scholar] [CrossRef]
- Abd Aziz, C.B.; Suhaimi, S.Q.A.; Hasim, H.; Ahmad, A.H.; Long, I.; Zakaria, R. Effects of Tualang honey in modulating nociceptive responses at the spinal cord in offspring of prenatally stressed rats. J. Integr. Med. 2019, 17, 66–70. [Google Scholar] [CrossRef]
- Khalil, M.; Tanvir, E.; Afroz, R.; Sulaiman, S.A.; Gan, S.H. Cardioprotective effects of tualang honey: Amelioration of cholesterol and cardiac enzymes levels. BioMed Res. Int. 2015, 2015, 286051. [Google Scholar] [CrossRef]
- Erejuwa, O.O.; Sulaiman, S.A.; Ab Wahab, M.S.; Sirajudeen, K.N.; Salleh, S.; Gurtu, S. Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. Oxid. Med. Cell. Longev. 2012, 2012, 374037. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.O.; Sulaiman, S.A.; Wahab, M.S.A.; Sirajudeen, K.N.; Salleh, M.S.M.; Gurtu, S. Differential responses to blood pressure and oxidative stress in streptozotocin-induced diabetic wistar-kyoto rats and spontaneously hypertensive rats: Effects of antioxidant (Honey) treatment. Int. J. Mol. Sci. 2011, 12, 1888–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devasvaran, K.; Tan, J.J.; Ng, C.T.; Fong, L.Y.; Yong, Y.K. Malaysian tualang honey inhibits hydrogen peroxide-induced endothelial hyperpermeability. Oxid. Med. Cell. Longev. 2019, 2019, 1202676. [Google Scholar] [CrossRef]
- Ahmed, A.; Khan, R.A.; Azim, M.K.; Saeed, S.A.; Mesaik, M.A.; Ahmed, S.; Imran, I. Effect of natural honey on human platelets and blood coagulation proteins. Pak. J. Pharm. Sci. 2011, 24, 389–397. [Google Scholar]
- Makedou, K.; Iliadis, S.; Kara, E.; Gogou, M.; Feslikidis, T.; Papageorgiou, G. Honey and its protective role against oxidation of human low density lipoproteins and total serum lipoproteins. Hippokratia 2012, 16, 287. [Google Scholar] [PubMed]
- Hegazi, A.G.; El-Hady, A.; Faten, K. Influence of honey on the suppression of human low density lipoprotein (LDL) peroxidation (in vitro). Evid. Based Complement. Altern. Med. 2009, 6, 113–121. [Google Scholar] [CrossRef]
- Bâcvarov, V. Treatment of chronic bronchitis and bronchial asthma with honey. Ther. Der Ggw. 1970, 109, 260–268. [Google Scholar]
- Kamaruzaman, N.A.; Sulaiman, S.A.; Kaur, G.; Yahaya, B. Inhalation of honey reduces airway inflammation and histopathological changes in a rabbit model of ovalbumin-induced chronic asthma. BMC Complement. Altern. Med. 2014, 14, 176. [Google Scholar] [CrossRef]
- Asha’ari, Z.A.; Ahmad, M.Z.; Din, W.S.J.W.; Hussin, C.M.C.; Leman, I. Ingestion of honey improves the symptoms of allergic rhinitis: Evidence from a randomized placebo-controlled trial in the East coast of Peninsular Malaysia. Ann. Saudi Med. 2013, 33, 469–475. [Google Scholar] [CrossRef]
Physicochemical Properties | MH | TH | KH | SH |
---|---|---|---|---|
Color appearance | Light brown [43] | Dark brown [43] | Amber brown [29,43] | Light and dark honey [49] |
Moisture content (%) | 18.7% [41,43,50] | 17.53–26.51% [29,35,41,51] | 21.52–33.7% [29,43,52,53,54] | 13.5–20.67% [11,31,55,56] |
Viscosity | 5.39–5.47 [57] | 0.54–0.98 [57] | 0.11–0.47 [57] | 69.00 [31] |
Free Acidity (meq/kg) | 15.9–27.36 [58] | 47.9–61.9 [57] | 87.0–136.8 [57,59] | 49.90 [31] |
PH | 3.20–4.21 [41] | 3.14–4 [29,35,41,43,51] | 2.76–4.66 [57,59] | 3.90–5.2 [11,31,55,56] |
Ash content (g/100 g) | 0.03 [43,50,60] | 0.19 [43,61,62] | 0.01–0.66 [59] | 0.68–2.33 [11,55] |
Water activity | 0.57 [57] | 0.64 [57] | 0.73–0.79 [57] | 0.54 [56] |
Electrical conductivity (mS/cm) | 0.53 [43,50,60] | 0.75–1.37 [35,43,51,62] | 0.26–8.77 [57,59] | 0.53 [11] |
HMF (mg/kg) | 48–400 [43,50,60] | 46.17 [43,62] | 8.80–69 [43] | 18.48–31.74 [63] |
Apparent reducing sugar content (%) | 75.8–76% [41,43] | 67.50–67.60% [41,43,61] | 54.90–87.00 [43] | 4.03–4.39 [11] |
Sucrose (g/100 g) | 1.66–2.98 [64] | 0.01–1.66 [29] | 0.01–1.26 [29] | 0.7122–5.50 [55,65] |
Glucose (g/100 g) | 36.20 [61] | 30.07–47–134 [29] | 8.10–31.00 [29] | 25.7–30.0 [55,65] |
Fructose (g/100 g) | 40.00 [61] | 41.732–44.56 [29] | 15–40.20 [29] | 35.4–38 [55,65] |
Maltose (g/100 g) | 1.20 [61] | 4.491 [29] | 5.73–27.41 [29] | 2.99–6.50 [65] |
Protein Content (g/kg) | 5.02–5.06 [64] | 3.6–6.6 [29] | 3.9–8.5 [29] | 1.5–4.09 [55,65] |
Sodium (mg/kg) | 49.21–49.29 [66] | 268.23–704.5 [29] | 0.012–589.7 [29] | 259.3 [55] |
Potassium (mg/kg) | 49.84–49.86 [66] | 976.9–1576.40 [29,61] | 0.07–732.2 [29] | 2176.4 [55] |
Calcium (mg/kg) | 19.67–19.85 [66] | 76.4–165.10 [29,61] | 0.017–191.9 [29] | 353.1 [55] |
Iron (mg/kg) | 49.04–49.14 [66] | 11.17–128.13 [29] | 6.5 [29] | 114.7 [55] |
Magnesium (mg/kg) | 49.9–49.92 [66] | 35.03–71.04 [29,61] | 0.004–33.8 [29] | 418.2 [55] |
Zinc (mg/kg) | 19.78–19.84 [66] | 2.28–13.20 [29] | 2.162 [29] | 5.2 [55] |
Arsenic (mg/kg) | 9.38–9.44 [66] | 0.015–0.062 [29] | 0.019 [29] | Not detected [55] |
Lead (mg/kg) | 9.11–9.23 [66] | 0.183–0.231 [29] | 0.154 [29] | Not detected [55] |
Cadmium (mg/kg) | 9.87–9.91 [66] | 0.004 [29] | 0.002 [29] | Not detected [55] |
Copper (mg/kg) | 49.41–49.55 [66] | 1.25–2.144 [29] | 1.776 [29] | Not detected [55] |
Cobalt | 19.62–19.8 [66] | 0.033–0.002 [29] | Not report found | Not detected [55] |
Total phenolic content (mg/kg) | 429.61 [64] | 251.7–1103.94 [29] | 477.30–614.7 [29] | 212.4–520.34 [65] |
Total flavonoid content | 97.62 [64] | 49.04–185 [29] | 36.3 [29] | 42.5 [67] |
Phenolic Compounds | |
---|---|
Flavonoids | Phenolic Acid |
Manuka Honey | |
Chrysin (C15H10O4) | Caffeic acid (C9H8O4) |
Galangin (C15H10O5) | Ferulic acid (C10H10O4) |
Isorhamnetin (C16H12O7) | Gallic acid (C7H6O5) |
Kaempferol (C15H10O6) | Syringic acid (C9H10O5) |
Luteolin (C15H10O6) | - |
Pinobanksin (C15H12O5) | - |
Pinocembrin (C15H12O4) | - |
Quercetin (C15H10O7) | - |
Tualang Honey | |
Apigenin (C15H10O5) | Caffeic acid (C9H8O4) |
Kaempferol (C15H10O6) | Gallic acid (C7H6O5) |
Luteolin (C15H10O6) | Syringic acid (C9H10O5) |
Naringenin (C15H12O5) | Vanillic acid (C8H8O4) |
Naringin (C27H32O14) | P-coumaric acid (C9H8O3) |
Catechin (C15H14O6) | Benzoic acid (C7H6O2) |
- | Trans-cinnamic acid (C9H8O2) |
Kelulut Honey | |
Luteolin (C15H10O6) | Gallic acid (C7H6O5) |
Naringenin (C15H12O5) | Syringic acid (C9H10O5) |
Taxifolin (C15H12O7) | Vanillic acid (C8H8O4) |
- | 3 4-dihydroxybenzoic acid (C7H6O4) |
- | 4-hydroxybenzoic acid (C7H6O3) |
- | P-coumaric acid (C9H8O3) |
- | Cinnamic acid (C9H8O2) |
- | Salicylic acid (C6H4(OH)CO2H) |
- | cis, trans-Abscisic acid (C15H20O4) |
Sidr Honey | |
Catechin (C15H14O6) | Gallic acid (C7H6O5) |
Quercetin (C15H10O7) | Salicylic acid (C6H4(OH)CO2H) |
- | Chlorogenic acid (C16H18O9) |
- | Tannic acid (C76H52O48) |
Compound | Molecular Formulae | Potential Health Benefits | References |
---|---|---|---|
Apigenin | C15H10O5 | Anti-inflammatory Antimutagenic Treating cardiovascular diseases | [18,41,43,68,69,70] |
Caffeic acid | C9H8O4 | Cardiovascular diseases treatment Anti-inflammatory effects Anticancer Antidiabetic | [18,41,43,68,69,70] |
Catechin | C15H14O6 | Cardiovascular diseases treatment Antidiabetic potential Anti-inflammatory | [18,41,43,68,69,70] |
Chrysin | C15H10O4 | Improves cognitive deficits and brain damage Anticancer | [18,41,43,68,69,70] |
Cinnamic acid | C9H8O2 | Improves cognitive deficits and brain damage effect Antimicrobial effect | [18,41,43,68,69,70] |
Gallic acid | C7H6O5 | Antioxidant Anti-inflammatory Cardioprotective activity Antimutagenic Anticancer | [18,41,43,68,69,70] |
Kaempferol | C15H10O6 | Cardiovascular diseases treatment | [18,41,43,68,69,70] |
p-Coumaric acid | C9H8O3 | Anticancer activity Improves cognitive deficits and brain damage effect | [18,41,43,68,69,70] |
Quercetin-3-O-rutinoside (rutin) | C27H30O16 | Antiallergic Anti-inflammatory Antiproliferative Antitumor Cardiovascular diseases treatment | [18,41,43,68,69,70] |
Type of Honey | Gram-Positive (G+) and Gram-Negative (G−) Bacteria | Concentration of Honey (% (w/w) or %, (v/v)) | References |
---|---|---|---|
MH | Gram-positive (G+) bacteria | - | [24,41,104,112,116,130,131,133,134,135,136,137,138,139,140] |
Streptococcus pyogenes | 11.25% (w/v) | ||
Coagulase negative staphylococci | 11.25% (w/v) | ||
Methicillin-resistant Staphylococcus aureus (MRSA) | 8.75% (w/v) | ||
Streptococcus agalactiae | 15% (w/v) | ||
Staphylococcus aureus | 11.25% (w/v) | ||
Coagulase-negative Staphylococcus aureus (CONS) | 10% (w/v) | ||
Staphylococcus epidermidis | 8% (w/v) | ||
Hemolytic streptococci | 6% (w/v) | ||
Enterococcus faecalis | 8% (v/v) | ||
Streptococcus mutans | 10.25% (w/v) | ||
Streptococcus sobrinus | 12.5% (w/v) | ||
Actinomyces viscosus | 11.25% (w/v) | ||
Bacillus subtilis | 16% (w/v) | ||
Bacillus cereus | 10% (w/v) | ||
MH | Gram-negative (G−) bacteria | - | |
Stenotrophomonas maltophilia | 8.75% (w/v) | ||
Acinetobacter baumannii | 12.5% (w/v) | ||
Salmonella enterica Serovar typhi | 15% (w/v) | ||
Pseudomonas aeruginosa | 12.5% (w/v) | ||
Proteus mirabilis | 17.5% (w/v) | ||
Shigella flexneri | 17.5% (w/v) | ||
Escherichia coli | 17.5% (w/v) | ||
Enterobacter cloacae | 20% (w/v) | ||
Shigella sonnei | 6.61% (v/v) | ||
Salmonella typhi | 6–8% (v/v) | ||
Klebsiella pneumonia | 15% (w/v) | ||
Burkholderia cepacia | 5.2% (w/v) | ||
Helicobacter pylori | 5% (v/v) | ||
Campylobacter spp. | 1% (v/v) | ||
Porphyromonas gingivalis | 2% (w/v) | ||
Serratia marcescans | 9.4% (v/v) | ||
TH | Gram-positive (G+) bacteria | - | [41,112,115,116,130,138,141,142,143] |
Streptococcus pyogenes | 12.5% (w/v) | ||
Streptococcus pneumoniae | 10% (w/v) | ||
Coagulase negative Staphylococci | 12.5% (w/v) | ||
Methicillin-resistant Staphylococcus aureus (MRSA) | 12.5% (w/v) | ||
Streptococcus agalactiae | 20% (w/v) | ||
Staphylococcus aureus | 10% (w/v) | ||
Staphylococcus hominis | 15% (w/v) | ||
Streptococcus haemolyticus | 12.5% (w/v) | ||
Coagulase-negative Staphylococcus aureus (CONS) | 12.5% (w/v) | ||
Staphylococcus epidermidis | 22.5% (w/v) | ||
Enterococcus faecalis | 12.5% (w/v) | ||
Bacillus subtilis | 15% (w/v) | ||
Bacillus cereus | 15% (w/v) | ||
TH | Gram-negative (G−) bacteria | 20% (w/v) | |
Stenotrophomonas maltophilia | 8.75% (w/v) | ||
Acinetobacter baumannii | 11.25% (w/v) | ||
Salmonella enterica Serovar typhi | 15% (w/v) | ||
Pseudomonas aeruginosa | 12.5% (w/v) | ||
Proteus mirabilis | 20% (w/v) | ||
Proteus vulgaris | 15% (w/v) | ||
Shigella flexneri | 20% (w/v) | ||
Escherichia coli | 20% (w/v) | ||
Enterobacter cloacae | 25% (w/v) | ||
Enterobacter aerogenes | 30% (w/v) | ||
Shigella sonnei | 4.9% (w/v) | ||
Salmonella typhi | 20% (w/v) | ||
Klebsiella pneumonia | 10.5% (w/v) | ||
Salmonella typhimurium | 12.3% (w/v) | ||
Salmonella enterica | 12.5% (w/v) | ||
Pseudomonas keratitis | 20% (w/v) | ||
KH | Gram-positive (G+) bacteria | - | [96,99,112,130,144,145,146,147] |
Streptococcus pyogenes | 20% (w/v) | ||
Staphylococcus hominis | 6.25% (w/v) | ||
Streptococcus haemolyticus | 5% (w/v) | ||
Streptococcus agalactiae | 10% (w/v) | ||
Staphylococcus aureus | 20% (w/v) | ||
Streptococcus pneumonia | 20% (w/v) | ||
Bacillus cereus | 20% (w/v) | ||
Methicillin-resistant Staphylococcus aureus (MRSA) | 25% (w/v) | ||
KH | Gram-negative (G−) bacteria | - | |
Pseudomonas aeruginosa | 20% (w/v) | ||
Escherichia coli | 20% (w/v) | ||
Klebsiella pneumonia | 10% (w/v) | ||
Salmonella sp. | 7.5% (w/v) | ||
Salmonella typhi, Shigella sonnei | 7.5% (w/v) | ||
Acinetobacter baumannii | 5% (w/v) | ||
Enterobacter clocae | 7.5% (w/v) | ||
Enterobacter aerogenes | 7.5% (w/v) | ||
Enterobacter aerogenes | 12.5% (w/v) | ||
Proteus mirabilis | 7.5% (w/v) | ||
Proteus vulgaris | 5% (w/v) | ||
SH | Gram-positive (G+) bacteria | - | [107,140,148,149,150,151,152,153,154,155,156] |
Streptococcus pyogenes | 20% (w/v) | ||
Staphylococcus aureus | 10% (w/v) | ||
Staphylococcus epidermidis | 12% (w/v) | ||
Bacillus subtilis | 10% (w/v) | ||
Streptococcus mutans | 25% (v/v) | ||
Mycobacterium phlei | 7.5% (w/v) | ||
Methicillin-resistant Staphylococcus aureus (MRSA) | 25% (w/v) | ||
Bacillus cereus | 40% (v/v) | ||
SH | Gram-negative (G−) bacteria | - | |
Pseudomonas aeruginosa | 20% (w/v) | ||
Klebsiella pneumonia | 15% (w/v) | ||
Escherichia coli | 10% (v/v) | ||
Salmonella Typhi | 15% (v/v) | ||
Salmonella enterica serovar Typhimurium | 12.5% (w/v) | ||
Salmonella enteritidis | 10 (w/v) | ||
Neisseria meningitides | 30% (v/v) | ||
Shigella flexneri | 10% (w/v) | ||
Serratia marcescans | 30% (v/v) | ||
Proteus vulgaris | 20% (v/v) |
Type of Honey | Type of Study | Finding | References |
---|---|---|---|
MH | In vivo | After cells were incubated with different concentrations of MH (range 0.3–2.5%) for 24–72 h, MH ameliorated breast cancer (MCF-7) and murine melanoma (B16.F1), colorectal carcinoma (CT26), and other cancer cells that proliferate dose-dependently via mediated the activation of a caspase 9-dependent apoptotic pathway, leading to the induction of caspase 3, reduced Bcl-2 expression, DNA fragmentation and cell death. This inhibitory effect on cell viability was dependent on both MH concentration and total incubation time. | [160,182] |
MH | In vitro | MH exhibited profound inhibitory effects on cellular growth by reducing the proliferation ability, inducing apoptosis and arresting the cell cycle in a dose-dependent manner. MH induced cell cycle arrest in the S phase in HCT-116 cells, and simultaneously, in LoVo cells, it occurred in the G2/M phase through the modulation of cell cycle regulator genes (cyclin D1, cyclin E, CDK2, CDK4, p21, p27 and Rb). The expression of p-Akt was suppressed, whereas the expression of p-p38MAPK, p-Erk1/2 and endoplasmic stress markers (ATF6 and XBP1) was increased for apoptosis induction. | [159] |
MH | In vitro | MH ameliorated human breast cancer MCF-7 cells. MH showed dose-dependent cytotoxicity towards MCF-7 cells after 24-h treatment. | [161] |
TH | In vivo | The treatment groups were kindly received daily doses of 0.2, 1.0 and 2.0 g/kg body weight of TH, TH ameliorated breast cancer by increasing the susceptibility of proapoptotic proteins; apoptotic protease activating factor-1 (Apaf-1) interferon-gamma (IFN-γ) interferon gamma receptor-1 (IFNGR1) tumor protein P53 (p53) and decreased the expression of anti-apoptotic proteins; tumour necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2) and B-cell lymphoma-extra-large (Bcl-xL). | [29,158] |
TH | In vivo | The treatment groups were kindly given 0.2, 1.0 or 2.0 g/kg body weight/day of TH, TH alleviated breast cancers in rats by reducing cancer cell growth and enhanced histological grading. | [29,162] |
TH | In vivo | The treatment groups were kindly treated with TH 1000 mg/kg and 2000 mg/kg by oral gavage for 10 weeks, TH showed chemo-preventive activities in oral squamous cell carcinoma-induced rats by suppressing cancer cell proliferation and activity and preserving cellular adhesion. | [29,168] |
TH | In vitro | TH promoted apoptotic cell death induced by tamoxifen in breast cancer cell lines. | [29,165] |
TH | In vitro | TH showed an anti-proliferative effect on oral squamous cell carcinoma and osteosarcoma cell lines by inducing early apoptosis. | [29,169] |
TH | In vitro | TH demonstrated cytotoxic and apoptotic activities against human breast and cervical cancer cell lines with the mitochondrial apoptotic pathway’s involvement. | [29,164] |
TH | In vitro | TH demonstrated apoptosis-inducing ability for acute and chronic myeloid leukaemia (K562 and MV4-11) cell lines. | [29,170] |
TH | In vitro | TH protected keratinocytes from ultraviolet radiation-induced inflammation and DNA damage via modulation in early biomarkers of photocarcinogenesis. | [29,171] |
TH | In vitro | TH was found to be cytotoxic to breast cancer cell line (MCF-7) but protected non-tumorigenic epithelial breast cell line (MCF-10A) from the toxic effects of tamoxifen active metabolite 4-hydroxytamoxifen. | [29,166] |
TH | Human study | The treatment groups were kindly received oral TH 20 mg daily for 8 weeks, TH improved cancer-related fatigue and quality of life of patients with head and neck cancer post-chemotherapy or radiotherapy | [29,172] |
TH | Human study | Combination of TH honey 20 g daily and anastrozole 1 mg daily showed more improvement in decreasing breast background parenchymal enhancement in patients with breast cancer than anastrozole alone. | [29,167] |
TH | In vitro | TH has anticancer capabilities; increasing the concentration of TH reduces the viability of cancer cells | [173] |
KH | In vivo | The treatment groups were kindly given oral administration of KH (1183 mg/kg body weight) twice daily for 8 weeks, KH possessed chemo-preventive properties in rats induced with colorectal cancer and also was found not toxic towards the animals. | [29,93] |
KH | In vitro | KH was not cytotoxic to Human Gingival Fibroblast Cell Line (HGF-1 cell line) | [174] |
KH | In vitro | KH possessed anticancer potential against human lung adenocarcinoma epithelial cell line (A549) as it was capable of inhibiting the cells growth in a dose and time-dependent manner. Moreover, KH was capable of inducing cell cycle arrest at G2/M phase. | [175] |
SH | In vivo | The treatment groups were kindly given 20% of SH, SH has anticancer activity against HepG2 but not Hela cells. SH can be used as antimicrobial agent, but can be used as anticancer agent with care as it stimulated cell growth of some lines (e.g., Hala) and inhibited another (e.g., HepG2). | [150] |
SH | In vitro | SH has possessed anticancer activity against breast adenocarcinoma (MDA-MB-231) cell lines and their ability to modulate gene expression of MMPs and TIMPs in human breast adenocarcinoma (MDA-MB-231) cell lines | [176] |
Type of Honey | Type of Study | Findings | References |
---|---|---|---|
MH | In vitro | MH eradicated and inhibited methicillin-resistant S. aureus (MRSA) from colonized wounds by interrupting cell division. | [215] |
MH | In vitro | Combination MH with rifampicin was stopped the appearance of rifampicin-resistant S. aureus, which was rapidly lost in the presence of rifampicin alone. | [216] |
TH | In vivo | The treatment groups were received TH (0.2 mL), there was a 14% and 73% reduction in wound size by day 9 and day 15 in the TH-treated wounds; however, this increased by 106% and 24% by day 12 and day 15, respectively. | [217] |
TH | In vivo | The treatment groups were received TH (0.1 mL/cm2) dressing on the first burn wound, hydrofibre on the second wound, and hydrofibre silver on the last wound.Wound size was found to be markedly reduced in the TH-treated wounds on day 3, 9 and 15. The wounds showed a reduction in size of 12.86% by day 3 from the original 100 mm2 in the TH-treated wounds. They further decreased in size of 33.94% by day 9 post-burn. The wound healing process was observed for up to 21 days. On day 21, TH-treated wounds in P. aeruginosa inoculated group and A. baumannii inoculated groups healed completely. The remaining wounds in P. aeruginosa inoculated group and A. baumannii inoculated groups and all the wounds in K. pneumonia inoculated wounds did not healed completely. | [218] |
TH | In vivo | The treatment groups were given TH 1.0 g/kg every morning until day seven post operatively, oral treatment with TH enhanced anastomotic wound healing by increasing the number of fibroblasts and decreasing inflammatory cells towards increased wound strength. | [219] |
TH | Human | The treatment groups were received 3 mL of TH intraoperatively followed by 4 mL of oral TH three times daily for seven days, TH has positive effect in enhancing healing process in post tonsillectomy patient. It is easy to use topically, safe to consume orally and available at low cost locally. Overall it can be used as an excellent adjunct therapy for post-operative patients. | [220] |
KH | In vivo | The treatment groups were given KH (1183 mg/kg) twice daily for 30 consecutive days by oral administration and on day 31, the rats were induced with absolute ethanol (5 mL/kg) via oral administration after being fasted for 24 h and were sacrificed 15 min after the induction. Pretreatment with KH significantly reduced (p < 0.05) both the total area of ulcer and the ulcer index compared to the positive control group. The percentage of ulcer inhibition in the KH pre-treated group was 65.56% compared with the positive control group. The treatment, KH, exhibited antiulcer properties against ethanol induced gastric ulcer. | [222] |
KH | In vitro | KH reduced TGFβ-induced EMT in human primary keratinocytes, indicating its therapeutic potential in preventing keloid scar formation. | [221] |
SH | In vivo | The treatment groups were received 1 to 2 mL of SH twice a day for one week and then once daily until the end of the study period (28 d). SH showed a beneficial effect of SH on second-intention healing of full thickness contaminated wounds and also wounds treated by SH healed as fast as those wounds treated by iodine. | [223] |
SH | In vivo | The treatment groups were treated with 500 mg of SH (0, 7, 14 and 21 days), SH was found to possess higher healing rate of wounds induced either by thermal or chemical methods, In general, SH could be employed as topical wound healing agent and was also proved that SH could be used as natural wound healing agents besides commercial synthetic analogs. | [224] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kafaween, M.A.; Alwahsh, M.; Mohd Hilmi, A.B.; Abulebdah, D.H. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics 2023, 12, 337. https://doi.org/10.3390/antibiotics12020337
Al-Kafaween MA, Alwahsh M, Mohd Hilmi AB, Abulebdah DH. Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics. 2023; 12(2):337. https://doi.org/10.3390/antibiotics12020337
Chicago/Turabian StyleAl-Kafaween, Mohammad A., Mohammad Alwahsh, Abu Bakar Mohd Hilmi, and Dina H. Abulebdah. 2023. "Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review" Antibiotics 12, no. 2: 337. https://doi.org/10.3390/antibiotics12020337
APA StyleAl-Kafaween, M. A., Alwahsh, M., Mohd Hilmi, A. B., & Abulebdah, D. H. (2023). Physicochemical Characteristics and Bioactive Compounds of Different Types of Honey and Their Biological and Therapeutic Properties: A Comprehensive Review. Antibiotics, 12(2), 337. https://doi.org/10.3390/antibiotics12020337