The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus
Abstract
:1. Staphylococcus aureus
2. Staphylococcus aureus Is an ESKAPEE Pathogen
3. The Major Facilitator Superfamily (MFS)
3.1. Discovery of MFS Transporters
3.2. Early Studies on the MFS
3.3. Energization
3.4. MFS Pump Structure
3.5. Mechanisms of Antimicrobial Transport in MFS Efflux Pumps
4. Structure and Function of MFS Multidrug Efflux Pumps in S. aureus
4.1. QacA
4.2. NorA
4.3. TetA(K)
4.4. Tet38
4.5. MdeA
4.6. SdrM
4.7. LmrS
4.8. Other S. aureus MFS Multidrug Efflux Pumps
5. Role of Conserved Amino Acid Sequence Motifs
5.1. Motif A
5.2. Motif C
6. Modulation of S. aureus MFS Multidrug Efflux Pumps
6.1. Downregulation of Genes Encoding MFS Efflux Pumps
6.2. Disruption of the Membrane Potential
6.3. Interaction of EPIs with Antibiotics
6.4. Disruption and Impediment of Efflux Pump Assemblies and Membrane-Bound Proteins
6.5. Competitive and Non-Competitive Inhibition by EPIs
6.6. Ca2+ Chelating EPIs
7. Inhibition of MFS Efflux Pumps of S. aureus
7.1. NorA, NorB and NorC Efflux Pumps
7.2. MdeA and LmrS
7.3. Tet38 and TetA(K)
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-Resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Mondal, S.C.; Jana, S. Antibiogram, Biochemical Reactions and Genotyping Characterization of Biofield Treated Staphylococcus aureus. Am. J. BioSci. 2015, 3, 212–220. [Google Scholar] [CrossRef]
- Sakr, A.; Brégeon, F.; Mège, J.-L.; Rolain, J.-M.; Blin, O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- Tigabu, A.; Getaneh, A. Staphylococcus aureus, ESKAPE Bacteria Challenging Current Health Care and Community Settings: A Literature Review. Clin. Lab. 2021, 67, 1539–1549. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-Resistant Staphylococcus aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Bassetti, M.; Ginocchio, F.; Mikulska, M. New Treatment Options against Gram-Negative Organisms. Crit. Care 2011, 15, 215. [Google Scholar] [CrossRef]
- 2019 Antibiotic Resistance Threats Report|CDC. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 19 November 2022).
- Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M.A. Molecular Mechanisms of Antibiotic Resistance Revisited. Nat. Rev. Microbiol. 2022, 1–16. [Google Scholar] [CrossRef]
- Varela, M.F.; Stephen, J.; Lekshmi, M.; Ojha, M.; Wenzel, N.; Sanford, L.M.; Hernandez, A.J.; Parvathi, A.; Kumar, S.H. Bacterial Resistance to Antimicrobial Agents. Antibiotics 2021, 10, 593. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Varela, M.F. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Agents. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2013; pp. 522–534. [Google Scholar]
- Floyd, J.T.; Kumar, S.; Mukherjee, M.M.; He, G.; Varela, M.F. A Review of the Molecular Mechanisms of Drug Efflux in Pathogenic Bacteria: A Structure-Function Perspective. Recent Res. Dev. Membr. Biol. 2013, 3, 15–66. [Google Scholar]
- Akova, M. Epidemiology of Antimicrobial Resistance in Bloodstream Infections. Virulence 2016, 7, 252–266. [Google Scholar] [CrossRef]
- Lekshmi, M.; Ammini, P.; Kumar, S.; Varela, M.F. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin. Microorganisms 2017, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical Relevance of the ESKAPE Pathogens. Expert Rev. Anti-Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Weist, K.; Högberg, L.D. ECDC Publishes 2015 Surveillance Data on Antimicrobial Resistance and Antimicrobial Consumption in Europe. Euro Surveill. 2016, 21, 30399. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, Research, and Development of New Antibiotics: The Who Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Progress and Challenges in Implementing the Research on ESKAPE Pathogens. Infect. Control. Hosp. Epidemiol. 2010, 31 (Suppl. 1), S7–S10. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef] [PubMed]
- Ebomah, K.E.; Okoh, A.I. Detection of Carbapenem-Resistance Genes in Klebsiella Species Recovered from Selected Environmental Niches in the Eastern Cape Province, South Africa. Antibiotics 2020, 9, 425. [Google Scholar] [CrossRef] [PubMed]
- Hrenovic, J.; Durn, G.; Music, M.S.; Dekic, S.; Troskot-Corbic, T.; Skoric, D. Extensively and Multi Drug-Resistant Acinetobacter baumannii Recovered from Technosol at a Dump Site in Croatia. Sci. Total Environ. 2017, 607–608, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W. The “thanato-Resistome”—The Funeral Industry as a Potential Reservoir of Antibiotic Resistance: Early Insights and Perspectives. Sci. Total Environ. 2020, 749, 141120. [Google Scholar] [CrossRef]
- Maiden, M.C.; Davis, E.O.; Baldwin, S.A.; Moore, D.C.; Henderson, P.J. Mammalian and Bacterial Sugar Transport Proteins Are Homologous. Nature 1987, 325, 641–643. [Google Scholar] [CrossRef]
- Henderson, P.J. The Homologous Glucose Transport Proteins of Prokaryotes and Eukaryotes. Res. Microbiol. 1990, 141, 316–328. [Google Scholar] [CrossRef]
- Henderson, R.K.; Fendler, K.; Poolman, B. Coupling Efficiency of Secondary Active Transporters. Curr. Opin. Biotechnol. 2019, 58, 62–71. [Google Scholar] [CrossRef]
- Saier, M.H.; Tran, C.V.; Barabote, R.D. TCDB: The Transporter Classification Database for Membrane Transport Protein Analyses and Information. Nucleic Acids Res. 2006, 34, D181–D186. [Google Scholar] [CrossRef]
- Pribil, P.A.; Haniford, D.B. Target DNA Bending Is an Important Specificity Determinant in Target Site Selection in Tn10 Transposition. J. Mol. Biol. 2003, 330, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Rouch, D.A.; Cram, D.S.; DiBerardino, D.; Littlejohn, T.G.; Skurray, R.A. Efflux-Mediated Antiseptic Resistance Gene QacA from Staphylococcus aureus: Common Ancestry with Tetracycline- and Sugar-Transport Proteins. Mol. Microbiol. 1990, 4, 2051–2062. [Google Scholar] [CrossRef]
- Varela, M.F.; Sansom, C.E.; Griffith, J.K. Mutational analysis and molecular modelling of an amino acid sequence motif conserved in antiporters but not symporters in a transporter superfamily. Mol. Membr. Biol. 1995, 12, 313–319. [Google Scholar] [CrossRef]
- Ikeda, T.; Schmitt, B.; Pouyssegur, J.; Wakabayashi, S.; Shigekawa, M. Identification of Cytoplasmic Subdomains That Control PH-Sensing of the Na+/H+ Exchanger (NHE1): pH-Maintenance, ATP-Sensitive, and Flexible Loop Domains. J. Biochem. 1997, 121, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Tanford, C. Simple Model for the Chemical Potential Change of a Transported Ion in Active Transport. Proc. Natl. Acad. Sci. USA 1982, 79, 2882–2884. [Google Scholar] [CrossRef] [Green Version]
- Griffith, J.K.; Baker, M.E.; Rouch, D.A.; Page, M.G.; Skurray, R.A.; Paulsen, I.T.; Chater, K.F.; Baldwin, S.A.; Henderson, P.J. Membrane Transport Proteins: Implications of Sequence Comparisons. Curr. Opin. Cell Biol. 1992, 4, 684–695. [Google Scholar] [CrossRef]
- Lolkema, J.S.; Slotboom, D.J. Hydropathy Profile Alignment: A Tool to Search for Structural Homologues of Membrane Proteins. FEMS Microbiol. Rev. 1998, 22, 305–322. [Google Scholar] [CrossRef]
- Zhang, C.; Tellinghuisen, T.; Guo, P. Use of Circular Permutation to Assess Six Bulges and Four Loops of DNA-Packaging PRNA of Bacteriophage Phi29. RNA 1997, 3, 315–323. [Google Scholar]
- Fujihira, E.; Kimura, T.; Yamaguchi, A. Roles of Acidic Residues in the Hydrophilic Loop Regions of Metal-Tetracycline/H+ Antiporter Tet(K) of Staphylococcus aureus. FEBS Lett. 1997, 419, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Maloney, P.C. Bacterial Transporters. Curr. Opin. Cell Biol. 1994, 6, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Doskar, J.; Pallova, P.; Pantucek, R.; Rosypal, S.; Ruzickova, V.; Pantuckova, P.; Kailerova, J.; Kleparnik, K.; Mala, Z.; Bocek, P. Genomic Relatedness of Staphylococcus aureus Phages of the International Typing Set and Detection of Serogroup A, B, and F Prophages in Lysogenic Strains. Can. J. Microbiol. 2000, 46, 1066–1076. [Google Scholar] [CrossRef]
- Iwai, H.; Lingel, A.; Pluckthun, A. Cyclic Green Fluorescent Protein Produced in Vivo Using an Artificially Split PI-PfuI Intein from Pyrococcus furiosus. J. Biol. Chem. 2001, 276, 16548–16554. [Google Scholar] [CrossRef]
- Follmann, D.A.; Proschan, M.A. A Simple Permutation-Type Method for Testing Circular Uniformity with Correlated Angular Measurements. Biometrics 1999, 55, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Akemann, W.; Raj, C.D.; Knopfel, T. Functional Characterization of Permuted Enhanced Green Fluorescent Proteins Comprising Varying Linker Peptides. Photochem. Photobiol. 2001, 74, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Deng, D.; Xu, C.; Sun, P.; Wu, J.; Yan, C.; Hu, M.; Yan, N. Crystal Structure of the Human Glucose Transporter GLUT1. Nature 2014, 510, 121–125. [Google Scholar] [CrossRef]
- West, I.C.; Mitchell, P. Stoicheiometry of Lactose-H+ Symport across the Plasma Membrane of Escherichia coli. Biochem. J. 1973, 132, 587–592. [Google Scholar] [CrossRef]
- Mitchell, P. Proton Current Flow in Mitochondrial Systems. Nature 1967, 214, 1327–1328. [Google Scholar] [CrossRef] [PubMed]
- West, I.C.; Mitchell, P. Proton/Sodium Ion Antiport in Escherichia coli. Biochem. J. 1974, 144, 87–90. [Google Scholar] [CrossRef]
- Mitchell, P. Translocations through Natural Membranes. Adv. Enzymol. Relat. Areas Mol. Biol. 1967, 29, 33–87. [Google Scholar] [CrossRef]
- Varela, M.F.; Wilson, T.H. Molecular Biology of the Lactose Carrier of Escherichia coli. Biochim. Biophys. Acta 1996, 1276, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Kaback, H.R. It’s Better To Be Lucky Than Smart. Annu. Rev. Biochem. 2021, 90, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Shiina, Y.; Fujihira, E.; Sawai, T.; Noguchi, N.; Sasatsu, M. The Tetracycline Efflux Protein Encoded by the Tet(K) Gene from Staphylococcus aureus is a Metal-Tetracycline/H+ Antiporter. FEBS Lett. 1995, 365, 193–197. [Google Scholar] [CrossRef]
- Brown, M.H.; Skurray, R.A. Staphylococcal Multidrug Efflux Protein QacA. J. Mol. Microbiol. Biotechnol. 2001, 3, 163–170. [Google Scholar]
- Yin, Y.; He, X.; Szewczyk, P.; Nguyen, T.; Chang, G. Structure of the Multidrug Transporter EmrD from Escherichia coli. Science 2006, 312, 741–744. [Google Scholar] [CrossRef]
- Jiang, D.; Zhao, Y.; Wang, X.; Fan, J.; Heng, J.; Liu, X.; Feng, W.; Kang, X.; Huang, B.; Liu, J.; et al. Structure of the YajR Transporter Suggests a Transport Mechanism Based on the Conserved Motif A. Proc. Natl. Acad. Sci. USA 2013, 110, 14664–14669. [Google Scholar] [CrossRef] [PubMed]
- Heng, J.; Zhao, Y.; Liu, M.; Liu, Y.; Fan, J.; Wang, X.; Zhang, X.C. Substrate-Bound Structure of the E. coli Multidrug Resistance Transporter Mdfa. Cell Res. 2015, 25, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Sun, B.; Zhou, Y.; Wang, C.; Guo, L.; He, J.; Deng, D. Visualizing the Nonlinear Changes of a Drug-Proton Antiporter from Inward-Open to Occluded State. Biochem. Biophys. Res. Commun. 2021, 534, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Athreya, A.; Gulati, A.; Nair, R.M.; Mahendran, I.; Ranjan, R.; Penmatsa, A. Structural Basis of Inhibition of a Transporter from Staphylococcus aureus, NorC, through a Single-Domain Camelid Antibody. Commun. Biol. 2021, 4, 836. [Google Scholar] [CrossRef]
- Ranaweera, I.; Shrestha, U.; Ranjana, K.C.; Kakarla, P.; Willmon, T.M.; Hernandez, A.J.; Mukherjee, M.M.; Barr, S.R.; Varela, M.F. Structural Comparison of Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily. Trends Cell Mol. Biol. 2015, 10, 131–140. [Google Scholar] [PubMed]
- Drew, D.; Boudker, O. Shared Molecular Mechanisms of Membrane Transporters. Annu. Rev. Biochem. 2016, 85, 543–572. [Google Scholar] [CrossRef]
- West, I.C. Energy Coupling in Secondary Active Transport. Biochim. Biophys. Acta 1980, 604, 91–126. [Google Scholar] [CrossRef] [PubMed]
- West, I.C. Ligand Conduction and the Gated-Pore Mechanism of Transmembrane Transport. Biochim. Biophys. Acta 1997, 1331, 213–234. [Google Scholar] [CrossRef]
- Xiao, Q.; Xu, M.; Wang, W.; Wu, T.; Zhang, W.; Qin, W.; Sun, B. Utilization of AlphaFold2 to Predict MFS Protein Conformations after Selective Mutation. Int. J. Mol. Sci. 2022, 23, 7235. [Google Scholar] [CrossRef]
- Krämer, R. Functional principles of solute transport systems: Concepts and perspectives. Biochim. Biophys. Acta 1994, 1185, 1–34. [Google Scholar] [CrossRef]
- Poolman, B.; Konings, W.N. Secondary solute transport in bacteria. Biochim. Biophys. Acta 1993, 1183, 5–39. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ma, J.; Qin, X.; Li, Q.; Ju, J. Identification and Utilization of Two Important Transporters: SgvT1 and SgvT2, for Griseoviridin and Viridogrisein Biosynthesis in Streptomyces griseoviridis. Microb. Cell Factories 2017, 16, 177. [Google Scholar] [CrossRef]
- Slipski, C.J.; Zhanel, G.G.; Bay, D.C. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. J. Membr. Biol. 2018, 251, 15–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnova, I.; Kasho, V.; Sugihara, J.; Kaback, H.R. Trp Replacements for Tightly Interacting Gly-Gly Pairs in LacY Stabilize an Outward-Facing Conformation. Proc. Natl. Acad. Sci. USA 2013, 110, 8876–8881. [Google Scholar] [CrossRef]
- Jia, J.; Huang, W.; Schorken, U.; Sahm, H.; Sprenger, G.A.; Lindqvist, Y.; Schneider, G. Crystal Structure of Transaldolase B from Escherichia coli Suggests a Circular Permutation of the Alpha/Beta Barrel within the Class I Aldolase Family. Structure 1996, 4, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, I.T.; Brown, M.H.; Littlejohn, T.G.; Mitchell, B.A.; Skurray, R.A. Multidrug Resistance Proteins QacA and QacB from Staphylococcus aureus: Membrane Topology and Identification of Residues Involved in Substrate Specificity. Proc. Natl. Acad. Sci. USA 1996, 93, 3630–3635. [Google Scholar] [CrossRef] [PubMed]
- Kunji, E.R.S.; Slotboom, D.-J.; Poolman, B. Lactococcus lactis as Host for Overproduction of Functional Membrane Proteins. Biochim. Biophys. Acta 2003, 1610, 97–108. [Google Scholar] [CrossRef]
- Majumder, P.; Khare, S.; Athreya, A.; Hussain, N.; Gulati, A.; Penmatsa, A. Dissection of Protonation Sites for Antibacterial Recognition and Transport in QacA, a Multi-Drug Efflux Transporter. J. Mol. Biol. 2019, 431, 2163–2179. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, P.-H.; Hou, B.-Z.; Shen, Y.-Y. Strawberry Tonoplast Transporter, FaVPT1, Controls Phosphate Accumulation and Fruit Quality. Plant Cell Environ. 2019, 42, 2715–2729. [Google Scholar] [CrossRef]
- Yoshida, H.; Bogaki, M.; Nakamura, S.; Ubukata, K.; Konno, M. Nucleotide Sequence and Characterization of the Staphylococcus aureus NorA Gene, Which Confers Resistance to Quinolones. J. Bacteriol. 1990, 172, 6942–6949. [Google Scholar] [CrossRef]
- Neyfakh, A.A. The Multidrug Efflux Transporter of Bacillus subtilis is a Structural and Functional Homolog of the Staphylococcus NorA Protein. Antimicrob. Agents Chemother. 1992, 36, 484–485. [Google Scholar] [CrossRef]
- Wiedemann, B.; Heisig, P. Mechanisms of Quinolone Resistance. Infection 1994, 22 (Suppl. 2), S73–S79. [Google Scholar] [CrossRef]
- Kaatz, G.W.; Seo, S.M.; Ruble, C.A. Efflux-Mediated Fluoroquinolone Resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1993, 37, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Lv, P.; Su, D.; Li, Y.; Liang, Y.; Ma, C.; Yang, C. Evolutionary Conservative Analysis Revealed Novel Functional Sites in the Efflux Pump NorA of Staphylococcus aureus. J. Antimicrob. Chemother. 2022, 77, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lim, H.; Bae, I.K.; Yong, D.; Jeong, S.H.; Lee, K.; Chong, Y. Coexistence of Mupirocin and Antiseptic Resistance in Methicillin-Resistant Staphylococcus aureus Isolates from Korea. Diagn. Microbiol. Infect. Dis. 2013, 75, 308–312. [Google Scholar] [CrossRef]
- Lepainteur, M.; Royer, G.; Bourrel, A.S.; Romain, O.; Duport, C.; Doucet-Populaire, F.; Decousser, J.W. Prevalence of Resistance to Antiseptics and Mupirocin among Invasive Coagulase-Negative Staphylococci from Very Preterm Neonates in NICU: The Creeping Threat? J. Hosp. Infect. 2013, 83, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Petrushanko, I.Y.; Yakushev, S.; Mitkevich, V.A.; Kamanina, Y.V.; Ziganshin, R.H.; Meng, X.; Anashkina, A.A.; Makhro, A.; Lopina, O.D.; Gassmann, M.; et al. S-Glutathionylation of the Na,K-ATPase Catalytic Alpha Subunit Is a Determinant of the Enzyme Redox Sensitivity. J. Biol. Chem. 2012, 287, 32195–32205. [Google Scholar] [CrossRef]
- Yoshida, T.; Shiroshima, T.; Lee, S.J.; Yasumura, M.; Uemura, T.; Chen, X.; Iwakura, Y.; Mishina, M. Interleukin-1 Receptor Accessory Protein Organizes Neuronal Synaptogenesis as a Cell Adhesion Molecule. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 2588–2600. [Google Scholar] [CrossRef]
- Mahey, N.; Tambat, R.; Verma, D.K.; Chandal, N.; Thakur, K.G.; Nandanwar, H. Antifungal Azoles as Tetracycline Resistance Modifiers in Staphylococcus aureus. Appl. Environ. Microbiol. 2021, 87, e0015521. [Google Scholar] [CrossRef]
- Schumacher, M.A.; Miller, M.C.; Grkovic, S.; Brown, M.H.; Skurray, R.A.; Brennan, R.G. Structural Basis for Cooperative DNA Binding by Two Dimers of the Multidrug-Binding Protein QacR. EMBO J. 2002, 21, 1210–1218. [Google Scholar] [CrossRef]
- Sarwar, S.; Saleem, S.; Shahzad, F.; Jahan, S. Identifying and Elucidating the Resistance of Staphylococcus aureus Isolated from Hospital Environment to Conventional Disinfectants. Am. J. Infect. Control 2023, 51, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Betchen, M.; Giovinco, H.M.; Curry, M.; Luu, J.; Fraimow, H.; Carabetta, V.J.; Nahra, R. Evaluating the Effectiveness of Hospital Antiseptics on Multidrug-Resistant Acinetobacter baumannii: Understanding the Relationship between Microbicide and Antibiotic Resistance. Antibiotics 2022, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Namaki Kheljan, M.; Teymorpour, R.; Peeri Doghaheh, H.; Arzanlou, M. Antimicrobial Biocides Susceptibility and Tolerance-Associated Genes in Enterococcus faecalis and Enterococcus faecium Isolates Collected from Human and Environmental Sources. Curr. Microbiol. 2022, 79, 170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Schmidt, H.; Piepersberg, W. Molecular Cloning and Characterization of Two Lincomycin-Resistance Genes, LmrA and LmrB, from Streptomyces lincolnensis 78–11. Mol. Microbiol. 1992, 6, 2147–2157. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Lin, C.Y.; Huang, C.C.; Ho, Y.L.; Yang, S.F.; Ho, C.M. Differentiation of QacA and QacB Using High-Resolution Melt Curve Analysis, and Both QacA and QacB but Not QacC or NorA Types Increase Chlorhexidine Minimal Inhibitory Concentrations in Staphylococcus aureus Isolates. J. Microbiol. Immunol. Infect. = Wei Mian Yu Gan Ran Za Zhi 2020, 53, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Park, K.H.; Jung, M.; Kim, D.Y.; Lee, Y.M.; Lee, M.S.; Ryu, B.H.; Hong, S.I.; Hong, K.W.; Bae, I.G.; Cho, O.H. Effects of Subinhibitory Concentrations of Chlorhexidine and Mupirocin on Biofilm Formation in Clinical Meticillin-Resistant Staphylococcus aureus. J. Hosp. Infect. 2020, 106, 295–302. [Google Scholar] [CrossRef]
- e Silva, A.K.F.; Dos Reis, A.C.; Pinheiro, E.E.A.; de Sousa, J.N.; de Alcântara Oliveira, F.A.; Moura, A.K.S.; de Sousa, L.N.J.; das Graças, L.C.A.M.; Siqueira-Júnior, J.P.; Kaatz, G.W.; et al. Modulation of the Drug Resistance by Platonia Insignis Mart. Extract, Ethyl Acetate Fraction and Morelloflavone/Volkensiflavone (Biflavonoids) in Staphylococcus aureus Strains Overexpressing Efflux Pump Genes. Curr. Drug Metab. 2021, 22, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; O’Toole, P.W.; Shen, W.; Amrine-Madsen, H.; Jiang, X.; Lobo, N.; Palmer, L.M.; Voelker, L.; Fan, F.; Gwynn, M.N.; et al. Novel Chromosomally Encoded Multidrug Efflux Transporter MdeA in Staphylococcus aureus. Antimicrob. Agents Chemother. 2004, 48, 909–917. [Google Scholar] [CrossRef]
- Douglas, E.J.A.; Duggan, S.; Brignoli, T.; Massey, R.C. The MpsB Protein Contributes to Both the Toxicity and Immune Evasion Capacity of Staphylococcus aureus. Microbiology 2021, 167, 001096. [Google Scholar] [CrossRef] [PubMed]
- Holasová, K.; Křížkovská, B.; Hoang, L.; Dobiasová, S.; Lipov, J.; Macek, T.; Křen, V.; Valentová, K.; Ruml, T.; Viktorová, J. Flavonolignans from Silymarin Modulate Antibiotic Resistance and Virulence in Staphylococcus aureus. Biomed. Pharmacother. 2022, 149, 112806. [Google Scholar] [CrossRef]
- Yamada, Y.; Hideka, K.; Shiota, S.; Kuroda, T.; Tsuchiya, T. Gene Cloning and Characterization of SdrM, a Chromosomally-Encoded Multidrug Efflux Pump, from Staphylococcus aureus. Biol. Pharm. Bull. 2006, 29, 554–556. [Google Scholar] [CrossRef]
- Salaheen, S.; Peng, M.; Joo, J.; Teramoto, H.; Biswas, D. Eradication and Sensitization of Methicillin Resistant Staphylococcus aureus to Methicillin with Bioactive Extracts of Berry Pomace. Front. Microbiol. 2017, 8, 253. [Google Scholar] [CrossRef]
- Floyd, J.L.; Smith, K.P.; Kumar, S.H.; Floyd, J.T.; Varela, M.F. LmrS Is a Multidrug Efflux Pump of the Major Facilitator Superfamily from Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 5406–5412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong-Bolduc, Q.C.; Wang, Y.; Chen, C.; Hooper, D.C. Transcriptional Regulator TetR21 Controls the Expression of the Staphylococcus aureus LmrS Efflux Pump. Antimicrob. Agents Chemother. 2017, 61, e00649-17. [Google Scholar] [CrossRef]
- Meng, F.; Nie, T.; Lyu, Y.; Lyu, F.; Bie, X.; Lu, Y.; Zhao, M.; Lu, Z. Plantaricin A Reverses Resistance to Ciprofloxacin of Multidrug-Resistant Staphylococcus aureus by Inhibiting Efflux Pumps. Environ. Microbiol. 2022, 24, 4818–4833. [Google Scholar] [CrossRef]
- Dobiasová, S.; Řehořová, K.; Kučerová, D.; Biedermann, D.; Káňová, K.; Petrásková, L.; Koucká, K.; Václavíková, R.; Valentová, K.; Ruml, T.; et al. Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-Inflammatory Potential. Antioxidants 2020, 9, 455. [Google Scholar] [CrossRef]
- Kehrenberg, C.; Schwarz, S. FexA, a Novel Staphylococcus lentus Gene Encoding Resistance to Florfenicol and Chloramphenicol. Antimicrob. Agents Chemother. 2004, 48, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, C.; Schwarz, S.; Liu, W.; Yang, Q.; Luan, T.; Wang, L.; Liu, S.; Zhang, W. Identification of a Novel Tetracycline Resistance Gene, Tet(63), Located on a Multiresistance Plasmid from Staphylococcus aureus. J. Antimicrob. Chemother. 2021, 76, 576–581. [Google Scholar] [CrossRef]
- Hannauer, M.; Sheldon, J.R.; Heinrichs, D.E. Involvement of Major Facilitator Superfamily Proteins SfaA and SbnD in Staphyloferrin Secretion in Staphylococcus aureus. FEBS Lett. 2015, 589, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Ohnuma, M.; Sawai, T.; Yamaguchi, A. Membrane Topology of the Transposon 10-Encoded Metal-Tetracycline/H+ Antiporter as Studied by Site-Directed Chemical Labeling. J. Biol. Chem. 1997, 272, 580–585. [Google Scholar] [CrossRef]
- Masureel, M.; Martens, C.; Stein, R.A.; Mishra, S.; Ruysschaert, J.-M.; Mchaourab, H.S.; Govaerts, C. Protonation Drives the Conformational Switch in the Multidrug Transporter LmrP. Nat. Chem. Biol. 2014, 10, 149–155. [Google Scholar] [CrossRef]
- Holler, J.G.; Slotved, H.-C.; Mølgaard, P.; Olsen, C.E.; Christensen, S.B. Chalcone Inhibitors of the NorA Efflux Pump in Staphylococcus aureus Whole Cells and Enriched Everted Membrane Vesicles. Bioorg. Med. Chem. 2012, 20, 4514–4521. [Google Scholar] [CrossRef] [PubMed]
- Ginn, S.L.; Brown, M.H.; Skurray, R.A. The TetA (K) Tetracycline/H+ Antiporter from Staphylococcus aureus: Mutagenesis and Functional Analysis of Motif C. J. Bacteriol. 2000, 182, 1492–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Krulwich, T.A. Site-Directed Mutagenesis Studies of Selected Motif and Charged Residues and of Cysteines of the Multifunctional Tetracycline Efflux Protein Tet(L). J. Bacteriol. 2002, 184, 1796–1800. [Google Scholar] [CrossRef]
- De Jesus, M.; Jin, J.; Guffanti, A.A.; Krulwich, T.A. Importance of the GP Dipeptide of the Antiporter Motif and Other Membrane-Embedded Proline and Glycine Residues in Tetracycline Efflux Protein Tet(L). Biochemistry 2005, 44, 12896–12904. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.A.; Galea, M.; Wu, J.; Mitchell, B.A.; Skurray, R.A.; Brown, M.H. Functional Effects of Intramembranous Proline Substitutions in the Staphylococcal Multidrug Transporter QacA. FEMS Microbiol. Lett. 2006, 263, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Parsons, S.M. Conformational Propensities of Peptides Mimicking Transmembrane Helix 5 and Motif C in Wild-Type and Mutant Vesicular Acetylcholine Transporters. ACS Chem. Neurosci. 2010, 1, 381–390. [Google Scholar] [CrossRef]
- Yaffe, D.; Radestock, S.; Shuster, Y.; Forrest, L.R.; Schuldiner, S. Identification of Molecular Hinge Points Mediating Alternating Access in the Vesicular Monoamine Transporter VMAT2. Proc. Natl. Acad. Sci. USA 2013, 110, E1332–E1341. [Google Scholar] [CrossRef]
- Pasrija, R.; Banerjee, D.; Prasad, R. Structure and Function Analysis of CaMdr1p, a Major Facilitator Superfamily Antifungal Efflux Transporter Protein of Candida Albicans: Identification of Amino Acid Residues Critical for Drug/H+ Transport. Eukaryot. Cell 2007, 6, 443–453. [Google Scholar] [CrossRef]
- Lekshmi, M.; Stephen, J.; Ojha, M.; Kumar, S.; Varela, M. Staphylococcus aureus Antimicrobial Efflux Pumps and Their Inhibitors: Recent Developments. AIMS Med. Sci. 2022, 9, 367–393. [Google Scholar] [CrossRef]
- Kumar, S.; Ranjana, K.; Sanford, L.M.; Hernandez, A.J.; Kakarla, P.; Varela, M.F. Structural and Functional Roles of Two Evolutionarily Conserved Amino Acid Sequence Motifs within Solute Transporters of the Major Facilitator Superfamily. Trends Cell Mol. Biol. 2016, 11, 41–53. [Google Scholar]
- Kakarla, P.; Ranjana, K.; Shrestha, U.; Ranaweera, I.; Mukherjee, M.M.; Willmon, T.M.; Hernandez, A.J.; Barr, S.R.; Varela, M.F. Functional roles of highly conserved amino acid sequence motifs A and C in solute transporters of the major facilitator superfamily. In Drug Resistance in Bacteria, Fungi, Malaria, and Cancer; Springer: Berlin/Heidelberg, Germany, 2017; pp. 111–140. [Google Scholar]
- Varela, M.F.; Andersen, J.L.; Ranjana, K.C.; Kumar, S.; Sanford, L.M.; Hernandez, A.J. Bacterial Resistance Mechanisms and Inhibitors of Multidrug Efflux Pumps Belonging to the Major Facilitator Superfamily of Solute Transport Systems. In Frontiers in Anti-Infective Drug Discovery; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; ISBN 978-1-68108-291-2. [Google Scholar]
- Lekshmi, M.; Ammini, P.; Adjei, J.; Sanford, L.M.; Shrestha, U.; Kumar, S.; Varela, M.F. Modulation of Antimicrobial Efflux Pumps of the Major Facilitator Superfamily in Staphylococcus aureus. AIMS Microbiol. 2018, 4, 1–18. [Google Scholar] [CrossRef]
- Nava, A.R.; Mauricio, N.; Sanca, A.J.; Dominguez, D.C. Evidence of Calcium Signaling and Modulation of the LmrS Multidrug Resistant Efflux Pump Activity by Ca(2+) Ions in S. aureus. Front. Microbiol. 2020, 11, 573388. [Google Scholar] [CrossRef] [PubMed]
- Zahmatkesh, H.; Mirpour, M.; Zamani, H.; Rasti, B. Effect of Samarium Oxide Nanoparticles Fabricated by Curcumin on Efflux Pump and Virulence Genes Expression in MDR Pseudomonas aeruginosa and Staphylococcus aureus. J. Clust. Sci. 2022, 1–9. [Google Scholar] [CrossRef]
- Deka, B.; Suri, M.; Sarma, S.; Devi, M.V.; Bora, A.; Sen, T.; Dihingia, A.; Pahari, P.; Singh, A.K. Potentiating the Intracellular Killing of Staphylococcus aureus by Dihydroquinazoline Analogues as NorA Efflux Pump Inhibitor. Bioorg. Med. Chem. 2022, 54, 116580. [Google Scholar] [CrossRef]
- Abd El-Baky, R.M.; Sandle, T.; John, J.; Abuo-Rahma, G.E.-D.A.; Hetta, H.F. A Novel Mechanism of Action of Ketoconazole: Inhibition of the NorA Efflux Pump System and Biofilm Formation in Multidrug-Resistant Staphylococcus aureus. Infect. Drug Resist. 2019, 12, 1703–1718. [Google Scholar] [CrossRef]
- Safarnejad, E.; Moradi-Shoeili, Z.; Rahmatollahi, H.R.; Jalali, A.; Salehzadeh, A. A Novel Fe3O4 Magnetic Nanoparticles Functionalized by Glutamic Acid and Conjugated with Thiosemicarbazide Alter the Expression of NorB Gene, in Staphylococcus aureus. Micro Nano Lett. 2022, 17, 86–95. [Google Scholar] [CrossRef]
- Shokoofeh, N.; Moradi-Shoeili, Z.; Naeemi, A.S.; Jalali, A.; Hedayati, M.; Salehzadeh, A. Biosynthesis of Fe(3)O(4)@Ag Nanocomposite and Evaluation of Its Performance on Expression of NorA and NorB Efflux Pump Genes in Ciprofloxacin-Resistant Staphylococcus aureus. Biol. Trace Elem. Res. 2019, 191, 522–530. [Google Scholar] [CrossRef]
- Nejabatdoust, A.; Zamani, H.; Salehzadeh, A. Functionalization of ZnO Nanoparticles by Glutamic Acid and Conjugation with Thiosemicarbazide Alters Expression of Efflux Pump Genes in Multiple Drug-Resistant Staphylococcus aureus Strains. Microb. Drug Resist. 2019, 25, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Tiwari, N.; Gupta, P.; Verma, S.; Pal, A.; Srivastava, S.K.; Darokar, M.P. A Clerodane Diterpene from Polyalthia Longifolia as a Modifying Agent of the Resistance of Methicillin Resistant Staphylococcus aureus. Phytomedicine 2016, 23, 654–661. [Google Scholar] [CrossRef]
- Flagg, J.L.; Wilson, T.H. A Novel Type of Coupling between Proline and Galactoside Transport in Escherichia coli. Membr. Biochem. 1978, 1, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Sana, A.M.; Repetto, V.; Moreno, S. Carnosic Acid Is an Efflux Pumps Modulator by Dissipation of the Membrane Potential in Enterococcus Faecalis and Staphylococcus aureus. World J. Microbiol. Biotechnol. 2013, 29, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.S.; Simovic, I.; Gibbons, S.; Zloh, M. In Silico Screening for Antibiotic Escort Molecules to Overcome Efflux. J. Mol. Model. 2011, 17, 2863–2872. [Google Scholar] [CrossRef]
- Zloh, M.; Kaatz, G.W.; Gibbons, S. Inhibitors of Multidrug Resistance (MDR) Have Affinity for MDR Substrates. Bioorg. Med. Chem. Lett. 2004, 14, 881–885. [Google Scholar] [CrossRef]
- Diniz-Silva, H.T.; Cirino, I.C.; Falcao-Silva Vdos, S.; Magnani, M.; de Souza, E.L.; Siqueira-Junior, J.P. Tannic Acid as a Potential Modulator of Norfloxacin Resistance in Staphylococcus aureus Overexpressing NorA. Chemotherapy 2016, 61, 319–322. [Google Scholar] [CrossRef]
- Tintino, S.R.; Oliveira-Tintino, C.D.; Campina, F.F.; Silva, R.L.; Costa Mdo, S.; Menezes, I.R.; Calixto-Junior, J.T.; Siqueira-Junior, J.P.; Coutinho, H.D.; Leal-Balbino, T.C.; et al. Evaluation of the Tannic Acid Inhibitory Effect against the NorA Efflux Pump of Staphylococcus aureus. Microb. Pathog. 2016, 97, 9–13. [Google Scholar] [CrossRef]
- Rezende-Junior, L.M.; Andrade, L.M.S.; Leal, A.; Mesquita, A.B.S.; Santos, A.; Neto, J.S.L.; Siqueira-Junior, J.P.; Nogueira, C.E.S.; Kaatz, G.W.; Coutinho, H.D.M.; et al. Chalcones Isolated from Arrabidaea brachypoda Flowers as Inhibitors of NorA and MepA Multidrug Efflux Pumps of Staphylococcus aureus. Antibiotics 2020, 9, 351. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.F.; Borges, N.; Nogueira, C.E.S.; Tavares, J.F.; Arcanjo, D.D.R.; Barreto, H.M.; Siqueira-Junior, J.P. Modulation of Drug Resistance by Furanochromones in NorA Overexpressing Staphylococcus aureus. Evid.-Based Complement. Altern. Med. 2022, 2022, 9244500. [Google Scholar] [CrossRef]
- Dantas, N.; de Aquino, T.M.; de Araújo-Júnior, J.X.; da Silva-Júnior, E.; Gomes, E.A.; Gomes, A.A.S.; Siqueira-Júnior, J.P.; Mendonça Junior, F.J.B. Aminoguanidine Hydrazones (AGH’s) as Modulators of Norfloxacin Resistance in Staphylococcus aureus That Overexpress NorA Efflux Pump. Chem.-Biol. Interact. 2018, 280, 8–14. [Google Scholar] [CrossRef]
- Krátký, M.; Štěpánková, Š.; Konečná, K.; Svrčková, K.; Maixnerová, J.; Švarcová, M.; Janďourek, O.; Trejtnar, F.; Vinšová, J. Novel Aminoguanidine Hydrazone Analogues: From Potential Antimicrobial Agents to Potent Cholinesterase Inhibitors. Pharmaceuticals 2021, 14, 1229. [Google Scholar] [CrossRef]
- Grimsey, E.M.; Piddock, L.J.V. Do Phenothiazines Possess Antimicrobial and Efflux Inhibitory Properties? FEMS Microbiol. Rev. 2019, 43, 577–590. [Google Scholar] [CrossRef]
- Ding, Y.; Onodera, Y.; Lee, J.C.; Hooper, D.C. NorB, an Efflux Pump in Staphylococcus aureus Strain MW2, Contributes to Bacterial Fitness in Abscesses. J. Bacteriol. 2008, 190, 7123–7129. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Strahilevitz, J.; Hooper, D.C. NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 1104–1107. [Google Scholar] [CrossRef]
- Anokwah, D.; Asante-Kwatia, E.; Mensah, A.Y.; Danquah, C.A.; Harley, B.K.; Amponsah, I.K.; Oberer, L. Bioactive Constituents with Antibacterial, Resistance Modulation, Anti-Biofilm Formation and Efflux Pump Inhibition Properties from Aidia genipiflora Stem Bark. Clin. Phytosci. 2021, 7, 28. [Google Scholar] [CrossRef]
- de Sousa, J.N.; de Oliveira, A.B.M.; Ferreira, A.K.; Silva, E.; de Sousa, L.M.S.; Franca Rocha, M.C.; de, J.P.; Junior, S.; William Kaatz, G.; da Silva Almeida, J.R.G.; et al. Modulation of the Resistance to Norfloxacin in Staphylococcus aureus by Bauhinia Forficata Link. Nat. Prod. Res. 2021, 35, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.; Bezerra, C.F.; Confortin, C.; da Silva, L.E.; Marinho, E.M.; Marinho, M.M.; Vasconcelos, M.A.; da Silva, T.G.; Marinho, E.S.; Teixeira, A.M.R.; et al. Chemical Composition and Potentiating Action of Norfloxacin Mediated by the Essential Oil of Piper caldense C.D.C. against Staphylococcus aureus Strains Overexpressing Efflux Pump Genes. Arch. Microbiol. 2021, 203, 4727–4736. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Silva, S.; Lira, N.S.; Mangueira do Nascimento, Y.; Araújo Ramos Meireles, R.; da Silva Dias, C.; Tavares, J.F.; Sobral da Silva, M.; Cavalcanti de Miranda, G.E.; Barbosa Filho, J.M.; Pinto de Siqueira-Junior, J. Modulation of Drug Resistance in Staphylococcus aureus by 13(2)-Hydroxy-(13(2)-R/S)-Pheophytin Isolated from Sargassum polyceratium. Microb. Pathog. 2020, 141, 104034. [Google Scholar] [CrossRef]
- de Sousa Andrade, L.M.; de Oliveira, A.B.M.; Leal, A.; de Alcântara Oliveira, F.A.; Portela, A.L.; de Sousa Lima Neto, J.; de Siqueira-Júnior, J.P.; Kaatz, G.W.; da Rocha, C.Q.; Barreto, H.M. Antimicrobial Activity and Inhibition of the NorA Efflux Pump of Staphylococcus aureus by Extract and Isolated Compounds from Arrabidaea brachypoda. Microb. Pathog. 2020, 140, 103935. [Google Scholar] [CrossRef]
- Sundaramoorthy, N.S.; Mitra, K.; Ganesh, J.S.; Makala, H.; Lotha, R.; Bhanuvalli, S.R.; Ulaganathan, V.; Tiru, V.; Sivasubramanian, A.; Nagarajan, S. Ferulic Acid Derivative Inhibits NorA Efflux and in Combination with Ciprofloxacin Curtails Growth of MRSA in Vitro and in Vivo. Microb. Pathog. 2018, 124, 54–62. [Google Scholar] [CrossRef]
- Costa, L.M.; de Macedo, E.V.; Oliveira, F.A.; Ferreira, J.H.; Gutierrez, S.J.; Peláez, W.J.; Lima, F.C.; de Siqueira Júnior, J.P.; Coutinho, H.D.; Kaatz, G.W.; et al. Inhibition of the NorA Efflux Pump of Staphylococcus aureus by Synthetic Riparins. J. Appl. Microbiol. 2016, 121, 1312–1322. [Google Scholar] [CrossRef]
- Rocha, J.E.; de Freitas, T.S.; da Cunha Xavier, J.; Pereira, R.L.S.; Junior, F.N.P.; Nogueira, C.E.S.; Marinho, M.M.; Bandeira, P.N.; de Oliveira, M.R.; Marinho, E.S.; et al. Antibacterial and Antibiotic Modifying Activity, ADMET Study and Molecular Docking of Synthetic Chalcone (E)-1-(2-Hydroxyphenyl)-3-(2,4-Dimethoxy-3-Methylphenyl)Prop-2-En-1-One in Strains of Staphylococcus aureus Carrying NorA and MepA Efflux Pumps. Biomed. Pharmacother. 2021, 140, 111768. [Google Scholar] [CrossRef]
- Sibandze, G.F.; Stapleton, P.; Gibbons, S. Constituents of Two Dioscorea Species That Potentiate Antibiotic Activity against MRSA. J. Nat. Prod. 2020, 83, 1696–1700. [Google Scholar] [CrossRef]
- Dos Santos Barbosa, C.R.; Scherf, J.R.; de Freitas, T.S.; de Menezes, I.R.A.; Pereira, R.L.S.; Dos Santos, J.F.S.; de Jesus, S.S.P.; Lopes, T.P.; de Sousa Silveira, Z.; de Morais Oliveira-Tintino, C.D.; et al. Effect of Carvacrol and Thymol on NorA Efflux Pump Inhibition in Multidrug-Resistant (MDR) Staphylococcus aureus Strains. J. Bioenerg. Biomembr. 2021, 53, 489–498. [Google Scholar] [CrossRef]
- Pereira da Cruz, R.; Sampaio de Freitas, T.; Socorro Costa, M.D.; Lucas Dos Santos, A.T.; Ferreira Campina, F.; Pereira, R.L.S.; Bezerra, J.W.A.; Quintans-Júnior, L.J.; De Souza Araújo, A.A.; Júnior, J.P.S.; et al. Effect of α-Bisabolol and Its β-Cyclodextrin Complex as TetK and NorA Efflux Pump Inhibitors in Staphylococcus aureus Strains. Antibiotics 2020, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves Borges Leal, A.L.; Teixeira da Silva, P.; Nunes da Rocha, M.; Marinho, E.M.; Marinho, E.S.; Marinho, M.M.; Bandeira, P.N.; Sampaio Nogueira, C.E.; Barreto, H.M.; Rodrigues Teixeira, A.M.; et al. Potentiating Activity of Norfloxacin by Synthetic Chalcones against NorA Overproducing Staphylococcus aureus. Microb. Pathog. 2021, 155, 104894. [Google Scholar] [CrossRef]
- da Costa, R.H.S.; Rocha, J.E.; de Freitas, T.S.; Pereira, R.L.S.; Junior, F.N.P.; de Oliveira, M.R.C.; Batista, F.L.A.; Coutinho, H.D.M.; de Menezes, I.R.A. Evaluation of Antibacterial Activity and Reversal of the NorA and MepA Efflux Pump of Estragole against Staphylococcus aureus Bacteria. Arch. Microbiol. 2021, 203, 3551–3555. [Google Scholar] [CrossRef] [PubMed]
- Faillace, M.S.; Alves Borges Leal, A.L.; Araújo de Oliveira Alcântara, F.; Ferreira, J.H.L.; de Siqueira-Júnior, J.P.; Sampaio Nogueira, C.E.; Barreto, H.M.; Peláez, W.J. Inhibition of the NorA Efflux Pump of S. aureus by (Z)-5-(4-Fluorobenzylidene)-Imidazolidines. Bioorg. Med. Chem. Lett. 2021, 31, 127670. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Roymahapatra, G.; Paul, D.; Mandal, S.M. Theoretical Analysis of Bacterial Efflux Pumps Inhibitors: Strategies in-Search of Competent Molecules and Develop Next. Comput. Biol. Chem. 2020, 87, 107275. [Google Scholar] [CrossRef] [PubMed]
- Tambat, R.; Jangra, M.; Mahey, N.; Chandal, N.; Kaur, M.; Chaudhary, S.; Verma, D.K.; Thakur, K.G.; Raje, M.; Jachak, S.; et al. Microbe-Derived Indole Metabolite Demonstrates Potent Multidrug Efflux Pump Inhibition in Staphylococcus aureus. Front. Microbiol. 2019, 10, 2153. [Google Scholar] [CrossRef]
- Braga Ribeiro, A.M.; Sousa, J.N.; Costa, L.M.; Oliveira, F.A.A.; Dos Santos, R.C.; Silva Nunes, A.S.; da Silva, W.O.; Marques Cordeiro, P.J.; de Sousa Lima Neto, J.; de Siqueira-Júnior, J.P.; et al. Antimicrobial Activity of Phyllanthus amarus Schumach. & Thonn and Inhibition of the NorA Efflux Pump of Staphylococcus aureus by Phyllanthin. Microb. Pathog. 2019, 130, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Kalia, N.P.; Mahajan, P.; Mehra, R.; Nargotra, A.; Sharma, J.P.; Koul, S.; Khan, I.A. Capsaicin, a Novel Inhibitor of the NorA Efflux Pump, Reduces the Intracellular Invasion of Staphylococcus aureus. J. Antimicrob. Chemother. 2012, 67, 2401–2408. [Google Scholar] [CrossRef]
- Kakarla, P.; Floyd, J.; Mukherjee, M.; Devireddy, A.R.; Inupakutika, M.A.; Ranweera, I.; Kc, R.; Shrestha, U.; Cheeti, U.R.; Willmon, T.M.; et al. Inhibition of the Multidrug Efflux Pump LmrS from Staphylococcus aureus by Cumin Spice Cuminum cyminum. Arch. Microbiol. 2017, 199, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Mirza, Z.M.; Kumar, A.; Kalia, N.P.; Zargar, A.; Khan, I.A. Piperine as an Inhibitor of the MdeA Efflux Pump of Staphylococcus aureus. J. Med. Microbiol. 2011, 60, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Guay, G.G.; Khan, S.A.; Rothstein, D.M. The Tet(K) Gene of Plasmid PT181 of Staphylococcus aureus Encodes an Efflux Protein That Contains 14 Transmembrane Helices. Plasmid 1993, 30, 163–166. [Google Scholar] [CrossRef]
- Macêdo, N.S.; de Sousa Silveira, Z.; Cordeiro, P.P.M.; Coutinho, H.D.M.; Júnior, J.P.S.; Júnior, L.J.Q.; Siyadatpanah, A.; Kim, B.; da Cunha, F.A.B.; da Silva, M.V. Inhibition of Staphylococcus aureus Efflux Pump by O-Eugenol and Its Toxicity in Drosophila Melanogaster Animal Model. BioMed Res. Int. 2022, 2022, 1440996. [Google Scholar] [CrossRef] [PubMed]
- Freitas, P.R.; de Araújo, A.C.J.; Barbosa, C.R.; Muniz, D.F.; Tintino, S.R.; Ribeiro-Filho, J.; Siqueira Júnior, J.P.; Filho, J.M.B.; de Sousa, G.R.; Coutinho, H.D.M. Inhibition of Efflux Pumps by Monoterpene (α-Pinene) and Impact on Staphylococcus aureus Resistance to Tetracycline and Erythromycin. Curr. Drug Metab. 2021, 22, 123–126. [Google Scholar] [CrossRef] [PubMed]
- de Medeiros, V.M.; do Nascimento, Y.M.; Souto, A.L.; Madeiro, S.A.L.; Costa, V.C.O.; Silva, S.; Falcão Silva, V.D.S.; Agra, M.F.; de Siqueira-Júnior, J.P.; Tavares, J.F. Chemical Composition and Modulation of Bacterial Drug Resistance of the Essential Oil from Leaves of Croton grewioides. Microb. Pathog. 2017, 111, 468–471. [Google Scholar] [CrossRef]
- Limaverde, P.W.; Campina, F.F.; da Cunha, F.A.B.; Crispim, F.D.; Figueredo, F.G.; Lima, L.F.; de Datiane, M.O.-T.C.; de Matos, Y.; Morais-Braga, M.F.B.; Menezes, I.R.A.; et al. Inhibition of the TetK Efflux-Pump by the Essential Oil of Chenopodium ambrosioides L. and α-Terpinene against Staphylococcus aureus IS-58. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2017, 109, 957–961. [Google Scholar] [CrossRef]
- Dos Santos, J.F.S.; Tintino, S.R.; da Silva, A.R.P.; Dos, S.B.C.R.; Scherf, J.R.; Silveira, Z.d.S.; de Freitas, T.S.; de Lacerda Neto, L.J.; Barros, L.M.; Menezes, I.R.d.A.; et al. Enhancement of the Antibiotic Activity by Quercetin against Staphylococcus aureus Efflux Pumps. J. Bioenerg. Biomembr. 2021, 53, 157–167. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Wang, Y.; Hooper, D.C. Tet38 Efflux Pump Contributes to Fosfomycin Resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, e00927-18. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Ganjloo, S.; Pourmand, M.R.; Mashhadi, R.; Ghazvini, K. Epidemiology of Efflux Pumps Genes Mediating Resistance among Staphylococcus aureus; A Systematic Review. Microb. Pathog. 2020, 139, 103850. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.L.; He, G.-X.; Kakarla, P.; KC, R.; Kumar, S.; Lakra, W.S.; Mukherjee, M.M.; Ranaweera, I.; Shrestha, U.; Tran, T.; et al. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens. Int. J. Environ. Res. Public Health 2015, 12, 1487–1547. [Google Scholar] [CrossRef]
- Varela, M.F.; Kumar, S. Strategies for Discovery of New Molecular Targets for Anti-Infective Drugs. Curr. Opin. Pharmacol. 2019, 48, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lekshmi, M.; Parvathi, A.; Kumar, S.; Varela, M.F. Efflux pump-mediated quorum sensing: New avenues for modulation of antimicrobial resistance and bacterial virulence. In Biotechnological Applications of Quorum Sensing Inhibitors; Springer: Berlin/Heidelberg, Germany, 2018; pp. 127–142. [Google Scholar]
- Varela, M.F.; Brooker, R.J.; Wilson, T.H. Lactose Carrier Mutants of Escherichia coli with Changes in Sugar Recognition (Lactose versus Melibiose). J. Bacteriol. 1997, 179, 5570–5573. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.L.; Levy, S.B. The History of the Tetracyclines. Ann. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef]
- Levy, S.B. Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 2002, 92, 65S–71S. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephen, J.; Salam, F.; Lekshmi, M.; Kumar, S.H.; Varela, M.F. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics 2023, 12, 343. https://doi.org/10.3390/antibiotics12020343
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics. 2023; 12(2):343. https://doi.org/10.3390/antibiotics12020343
Chicago/Turabian StyleStephen, Jerusha, Fathima Salam, Manjusha Lekshmi, Sanath H. Kumar, and Manuel F. Varela. 2023. "The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus" Antibiotics 12, no. 2: 343. https://doi.org/10.3390/antibiotics12020343
APA StyleStephen, J., Salam, F., Lekshmi, M., Kumar, S. H., & Varela, M. F. (2023). The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics, 12(2), 343. https://doi.org/10.3390/antibiotics12020343