Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis
Abstract
:1. Introduction
2. Results
2.1. Propolis Major Chemical Groups and Chemical Profile
2.2. Antimicrobial Properties of Propolis
2.3. Antibiofilm Properties of Propolis
2.4. Toxicological Studies
3. Discussion
4. Materials and Methods
4.1. Propolis Collection and Extract Preparation
4.2. Propolis Major Chemical Groups and Chemical Profile
4.3. Bacterial Isolates
4.4. Antimicrobial Assessment
4.5. Data Analysis
4.6. Antibiofilm Assessment
4.7. Toxicological Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marques, C.; Belas, A.; Aboim, C.; Cavaco-Silva, P.; Trigueiro, G.; Gama, L.T.; Pomba, C. Evidence of Sharing of Klebsiella pneumoniae Strains between Healthy Companion Animals and Cohabiting Humans. J. Clin. Microbiol. 2019, 57, e01537-18. [Google Scholar] [CrossRef]
- Leite-Martins, L.; Meireles, D.; Beça, N.; Bessa, L.J.; de Matos, A.J.F.; Martins da Costa, P. Spread of multidrug-resistant Escherichia coli within domestic aggregates (humans, pets, and household environment). J. Vet. Behav. 2015, 10, 549–555. [Google Scholar] [CrossRef]
- Mirzaei, R.; Mohammadzadeh, R.; Alikhani, M.Y.; Shokri Moghadam, M.; Karampoor, S.; Kazemi, S.; Barfipoursalar, A.; Yousefimashouf, R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life 2020, 72, 1271–1285. [Google Scholar] [CrossRef]
- Whitchurch, C.B.; Tolker-Nielsen, T.; Ragas, P.C.; Mattick, J.S. Extracellular DNA required for bacterial biofilm formation. Science 2002, 295, 1487. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Borba, R.S.; Wilson, M.; Spivak, M. Propolis Counteracts Some Threats to Honey Bee Health. Insects 2017, 8, 46. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef]
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural Products (Secondary Metabolites); Buchanan, B., Gruissem, W., Jones, R., Eds.; American Society of Plant Physiologists: Rockville, MD, USA, 2000; pp. 1250–1318. [Google Scholar]
- Santana, H.F.; Barbosa, A.A.T.; Ferreira, S.O.; Mantovani, H.C. Bactericidal activity of ethanolic extracts of propolis against Staphylococcus aureus isolated from mastitic cows. World J. Microbiol. Biotechnol. 2012, 28, 485–491. [Google Scholar] [CrossRef]
- Lu, L.-C.; Chen, Y.-W.; Chou, C.-C. Antibacterial activity of propolis against Staphylococcus aureus. Int. J. Food Microbiol. 2005, 102, 213–220. [Google Scholar] [CrossRef]
- Wojtyczka, R.D.; Kȩpa, M.; Idzik, D.; Kubina, R.; Kabała-Dzik, A.; Dziedzic, A.; Wąsik, T.J. In vitro antimicrobial activity of ethanolic extract of polish propolis against biofilm forming Staphylococcus epidermidis strains. Evid. Based Complement. Altern. Med. 2013, 2013, 590703. [Google Scholar] [CrossRef] [Green Version]
- Vadillo-Rodríguez, V.; Cavagnola, M.A.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. A physico-chemical study of the interaction of ethanolic extracts of propolis with bacterial cells. Colloids Surf. B Biointerfaces 2021, 200, 111571. [Google Scholar] [CrossRef] [PubMed]
- De Marco, S.; Piccioni, M.; Pagiotti, R.; Pietrella, D. Antibiofilm and Antioxidant Activity of Propolis and Bud Poplar Resins versus Pseudomonas aeruginosa. Evid. Based Complement. Altern. Med. 2017, 2017, 5163575. [Google Scholar] [CrossRef]
- Veloz, J.J.; Saavedra, N.; Lillo, A.; Alvear, M.; Barrientos, L.; Salazar, L.A. Antibiofilm Activity of Chilean Propolis on Streptococcus mutans Is Influenced by the Year of Collection. BioMed Res. Int. 2015, 2015, 291351. [Google Scholar] [CrossRef] [PubMed]
- Doganli, G.A. Phenolic content and antibiofilm activity of propolis against clinical MSSA strains. Rec. Nat. Prod. 2016, 10, 617–627. [Google Scholar]
- Laranjo, M.; Queiroga, M.C.; Andrade, N.; Silva, T.M.S. The Use of Propolis for Mastitis Control. In Mastitis: Symptoms, Triggers and Treatment; Sar, T.K., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2019; pp. 259–304. [Google Scholar]
- Queiroga, M.C. Prevalence and aetiology of sheep mastitis in Alentejo region of Portugal. Small Rumin. Res. 2017, 153, 123–130. [Google Scholar] [CrossRef]
- Ebani, V.V. Biology and Pathogenesis of Staphylococcus Infection. Microorganisms 2020, 8, 383. [Google Scholar] [CrossRef]
- Andrade, N.C.; Laranjo, M.; Costa, M.M.; Queiroga, M.C. Virulence Factors in Staphylococcus Associated with Small Ruminant Mastitis: Biofilm Production and Antimicrobial Resistance Genes. Antibiotics 2021, 10, 633. [Google Scholar] [CrossRef]
- Surek, M.; Fachi, M.M.; de Fátima Cobre, A.; de Oliveira, F.F.; Pontarolo, R.; Crisma, A.R.; de Souza, W.M.; Felipe, K.B. Chemical composition, cytotoxicity, and antibacterial activity of propolis from Africanized honeybees and three different Meliponini species. J. Ethnopharmacol. 2021, 269, 113662. [Google Scholar] [CrossRef]
- Campoccia, D.; Ravaioli, S.; Santi, S.; Mariani, V.; Santarcangelo, C.; De Filippis, A.; Montanaro, L.; Arciola, C.R.; Daglia, M. Exploring the anticancer effects of standardized extracts of poplar-type propolis: In vitro cytotoxicity toward cancer and normal cell lines. Biomed. Pharmacother. 2021, 141, 111895. [Google Scholar] [CrossRef]
- Utispan, K.; Chitkul, B.; Koontongkaew, S. Cytotoxic Activity of Propolis Extracts from the Stingless Bee Trigona Sirindhornae Against Primary and Metastatic Head and Neck Cancer Cell Lines. Asian Pac. J. Cancer Prev. 2017, 18, 1051–1055. [Google Scholar] [CrossRef]
- Saraiva, N.; Nicolai, M.; Martins, M.; Almeida, N.; Gusmini, M.; Maurício, E.M.; Duarte, M.P.; Gonçalves, M.; Baby, A.R.; Fernandes, A.; et al. Impact of Portuguese propolis on keratinocyte proliferation, migration and ROS protection: Significance for applications in skin products. Int. J. Cosmet. Sci. 2022, 44, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Almeida, E.T.d.C.; Silva, M.C.D.; Oliveira, J.M.d.S.; Kamiya, R.U.; Arruda, R.E.d.S.; Vieira, D.A.; Silva, V.d.C.; Escodro, P.B.; Basílio-Júnior, I.D.; Nascimento, T.G. Chemical and microbiological characterization of tinctures and microcapsules loaded with Brazilian red propolis extract. J. Pharm. Anal. 2017, 7, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.A.; Finger, D.; Machado, C.S.; Schmidt, E.M.; Costa, P.M.d.; Alves, A.P.N.N.; Morais, T.M.F.; Queiroz, M.G.R.d.; Quináia, S.P.; Rosa, M.R.d.; et al. In vivo antitumoural activity and composition of an oil extract of Brazilian propolis. Food Chem. 2011, 126, 1239–1245. [Google Scholar] [CrossRef]
- Daugsch, A.; Moraes, C.S.; Fort, P.; Park, Y.K. Brazilian red propolis—Chemical composition and botanical origin. Evid. -Based Complement Altern. Med. 2008, 5, 435–441. [Google Scholar] [CrossRef]
- Falcão, S.I.; Tomás, A.; Vale, N.; Gomes, P.; Freire, C.; Vilas-Boas, M. Phenolic quantification and botanical origin of Portuguese propolis. Ind. Crops Prod. 2013, 49, 805–812. [Google Scholar] [CrossRef]
- Falcão, S.I.; Vale, N.; Gomes, P.; Domingues, M.R.M.; Freire, C.; Cardoso, S.M.; Vilas-Boas, M. Phenolic Profiling of Portuguese Propolis by LC-MS Spectrometry: Uncommon Propolis Rich in Flavonoid Glycosides. Phytochem. Anal. 2013, 24, 309–318. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Fernandes-Silva, C.C.; Salatino, A.; Negri, G.; Message, D. New propolis type from north-east Brazil: Chemical composition, antioxidant activity and botanical origin. J. Sci. Food Agric. 2017, 97, 3552–3558. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Cabral, I.S.R.; Oldoni, T.L.C.; Alencar, S.M.d.; Rosalen, P.L.; Ikegaki, M. The correlation between the phenolic composition and biological activities of two varieties of Brazilian propolis (G6 and G12). Braz. J. Pharm. Sci. 2012, 48, 557–564. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Gutiérrez, A.L. The antimicrobial effects of propolis collected in different regions in the Basque Country (Northern Spain). World J. Microbiol. Biotechnol. 2012, 28, 1351–1358. [Google Scholar] [CrossRef]
- Uzel, A.; Sorkun, K.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö.; Salih, B. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Konteles, S.J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.T. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009, 116, 452–461. [Google Scholar] [CrossRef]
- Silva, J.F.M.; de Souza, M.C.; Matta, S.R.; Andrade, M.R.; Vidal, F.V.N. Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chem. 2006, 99, 431–435. [Google Scholar] [CrossRef]
- Afrouzan, H.; Tahghighi, A.; Zakeri, S.; Es-Haghi, A. Chemical composition and antimicrobial activities of Iranian Propolis. Iran. Biomed. J. 2018, 22, 50–65. [Google Scholar] [CrossRef]
- Gajger, I.T.; Pavlović, I.; Bojić, M.; Kosalec, I.; Srečec, S.; Vlainić, T.; Vlainić, J. The Components responsible for antimicrobial activity of propolis from continental and Mediterranean regions in Croatian. Czech J. Food Sci. 2017, 35, 376–385. [Google Scholar] [CrossRef]
- Manner, S.; Skogman, M.; Goeres, D.; Vuorela, P.; Fallarero, A. Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci. 2013, 14, 19434–19451. [Google Scholar] [CrossRef] [PubMed]
- OECD. In Vitro Skin Corrosion: Reconstructed Human Epidermis Test Method (RHE); OECD: Paris, France, 2015; Volume TG 431. [Google Scholar]
- OECD. In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method (RHE); OECD: Paris, France, 2021; Volume TG 439. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Vermerris, W.N.R. Phenolic Compound Biochemistry; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Giusti, M.; Wrolstad, R.E. Anthocyanins by UV-Visible Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, 19–30. [Google Scholar] [CrossRef]
- Laranjo, M.; Andrade, N.; Queiroga, M.C. Antibiofilm activity of propolis extracts. In Understanding Microbial Pathogens: Current Knowledge and Educational Ideas on Antimicrobial Research; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2018. [Google Scholar]
- Merino, N.; Toledo-Arana, A.; Vergara-Irigaray, M.; Valle, J.; Solano, C.; Calvo, E.; Lopez, J.A.; Foster, T.J.; Penadés, J.R.; Lasa, I. Protein A-mediated multicellular behavior in Staphylococcus aureus. J. Bacteriol. 2009, 191, 832–843. [Google Scholar] [CrossRef]
- Queiroga, M.C.; Andrade, N.; Laranjo, M. Antimicrobial action of propolis extracts against staphylococci. In Understanding Microbial Pathogens: Current Knowledge and Educational Ideas on Antimicrobial Research; Torres-Hergueta, E., Méndez-Vilas, A., Eds.; Formatex Research Center: Badajoz, Spain, 2018; pp. 28–35. [Google Scholar]
- CLSI. M07-A9-Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically-Approved Standard-Ninth Edition. In Clinical and Laboratory Standards Institute (CLSI)–Approved Standards; CLSI: Wayne, PA, USA, 2012. [Google Scholar]
- Duran, H.; Üstün Alkan, F.; Ulkay, M.B.; Karakuş, S.; Aktaş, A.; Şişmanoğlu, T. Investigation of the in vitro cytotoxic effects and wound healing activity of ternary composite substance (hollow silica sphere/gum arabic/methylene blue). Int. J. Biol. Macromol. 2019, 121, 1194–1202. [Google Scholar] [CrossRef]
- Sigma-Aldrich. Sigma Life Science Cell Culture Manual 2011–2014; Sigma-Aldrich: St. Louis, MI, USA, 2011. [Google Scholar]
Compound | λmax (nm) | [M-H]− (m/z) | [M-H]− (m/z) Calculated |
---|---|---|---|
Pinobanksin | 290 | 271.0662 | 271.0611 |
Chrysin | 266, 313 | 253.0756 | 253.0506 |
Acacetin | 326 | 283.0817 | 283.0617 |
Apigenin | 339 | 269.0714 | 269.0455 |
Pinocembrin | 289 | 255.0926 | 255.0662 |
Kaempferol-dimethyl-ether | 345 | 313.0936 | 313.0717 |
Staphylococcus Species | No. of Isolates | Susceptibility to PEE (mg/mL) |
---|---|---|
S. aureus | 40 | 0.82 abc ± 0.96 |
S. auricularis | 4 | 0.95 abc ± 1.59 |
S. capitis | 4 | 1.68 abc ± 1.34 |
S. caprae | 25 | 0.95 abc ± 0.81 |
S. chromogenes | 19 | 0.15 a ± 0.11 |
S. epidermidis | 16 | 0.48 ab ± 0.55 |
S. equorum | 1 | 0.41 abc ± 0.00 |
S. haemolyticus | 4 | 0.36 abc ± 0.31 |
S. hominis | 4 | 0.66 abc ± 0.76 |
S. hyicus | 3 | 0.05 abc ± 0.00 |
S. lentus | 5 | 0.84 abc ± 0.77 |
S. rostri | 1 | 0.83 abc ± 0.00 |
S. simulans | 10 | 1.47 bc ± 1.92 |
S. warneri | 7 | 1.98 c ± 1.40 |
Staphylococcus sp. | 1 | 1.00 abc ± 0.00 |
Isolates/Species | S. aureus | S. auricularis | S. caprae | S. capitis | S. chromogenes | S. epidermidis | S. simulans | S. warneri | Total N/Mean % |
---|---|---|---|---|---|---|---|---|---|
N | 26 | 3 | 1 | 1 | 7 | 1 | 2 | 4 | 45 |
Inhibited isolates (N) | 21 | 1 | 1 | 0 | 6 | 1 | 2 | 2 | 34 |
Inhibited isolates (%) | 80.8 | 33.3 | 100.0 | 0.0 | 85.7 | 100.0 | 100.0 | 50.0 | 80.7 |
% of Inhibition | 78.4 | 34.5 | 61.2 | 0.0 | 53.9 | 63.5 | 75.9 | 67.2 | 71.0 |
Isolates/Species | S. aureus | S. auricularis | S. caprae | S. capitis | S. chromogenes | S. epidermidis | S. simulans | S. warneri | Total N/Mean % |
---|---|---|---|---|---|---|---|---|---|
N | 26 | 3 | 1 | 1 | 7 | 1 | 2 | 4 | 45 |
Affected isolates (N) | 20 | 2 | 1 | 1 | 6 | 0 | 2 | 4 | 36 |
Affected isolates (%) | 76.9 | 66.6 | 100.0 | 100.0 | 85.7 | 0.0 | 100.0 | 100.0 | 82.9 |
% of Disruption | 88.3 | 69.2 | 100.0 | 76.8 | 92.5 | 0.0 | 100.0 | 87.4 | 88.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queiroga, M.C.; Laranjo, M.; Andrade, N.; Marques, M.; Costa, A.R.; Antunes, C.M. Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics 2023, 12, 347. https://doi.org/10.3390/antibiotics12020347
Queiroga MC, Laranjo M, Andrade N, Marques M, Costa AR, Antunes CM. Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics. 2023; 12(2):347. https://doi.org/10.3390/antibiotics12020347
Chicago/Turabian StyleQueiroga, Maria Cristina, Marta Laranjo, Nara Andrade, Mariana Marques, Ana Rodrigues Costa, and Célia Maria Antunes. 2023. "Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis" Antibiotics 12, no. 2: 347. https://doi.org/10.3390/antibiotics12020347
APA StyleQueiroga, M. C., Laranjo, M., Andrade, N., Marques, M., Costa, A. R., & Antunes, C. M. (2023). Antimicrobial, Antibiofilm and Toxicological Assessment of Propolis. Antibiotics, 12(2), 347. https://doi.org/10.3390/antibiotics12020347