Penetration through Outer Membrane and Efflux Potential in Pseudomonas aeruginosa of Bulgecin A as an Adjuvant to β-Lactam Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
3. Concluding Remarks
4. Materials and Methods
4.1. Bacteria, Media, Growth Conditions and Antibiotics
4.2. Antimicrobial Susceptibility and Potentiation Tests
4.3. Accumulation of Bulgecin A
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Strain | MIC (µg/mL) | Strain | MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|
CAZ | MEM | CAZ | MEM | ||||||
Bulgecin A a | − | + | − | + | Bulgecin A a | − | + | − | + |
MPAO1 b | 2 | 1 | 2 | 1 | PW1427 (opdF) | 2 | 1 | 1 | 1 |
PW1778 (mexA) | 1 | 1 | 0.5 | 0.125 | PW1873 (oprM) | 0.5 | 0.5 | 0.25 | 0.25 |
PW1781 (mexB) | 1 | 0.5 | 0.5 | 0.125 | PW2374 (opdH) | 2 | 1 | 1 | 1 |
PW1265 (triA) | 2 | 1 | 1 | 0.5 | PW2855 (opdD) | 1 | 1 | 1 | 0.5 |
PW1267 (triB) | 2 | 1 | 1 | 0.5 | PW3127 (oprH) | 2 | 1 | 1 | 1 |
PW1271 (triC) | 2 | 1 | 1 | 0.5 | PW4134 (oprF) | 2 | 1 | 2 | 2 |
PW3229 (PA1237) | 2 | 1 | 1 | 0.5 | PW4636 (opdO) | 2 | 1 | 1 | 2 |
PW3231 (PA1238) | 2 | 1 | 1 | 0.5 | PW4767 (opdG) | 2 | 1 | 1 | 1 |
PW3608 (mexM) | 2 | 1 | 1 | 0.5 | PW5076 (opdJ) | 2 | 1 | 1 | 0.5 |
PW3611 (mexN) | 2 | 1 | 1 | 0.5 | PW5187 (oprN) | 2 | 1 | 2 | 1 |
PW5222 (czcA) | 2 | 1 | 4 | 2 | PW5196 (opdT) | 2 | 1 | 1 | 0.5 |
PW5224 (czcB) | 2 | 1 | 1 | 0.5 | PW5232 (opmB) | 2 | 1 | 1 | 0.5 |
PW5226 (czcC) | 2 | 1 | 1 | 0.5 | PW5526 (opdB) | 2 | 1 | 1 | 0.5 |
PW5233 (muxC) | 2 | 1 | 2 | 2 | PW5621 (oprQ) | 2 | 1 | 1 | 0.5 |
PW5235 (muxB) | 2 | 1 | 1 | 0.5 | PW6095 (opdQ) | 2 | 1 | 1 | 0.5 |
PW5237 (muxA) | 2 | 1 | 1 | 0.5 | PW6333 (oprB) | 2 | 1 | 1 | 0.5 |
PW6963 (mexQ) | 2 | 1 | 1 | 0.5 | PW6504 (oprP) | 2 | 1 | 1 | 0.5 |
PW6965 (mexP) | 2 | 1 | 1 | 0.5 | PW6506 (oprO) | 2 | 1 | 1 | 0.5 |
PW7218 (mexK) | 2 | 1 | 2 | 2 | PW7089 (opdR) | 2 | 1 | 1 | 0.5 |
PW7220 (mexJ) | 2 | 1 | 1 | 1 | PW7416 (oprC) | 2 | 1 | 1 | 0.5 |
PW8135 (mexH) | 2 | 1 | 1 | 0.5 | PW7874 (oprG) | 2 | 1 | 1 | 0.5 |
PW8137 (mexI) | 2 | 1 | 1 | 0.5 | PW8010 (opdL) | 2 | 1 | 1 | 0.5 |
PW8385 (mexV) | 1 | 1 | 1 | 0.5 | PW8084 (opdN) | 2 | 1 | 1 | 0.5 |
PW8390 (mexW) | 1 | 1 | 1 | 0.5 | PW8139 (opmD) | 2 | 1 | 2 | 0.5 |
PW8750 (mexD) | 2 | 1 | 1 | 0.5 | PW8575 (opdP) | 2 | 1 | 1 | 0.5 |
PW8751 (mexC) | 2 | 1 | 1 | 1 | PW8748 (oprJ) | 2 | 1 | 1 | 0.5 |
PW9677 (PA5159) | 2 | 1 | 1 | 0.5 | PW9244 (opdK) | 2 | 1 | 1 | 0.5 |
PW9679 (PA5160) | 1 | 1 | 1 | 0.5 | PW9369 (opmH) | 2 | 1 | 2 | 1 |
PW1276 (opdC) | 2 | 1 | 2 | 1 | ΔoprD c | 2 | 1 | 2 | 2 |
Strain | Accumulation (nmol/1012 CFUs) a | |
---|---|---|
Bulgecin A | Ciprofloxacin b | |
E. coli K-12 | 100 ± 17 | 4000 ± 180 |
P. aeruginosa MPAO1 | 30 ± 3 | 2000 ± 32 |
P. aeruginosa PAO1 | ||
PAO-MCS | 37 ± 3 | 2300 ± 44 |
PAO-Pore | 39 ± 2 | 2600 ± 35 |
Δ6-MCS | 37 ± 2 | 4000 ± 33 |
Δ6-Pore | 41 ± 2 | 4600 ± 38 |
References
- Imada, A.; Kintaka, K.; Nakao, M.; Shinagawa, S. Bulgecin, a bacterial metabolite which in concert with β-lactam antibiotics causes bulge formation. J. Antibiot. 1982, 35, 1400–1403. [Google Scholar] [CrossRef]
- Shinagawa, S.; Kasahara, F.; Wada, Y.; Harada, S.; Asai, M. Structures of bulgecins, bacterial metabolites with bulge-inducing activity. Tetrahedron 1984, 40, 3465–3470. [Google Scholar] [CrossRef]
- Dik, D.A.; Madukoma, C.S.; Tomoshige, S.; Kim, C.; Lastochkin, E.; Boggess, W.C.; Fisher, J.F.; Shrout, J.D.; Mobashery, S. Slt, MltD, and MltG of Pseudomonas aeruginosa as targets of bulgecin A in potentiation of β-lactam antibiotics. ACS Chem. Biol. 2019, 14, 296–303. [Google Scholar] [CrossRef]
- Tomoshige, S.; Dik, D.A.; Akabane-Nakata, M.; Madukoma, C.S.; Fisher, J.F.; Shrout, J.D.; Mobashery, S. Total syntheses of bulgecins A, B, and C and their bactericidal potentiation of the β-lactam antibiotics. ACS Infect. Dis. 2018, 4, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Johnson, N.V.; Kreamer, N.N.K.; Barnes, S.W.; Walker, J.R.; Woods, A.L.; Six, D.A.; Dean, C.R. Defects in efflux (oprM), β-lactamase (ampC), and lipopolysaccharide transport (lptE) genes mediate antibiotic hypersusceptibility of Pseudomonas aeruginosa strain Z61. Antimicrob. Agents Chemother. 2019, 63, e00784-19. [Google Scholar] [CrossRef] [PubMed]
- Held, K.; Ramage, E.; Jacobs, M.; Gallagher, L.; Manoil, C. Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1. J. Bacteriol. 2012, 194, 6387–6389. [Google Scholar] [CrossRef] [PubMed]
- Masuda, N.; Ohya, S. Cross-resistance to meropenem, cephems, and quinolones in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1992, 36, 1847–1851. [Google Scholar] [CrossRef]
- Köhler, T.; Michea-Hamzehpour, M.; Epp, S.F.; Pechere, J.-C. Carbapenem activities against Pseudomonas aeruginosa: Respective contributions of OprD and efflux systems. Antimicrob. Agents Chemother. 1999, 43, 424–427. [Google Scholar] [CrossRef]
- Tam, V.H.; Schilling, A.N.; Neshat, S.; Poole, K.; Melnick, D.A.; Coyle, E.A. Optimization of meropenem minimum concentration/MIC ratio to suppress in vitro resistance of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 4920–4927. [Google Scholar] [CrossRef]
- Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Zgurskaya, H.I.; Rybenkov, V.V. Permeability barriers of Gram-negative pathogens. Ann. N. Y. Acad. Sci. 2020, 1459, 5–18. [Google Scholar] [CrossRef]
- Wright, G.D. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol. 2016, 24, 862–871. [Google Scholar] [CrossRef]
- González-Bello, C. Antibiotic adjuvants—A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017, 27, 4221–4228. [Google Scholar] [CrossRef] [PubMed]
- Hubble, V.B.; Hubbard, B.A.; Minrovic, B.M.; Melander, R.J.; Melander, C. Using small-molecule adjuvants to repurpose azithromycin for use against Pseudomonas aeruginosa. ACS Infect. Dis. 2018, 5, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Klobucar, K.; Brown, E.D. New potentiators of ineffective antibiotics: Targeting the Gram-negative outer membrane to overcome intrinsic resistance. Curr. Opin. Chem. Biol. 2022, 66, 102099. [Google Scholar] [CrossRef] [PubMed]
- Braun, V.; Bös, C.; Braun, M.; Killmann, H. Outer membrane channels and active transporters for the uptake of antibiotics. J. Infect. Dis. 2001, 183, S12–S16. [Google Scholar] [CrossRef]
- Braun, V. FhuA (TonA), the career of a protein. J. Bacteriol. 2009, 191, 3431–3436. [Google Scholar] [CrossRef]
- Richter, M.F.; Drown, B.S.; Riley, A.P.; Garcia, A.; Shirai, T.; Svec, R.L.; Hergenrother, P.J. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 2017, 545, 299–304. [Google Scholar] [CrossRef]
- Cai, H.; Rose, K.; Liang, L.-H.; Dunham, S.; Stover, C. Development of a liquid chromatography/mass spectrometry-based drug accumulation assay in Pseudomonas aeruginosa. Anal. Biochem. 2009, 385, 321–325. [Google Scholar] [CrossRef]
- Iyer, R.; Ye, Z.; Ferrari, A.; Duncan, L.; Tanudra, M.A.; Tsao, H.; Wang, T.; Gao, H.; Brummel, C.L.; Erwin, A.L. Evaluating LC–MS/MS to measure accumulation of compounds within bacteria. ACS Infect. Dis. 2018, 4, 1336–1345. [Google Scholar] [CrossRef]
- Geddes, E.J.; Li, Z.; Hergenrother, P.J. An LC-MS/MS assay and complementary web-based tool to quantify and predict compound accumulation in E. coli. Nat. Protoc. 2021, 16, 4833–4854. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 31st ed.; CLSI Standard/Guideline/Report/Supplement [M100]; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Choi, Y.; Park, J.S.; Kim, J.; Min, K.; Mahasenan, K.; Kim, C.; Yoon, H.-J.; Lim, S.; Cheon, D.H.; Lee, Y.; et al. Structure-based inhibitor design for reshaping bacterial morphology. Commun. Biol. 2022, 5, 395. [Google Scholar] [CrossRef] [PubMed]
MIC (μg/mL) (Fold Change) a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Antibiotic b | Bulgecin A | CAZ | MEM | AMP | CAR | FOX | |||||
Bulgecin A c | − | + | − | + | − | + | − | + | − | + | |
ATCC 27853 d | >256 | 2 | 0.5 (4) | 0.25 | 0.125 (2) | 2048 | 512 (4) | 64 | 32 (2) | 2048 | 1024 (2) |
K799/WT | >256 | 1 | 0.5 (2) | 0.5 | 0.25 (2) | 2048 | 256 (8) | 128 | 32 (4) | 2048 | 512 (4) |
K799/Z61 c | >256 | 0.5 | 0.25 (2) | 0.5 | 0.25 (2) | 0.25 | 0.06 (4) | 0.125 | 0.03 (4) | 0.5 | 0.25 (2) |
MIC (µg/mL) (Fold Change) | ||||
---|---|---|---|---|
β-Lactam | CAZ | MEM | ||
Bulgecin A a | − | + | − | + |
PAO1 | 2 | 1 (2) | 1 | 0.5 (2) |
Δ3-MCS b | 0.5 | 0.5 (1) | 0.125 | 0.06 (2) |
Δ6-MCS b | 1 | 0.5 (2) | 0.25 | 0.125 (2) |
MIC (μg/mL) (Fold Change) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
β-Lactam | CAZ | MEM | AMP | CAR | FOX | |||||
Bulgecin A b | − | + | − | + | − | + | − | + | − | + |
P. aeruginosa PAO1 | ||||||||||
PAO-MCS c | 2 | 1 (2) | 0.5 | 0.25 (2) | 2048 | 1024 (2) | 64 | 32 (2) | 2048 | 1024 (2) |
PAO-Pore c | 0.06 | 0.03 (2) | 0.25 | 0.06 (4) | 128 | 64 (2) | 8 | 4 (2) | 256 | 64 (4) |
Δ6-MCS c | 1 | 0.5 (2) | 0.25 | 0.125 (2) | 512 | 256 (2) | 2 | 1 (2) | 1024 | 512 (2) |
Δ6-Pore c | 0.06 | 0.03 (2) | 0.125 | 0.03 (4) | 16 | 4 (4) | 0.25 | 0.125 (2) | 64 | 32 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.; Tomoshige, S.; Lee, M.; Zgurskaya, H.I.; Mobashery, S. Penetration through Outer Membrane and Efflux Potential in Pseudomonas aeruginosa of Bulgecin A as an Adjuvant to β-Lactam Antibiotics. Antibiotics 2023, 12, 358. https://doi.org/10.3390/antibiotics12020358
Kim C, Tomoshige S, Lee M, Zgurskaya HI, Mobashery S. Penetration through Outer Membrane and Efflux Potential in Pseudomonas aeruginosa of Bulgecin A as an Adjuvant to β-Lactam Antibiotics. Antibiotics. 2023; 12(2):358. https://doi.org/10.3390/antibiotics12020358
Chicago/Turabian StyleKim, Choon, Shusuke Tomoshige, Mijoon Lee, Helen I. Zgurskaya, and Shahriar Mobashery. 2023. "Penetration through Outer Membrane and Efflux Potential in Pseudomonas aeruginosa of Bulgecin A as an Adjuvant to β-Lactam Antibiotics" Antibiotics 12, no. 2: 358. https://doi.org/10.3390/antibiotics12020358
APA StyleKim, C., Tomoshige, S., Lee, M., Zgurskaya, H. I., & Mobashery, S. (2023). Penetration through Outer Membrane and Efflux Potential in Pseudomonas aeruginosa of Bulgecin A as an Adjuvant to β-Lactam Antibiotics. Antibiotics, 12(2), 358. https://doi.org/10.3390/antibiotics12020358