Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship
Abstract
:1. Introduction
2. Results
2.1. Clinical and Microbiological Data
2.2. Antibiotic Susceptibility Profiles and Antibiotic Resistance Patterns
2.3. Univariate and Multivariate Analyses
2.4. Artificial Neural Network Analysis
3. Discussion
3.1. Results in the Light of Current Knowledge: Nomogram and ANN
3.2. Results in the Light of Current Knowledge: Previous Antibiotic Exposure and Resistances
3.3. Strengths and Limitations of This Study
4. Materials and Methods
4.1. Study Design, Population and Data Source
4.2. Inclusion and Exclusion Criteria
4.3. Microbiological Considerations, Follow-Up Evaluation and Outcome
4.4. Statistical Analysis and Artificial Neural Networks
4.5. Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wagenlehner, F.M.E.; Bjerklund Johansen, T.E.; Cai, T.; Koves, B.; Kranz, J.; Pilatz, A.; Tandogdu, Z. Epidemiology, definition and treatment of complicated urinary tract infections. Nat. Rev. Urol. 2020, 17, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.D.; Rodrigues, D.A.; Figueiras, A.; Zapata-Cachafeiro, M.; Roque, F.; Herdeiro, M.T. Antibiotic Dispensation without a Prescription Worldwide: A Systematic Review. Antibiotics 2020, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Stamm, W.E. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann. Intern. Med. 2001, 135, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Foxman, B. Urinary tract infection syndromes: Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. N. Am. 2014, 28, 1–13. [Google Scholar] [CrossRef]
- Cai, T.; Tamanini, I.; Collini, L.; Brugnolli, A.; Migno, S.; Mereu, L.; Tateo, S.; Pilatz, A.; Rizzo, M.; Liguori, G.; et al. Management of Recurrent Cystitis in Women: When Prompt Identification of Risk Factors Might Make a Difference. Eur. Urol. Focus 2022, 8, 1476–1482. [Google Scholar] [CrossRef]
- Tandan, M.; Thapa, P.; Maharjan, P.; Bhandari, B. Impact of Antimicrobial Stewardship Program on Antimicrobial Resistant and Prescribing in Nursing Home: A Systematic Review and Meta-analysis. J. Glob. Antimicrob. Resist. 2022, 29, 74–87. [Google Scholar] [CrossRef]
- EAU. European Association of Urology Guidelines on Urological Infections, Update 2019. Available online: http://uroweb.org/guideline/urological-infections/ (accessed on 3 March 2022).
- Kwok, M.; McGeorge, S.; Mayer-Coverdale, J.; Graves, B.; Paterson, D.L.; Harris, P.N.; Esler, R.; Dowling, C.; Britton, S.; Roberts, M.J. Guideline of guidelines: Management of recurrent urinary tract infections in women. BJU Int. 2022, 130 (Suppl. S3), 11–22. [Google Scholar] [CrossRef]
- Dai, J.C.; Johnson, B.A. Artificial intelligence in endourology: Emerging technology for individualized care. Curr. Opin. Urol. 2022, 32, 379–392. [Google Scholar] [CrossRef]
- Chowdhury, A.S.; Lofgren, E.T.; Moehring, R.W.; Broschat, S.L. Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. J. Appl. Microbiol. 2019, 128, 688–696. [Google Scholar] [CrossRef]
- Cai, T.; Conti, G.; Nesi, G.; Lorenzini, M.; Mondaini, N.; Bartoletti, R. Artificial intelligence for predicting recurrence-free probability of non-invasive high-grade urothelial bladder cell carcinoma. Oncol. Rep. 2007, 18, 959–964. [Google Scholar]
- Catto, J.W.F.; Linkens, D.A.; Abbod, M.F.; Chen, M.; Burton, J.L.; Feeley, K.M.; Hamdy, F.C. Artificial intelligence in predicting bladder cancer outcome: A comparison of neurofuzzy modeling and artificial neural networks. Clin. Cancer Res. 2003, 9, 4172–4177. [Google Scholar] [CrossRef]
- Ozkan, I.A.; Koklu, M.; Sert, I.U. Diagnosis of urinary tract infection based on artificial intelligence methods. Comput. Methods Programs Biomed. 2018, 166, 51–59. [Google Scholar] [CrossRef]
- Cai, T.; Mazzoli, S.; Migno, S.; Malossini, G.; Lanzafame, P.; Mereu, L.; Tateo, S.; Wagenlehner, F.M.; Pickard, R.S.; Bartoletti, R. Development and validation of a nomogram predicting recurrence risk in women with symptomatic urinary tract infection. Int. J. Urol. 2014, 21, 929–934. [Google Scholar] [CrossRef]
- Lisboa, P.J.; Taktak, A.F. The use of artificial neural networks in decision support in cancer: A systematic review. Neural Netw. 2006, 19, 408–415. [Google Scholar] [CrossRef]
- Fang, N.W.; Chiou, Y.H.; Chen, Y.S.; Hung, C.W.; Yin, C.H.; Chen, J.S. Nomogram for diagnosing acute pyelonephritis in pediatric urinary tract infection. Pediatr. Neonatol. 2022, 63, 380–387. [Google Scholar] [CrossRef]
- Schinkel, M.; Boerman, A.W.; Bennis, F.C.; Minderhoud, T.C.; Lie, M.; Peters-Sengers, H.; Holleman, F.; Schade, R.P.; de Jonge, R.; Wiersinga, W.J.; et al. Diagnostic stewardship for blood cultures in the emergency department: A multicenter validation and prospective evaluation of a machine learning prediction tool. EBioMedicine 2022, 82, 104176. [Google Scholar] [CrossRef]
- Yelin, I.; Snitser, O.; Novich, G.; Katz, R.; Tal, O.; Parizade, M.; Chodick, G.; Koren, G.; Shalev, V.; Kishony, R. Personal clinical history predicts antibiotic resistance of urinary tract infections. Nat. Med. 2019, 25, 1143–1152. [Google Scholar] [CrossRef]
- Hejrati, B.; Fathi, A.; Abdali-Mohammadi, F. A new near-lossless EEG compression method using ANN-based reconstruction technique. Comput. Biol. Med. 2017, 87, 87–94. [Google Scholar] [CrossRef]
- Goździkiewicz, N.; Zwolińska, D.; Polak-Jonkisz, D. The Use of Artificial Intelligence Algorithms in the Diagnosis of Urinary Tract Infections-A Literature Review. J. Clin. Med. 2022, 11, 2734. [Google Scholar] [CrossRef]
- Aznan, A.; Gonzalez Viejo, C.; Pang, A.; Fuentes, S. Rapid Detection of Fraudulent Rice Using Low-Cost Digital Sensing Devices and Machine Learning. Sensors 2022, 22, 8655. [Google Scholar] [CrossRef]
- Cai, T.; Tamanini, I.; Cocci, A.; Maida, F.D.; Caciagli, P.; Migno, S.; Mereu, L.; Tateo, S.; Malossini, G.; Palmieri, A.; et al. Xyloglucan, hibiscus and propolis to reduce symptoms and antibiotics use in recurrent UTIs: A prospective study. Future Microbiol. 2019, 14, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M.; Scholes, D.; Gupta, K.; Stapleton, A.E.; Roberts, P.L.; Stamm, W.E. Amoxicillin-clavulanate vs ciprofloxacin for the treatment of uncomplicated cystitis in women: A randomized trial. JAMA 2005, 293, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Mazzoli, S.; Cai, T.; Rupealta, V.; Gavazzi, A.; Pagliai, R.C.; Mondaini, N.; Bartoletti, R. Interleukin 8 and anti-Chlamydia trachomatis mucosal IgA as urogenital immunologic markers in patients with C. trachomatis prostatic infection. Eur. Urol. 2007, 51, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Baxter, M.R.; Golden, A.R.; Adam, H.J.; Walkty, A.; Lagacé-Wiens, P.R.; Zhanel, G.G. Use of Fosfomycin Etest to Determine In Vitro Susceptibility of Clinical Isolates of Enterobacterales Other than Escherichia coli, Nonfermenting Gram-Negative Bacilli, and Gram-Positive Cocci. J. Clin. Microbiol. 2021, 59, e0163521. [Google Scholar] [CrossRef] [PubMed]
- Tutone, M.; Bjerklund Johansen, T.E.; Cai, T.; Mushtaq, S.; Livermore, D.M. SUsceptibility and Resistance to Fosfomycin and other antimicrobial agents among pathogens causing lower urinary tract infections: Findings of the SURF study. Int. J. Antimicrob. Agents 2022, 59, 106574. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- Warren, J.W.; Abrutyn, E.; Hebel, J.R.; Johnson, J.R.; Schaeffer, A.J.; Stamm, W.E. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin. Infect. Dis. 1999, 29, 745–758. [Google Scholar] [CrossRef]
- Abbod, M.F.; Linkens, D.A.; Catto, J.W.; Hamdy, F.C. Comparative study of intelligent models for the prediction of bladder cancer progression. Oncol. Rep. 2006, 15, 1019–1022. [Google Scholar] [CrossRef]
- Neamatullah, I.; Douglass, M.M.; Lehman, L.-W.H.; Reisner, A.; Villarroel, M.; Long, W.J.; Szolovits, P.; Moody, G.B.; Mark, R.G.; Clifford, G.D. Automated de-identification of free-text medical records. BMC Med. Inform. Decis. Mak. 2008, 8, 32. [Google Scholar] [CrossRef] [Green Version]
p | ||||
---|---|---|---|---|
Overall | Train Phase | Testing Phase | ||
No. of analyzed and enrolled patients | 1043 | 725 | 318 | |
Age | 0.83 | |||
Mean (±SD †) | 39.6 (±7.1) | 39.7 (±7.2) | 39.4 (±6.9) | |
Marital status | 0.31 | |||
Married | 490 (46.9) | 333 (45.9) | 157 (49.3) | |
Single | 553 (53.1) | 392 (54.1) | 161 (50.7) | |
Sexual intercourse per week | 1.0 | |||
Mean (±SD †) | 1.6 (±0.4) | 1.6 (±0.5) | 1.6 (±0.2) | |
Hormonal status | 0.75 | |||
Premenopausal | 991 (95.0) | 688 (94.9) | 303 (95.2) | |
Postmenopausal | 52 (5.0) | 37 (5.1) | 15 (4.7) | |
Parity | 0.94 | |||
Nulliparity | 365 (34.9) | 253 (34.8) | 112 (35.3) | |
Multiparity | 678 (65.1) | 472 (65.2) | 206 (64.7) | |
Number of UTIs #/year | 0.21 | |||
Mean (± SD †) | 3.1 ± 1.2 | 3.0 ± 1.1 | 3.1 ± 1.4 | |
Previous use of antibiotics (in the last 3 months) | 1.0 | |||
Yes | 448 (42.9) | 311 (42.8) | 137 (43.0) | |
No | 595 (57.1) | 414 (57.2) | 181 (57.0) | |
Previous treatment of ABU § | 0.83 | |||
Yes | 564 (54.1) | 391 (53.9) | 173 (54.4) | |
No | 479 (43.9) | 334 (46.1) | 145 (45.6) | |
Bacterial strains (1912 isolated from 1043 patients) | 1330 strains | 582 strains | ||
E. coli | 1202 (62.8) | 842 (63.4) | 360 (62.1) | |
Klebsiella spp. | 374 (19.6) | 259 (19.5) | 115 (19.7) | |
Enterococcus spp. | 199 (10.5) | 134 (10.0) | 65 (11.2) | |
Enterococcus faecalis | 177 (88.9) | 123 (91.7) | 54 (83.1) | |
Enterococcus faecium | 22 (11.1) | 11 (8.3) | 11 (16.9) | |
Proteus mirabilis | 52 (2.7) | 35 (2.6) | 17 (2.9) | |
Enterobacter spp. | 44 (2.3) | 31 (2.4) | 13 (2.1) | |
Pseudomonas spp. | 41 (2.1) | 29 (2.1) | 12 (2.0) |
No. of Isolated Strains | 1912 | |||||
---|---|---|---|---|---|---|
Escherichia coli | Klebsiella spp. | Enterococcus spp. | Proteus mirabilis | Enterobacter spp. | Pseudomonas spp. | |
Number of isolated strains | 1202 | 374 | 199 | 52 | 44 | 41 |
Number of resistant strains and resistance rate (%) | ||||||
Amikacin | 228 (18.9) | 60 (16.1) | 24 (12.0) | 5 (9.6) | 1 (3) | 11 (26.8) |
Amoxicillin | 803 (66.8) | 125 (33.5) | 65 (32.6) | 7 (13.4) | - | - |
Cefalotin | 781 (64.9) | 202 (54.0) | 199 (100) | 7 (13.4) | - | - |
Cephalexin | 108 (8.9) | 37 (9.8) | 199 (100) | 6 (11.5) | 5 (11.3) | - |
Ceftriaxone | 348 (28.9) | 192 (51.3) | 199 (100) | 4 (7.6) | 6 (13.6) | - |
Ciprofloxacin | 418 (34.7) | 201 (53.7) | 96 (48.2) | 11 (21.1) | 1(2.2) | 22 (53.6) |
Fosfomycin | 80 (6.6) | 77 (20.5) | 44 (11.7) | 4 (7.6) | 2 (4.5) | 2 (4.8) |
Gentamicin | 132 (10.9) | 115 (30.7) | 87 (43.7) | 13 (25) | 3 (6.8) | 16 (39.0) |
Levofloxacin | 379 (31.5) | 207 (55.3) | 92 (46.2) | 6 (11.5) | 1 (2.2) | - |
Meropenem | - | - | - | - | - | - |
Nitrofurantoin | 105 (8.7) | 84 (22.4) | 25 (12.5) | - | 36 (81.2) | - |
Piperacillin/Tazobactam | 132 (10.9) | 120 (32.1) | 34 (17.0) | 3 (5.7) | 3 (6.8) | 8 (19.5) |
Cotrimoxazole | 184 (15.3) | 62 (16.5) | 33 (16.5) | 11 (21.1) | 3 (6.8) | - |
ESBL (cefpodoxime R) | 339 (28.2) | 171 (45.7) | - | 1 (1.9) | - | 2 (4.8) |
Categories (Variables) | Univariate Analysis (p) HR * (95% CI †) | Multivariate Analysis (p) HR * (95% CI †) |
---|---|---|
Fluoroquinolones therapy failure | ||
Previous use of antibiotics (last 3 months) | ||
Aminoglycosides | 0.55 (HR 1.05; 95% 0.48–1.61) | 0.06 (HR 1.33; 95% 0.75–1.45) |
Aminopenicillins | 0.06 (HR 1.24; 95% 0.79–1.63) | 0.07 (HR 1.12; 95% 0.73–1.35) |
Fluoroquinolones | 0.03 (HR 3.61; 95% 3.88–4.53) | 0.008 (HR 4.23; 95% 3.88–4.53) |
Fosfomycin | 0.58 (HR 1.32; 95% 1.19–1.67) | 0.08 (HR 1.11; 95% 0.97–1.69) |
Cephalosporins | 0.01 (HR 1.61; 95% 0.87–1.79 | 0.003 (HR 2.81; 95% 1.95–3.45) |
Nitrofurantoin | 0.09 (HR 0.70; 95% 0.55–1.00) | 0.09 (HR 1.01; 95% 0.70–1.27) |
Cotrimoxazole | 0.27 (HR 0.71; 95% 0.10–1.12) | 0.12 (HR 0.80; 95% 0.45–1.03) |
Previous isolated strain | ||
Escherichia coli | 0.001 (HR 3.01; 95% 2.94–4.56) | 0.002 (HR 2.99; 95% 1.98–3.40) |
Klebsiella spp. | 0.38 (HR 0.92; 95% 0.18–1.27) | 0.21 (HR 1.01; 95% 0.97–1.38) |
Enterococcus spp. | 0.21 (HR 1.21; 95% 0.65–1.32) | 0.33 (HR 1.82; 95% 0.94–1.30) |
Proteus spp. | 0.08 (HR 1.01; 95% 0.92–1.21) | 0.07 (HR 1.18; 95% 0.80–1.49) |
Enterobacter spp. | 0.06 (HR 1.14; 95% 0.70–1.60) | 0.09 (HR 1.21; 95% 0.99–1.84) |
Pseudomonas spp. | 0.45 (HR 1.05; 95% 0.80–1.69) | 0.71 (HR 1.73; 95% 0.89–1.89) |
Previous isolation of E. coli resistant to antibiotics | ||
Aminoglycosides | 0.18 (HR 0.97; 95% 0.45–1.11) | 0.34 (HR 0.37; 95% 0.28–0.79) |
Aminopenicillins | 0.10 (HR 1.00; 95% 0.74–1.07) | 0.13 (HR 1.28; 95% 0.77–1.34) |
Fluoroquinolones | - | - |
Fosfomycin | 0.87 (HR 1.21; 95% 0.72–1.24) | 0.69 (HR 1.14; 95% 0.34–1.04) |
Cephalosporins | 0.91 (HR 1.78; 95% 0.21–1.15) | 0.62 (HR 1.50; 95% 0.77–1.48) |
Nitrofurantoin | 0.55 (HR 1.03; 95% 0.74–1.91) | 0.78 (HR 1.73; 95% 0.91–1.93) |
Cotrimoxazole | 0.001 (HR 2.99; 95% 2.65–3.19) | 0.001 (HR 3.54; 95% 2.73–5.52) |
Cotrimoxazole and cephalosporins therapy failure | ||
Previous isolation of E. coli resistant to antibiotics | ||
Aminoglycosides | 0.25 (HR 1.25; 95% 0.68–1.43) | 0.31 (HR 1.26; 95% 0.92–1.83) |
Aminopenicillins | 0.04 (HR 1.97; 95% 1.11–2.02) | 0.001 (HR 1.94; 95% 1.20–2.89) |
Fluoroquinolones | 0.22 (HR 1.17; 95% 0.65–1.23) | 0.53 (HR 1.43; 95% 0.77–1.83) |
Fosfomycin | 0.03 (HR 2.34; 95% 2.03–2.97) | 0.001 (HR 2.67; 95% 2.15–3.23) |
Cephalosporins | - | - |
Nitrofurantoin | 0.54 (HR 1.09; 95% 0.82–1.04) | 0.91 (HR 1.08; 95% 0.73–1.17) |
Cotrimoxazole | - | - |
Fosfomycin therapy failure | ||
Previous isolation of E. coli resistant to antibiotics | ||
Aminoglycosides | 0.12 (HR 0.29; 95% 0.10–1.03) | 0.39 (HR 0.64; 95% 0.22–0.89) |
Aminopenicillins | 0.03 (HR 2.53; 95% 2.74–4.01) | 0.007 (HR 3.41; 95% 2.27–4.04) |
Fluoroquinolones | 0.71 (HR 1.90; 95% 0.53–2.13) | 0.89 (HR 1.25; 95% 0.89–1.77) |
Fosfomycin | - | - |
Cephalosporins | 0.12 (HR 1.04; 95% 0.56–1.39) | 0.28 (HR 0.85; 95% 0.32–1.00) |
Nitrofurantoin | 0.56 (HR 1.99; 95% 0.79–2.91) | 0.10 (HR 1.54; 95% 0.51–1.80) |
Cotrimoxazole | 0.003 (HR 1.94; 95% 1.27–2.38) | 0.001 (HR 2.35; 95% 1.89–3.18) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, T.; Anceschi, U.; Prata, F.; Collini, L.; Brugnolli, A.; Migno, S.; Rizzo, M.; Liguori, G.; Gallelli, L.; Wagenlehner, F.M.E.; et al. Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship. Antibiotics 2023, 12, 375. https://doi.org/10.3390/antibiotics12020375
Cai T, Anceschi U, Prata F, Collini L, Brugnolli A, Migno S, Rizzo M, Liguori G, Gallelli L, Wagenlehner FME, et al. Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship. Antibiotics. 2023; 12(2):375. https://doi.org/10.3390/antibiotics12020375
Chicago/Turabian StyleCai, Tommaso, Umberto Anceschi, Francesco Prata, Lucia Collini, Anna Brugnolli, Serena Migno, Michele Rizzo, Giovanni Liguori, Luca Gallelli, Florian M. E. Wagenlehner, and et al. 2023. "Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship" Antibiotics 12, no. 2: 375. https://doi.org/10.3390/antibiotics12020375
APA StyleCai, T., Anceschi, U., Prata, F., Collini, L., Brugnolli, A., Migno, S., Rizzo, M., Liguori, G., Gallelli, L., Wagenlehner, F. M. E., Johansen, T. E. B., Montanari, L., Palmieri, A., & Tascini, C. (2023). Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship. Antibiotics, 12(2), 375. https://doi.org/10.3390/antibiotics12020375