Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria
Abstract
:1. Introduction
2. Pharmacokinetic Variations in Critical Patients
3. Renal Replacement Therapy
4. Extracorporeal Membrane Oxygenation
5. Antibiotic Therapeutic Drug Monitoring
6. Pk/Pd to Suppress the Emergence of Bacterial Resistance
6.1. β-Lactams
6.2. Fluoroquinolones
6.3. Aminoglycosides
6.4. Fosfomycin
6.5. Colistin
6.6. Linezolid
6.7. Daptomycin
6.8. Glycopeptides
7. Machine Learning, Big Data, and Artificial Intelligence
7.1. Big Data Analysis
7.2. Bedside Antibiotic Monitoring Systems
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.I.; Pea, F.; Lipman, J. The Effect of Pathophysiology on Pharmacokinetics in the Critically Ill Patient—Concepts Appraised by the Example of Antimicrobial Agents. Adv. Drug Deliv. Rev. 2014, 77, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotta, M.O.; Roberts, J.A.; Lipman, J. Antibiotic Dose Optimization in Critically Ill Patients. Med. Intensiv. 2015, 39, 563–572. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Roberts, J.A.; Rello, J.; Paterson, D.L.; Lipman, J. The Effects of Hypoalbuminaemia on Optimizing Antibacterial Dosing in Critically Ill Patients. Clin. Pharmacokinet. 2011, 50, 99–110. [Google Scholar] [CrossRef]
- Parker, S.L.; Sime, F.B.; Roberts, J.A. Optimizing Dosing of Antibiotics in Critically Ill Patients. Curr. Opin. Infect. Dis. 2015, 28, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Dhaese, S.; Van Vooren, S.; Boelens, J.; De Waele, J. Therapeutic Drug Monitoring of β-Lactam Antibiotics in the ICU. Expert Rev. Anti Infect. Ther. 2020, 18, 1155–1164. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Hagel, S.; Bach, F.; Brenner, T.; Bracht, H.; Brinkmann, A.; Annecke, T.; Hohn, A.; Weigand, M.; Michels, G.; Kluge, S.; et al. TARGET Trial Investigators. Effect of Therapeutic Drug Monitoring-Based Dose Optimization of Piperacillin/Tazobactam on Sepsis-Related Organ Dysfunction in Patients with Sepsis: A Randomized Controlled Trial. Intensive Care Med. 2022, 48, 311–321. [Google Scholar] [CrossRef]
- Steffens, N.A.; Zimmermann, E.S.; Nichelle, S.M.; Brucker, N. Meropenem Use and Therapeutic Drug Monitoring in Clinical Practice: A Literature Review. J. Clin. Pharm. Ther. 2021, 46, 610–621. [Google Scholar] [CrossRef]
- Osorio, C.; Garzón, L.; Jaimes, D.; Silva, E.; Bustos, R.-H. Impact on Antibiotic Resistance, Therapeutic Success, and Control of Side Effects in Therapeutic Drug Monitoring (TDM) of Daptomycin: A Scoping Review. Antibiotics 2021, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.; Xia, Y.; Chu, Y.; Zhong, H.; Li, J.; Liang, P.; Bu, Y.; Zhao, R.; Liao, Y.; et al. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front. Pharmacol. 2020, 11, 786. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.M.; Lewis, S.J.; Rhie, S.J. Optimal antipseudomonal ꞵ-lactam drug dosing recommendations in critically-ill Asian patients receiving CRRT. J. Crit. Care 2022, 1, 72. [Google Scholar] [CrossRef] [PubMed]
- Selig, D.J.; DeLuca, J.P.; Chung, K.K.; Pruskowski, K.A.; Livezey, J.R.; Nadeau, R.J.; Por, E.D.; Akers, K.S. Pharmacokinetics of Piperacillin and Tazobactam in Critically Ill Patients Treated with Continuous Kidney Replacement Therapy: A Mini-review and Population Pharmacokinetic Analysis. J. Clin. Pharm. Ther. 2022, 47, 1091–1102. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.H.; Burrows, F.; Buscher, H.; Corley, A.; Diehl, A.; Jakob, S.M.; Levkovich, B.J.; Pellegrino, V.; Que, Y.A.; et al. Population pharmacokinetics of cefepime in critically ill patients receiving extracorporeal membrane oxygenation (an ASAP ECMO study). Int. J. Antimicrob. Agents 2021, 58, 106466. [Google Scholar] [CrossRef]
- Kalaria, S.; Williford, S.; Guo, D.; Shu, Y.; Medlin, C.; Li, M. Optimizing ceftaroline dosing in critically ill patients undergoing continuous renal replacement therapy. Pharmacotherapy 2021, 41, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Butler, D.; Tan, X.; Katsube, T.; Wajima, T. Pharmacokinetics, Pharmacodynamics, and Dose Optimization of Cefiderocol during Continuous Renal Replacement Therapy. Clin. Pharmacokinet. 2022, 61, 539–552. [Google Scholar] [CrossRef]
- Parker, S.L.; Frantzeskaki, F.; Wallis, S.C.; Diakaki, C.; Giamarellou, H.; Koulenti, D.; Karaiskos, I.; Lipman, J.; Dimopoulos, G.; Roberts, J.A. Population Pharmacokinetics of Fosfomycin in Critically Ill Patients. Antimicrob. Agents Chemother. 2015, 59, 6471–6476. [Google Scholar] [CrossRef] [Green Version]
- Pressiat, C.; Kudela, A.; De Roux, Q.; Khoudour, N.; Alessandri, C.; Haouache, H.; Vodovar, D.; Woerther, P.L.; Hutin, A.; Ghaleh, B.; et al. Population Pharmacokinetics of Amikacin in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation. Pharmaceutics 2022, 14, 289. [Google Scholar] [CrossRef]
- He, S.; Cheng, Z.; Xie, F. Population Pharmacokinetics and Dosing Optimization of Gentamicin in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Drug Des. Dev. Ther. 2022, 16, 13–22. [Google Scholar] [CrossRef]
- Muto, C.; Liu, P.; Chiba, K.; Suwa, T. Pharmacokinetic-pharmacodynamic analysis of azithromycin extended release in Japanese patients with common respiratory tract infectious disease. J. Antimicrob. Chemother. 2011, 66, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.B.; Rouse, S.; Elbarbry, F.; Wanek, S.; Grover, V.; Chang, E. Azithromycin Pharmacokinetics in Adults With Acute Respiratory Distress Syndrome Undergoing Treatment With Extracorporeal-Membrane Oxygenation. Ann. Pharmacother. 2016, 50, 72–73. [Google Scholar] [CrossRef]
- Schmidt, J.; Strunk, A.-K.; David, S.; Bode-Böger, S.; Martens-Lobenhoffer, J.; Knitsch, W.; Scherneck, S.; Welte, T.; Kielstein, J. Single- and multiple-dose pharmacokinetics and total removal of colistin in critically ill patients with acute kidney injury undergoing prolonged intermittent renal replacement therapy. J. Antimicrob. Chemother. 2019, 74, 997–1002. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, F.; Lv, P.; Chen, Y.; Yang, J.; Zhu, W.; Zhu, S.; Shao, H. Plasma concentrations of Colistin sulfate in a patient with septic shock on extracorporeal membrane oxygenation and continuous renal replacement therapy: A case report. Ann. Transl. Med. 2022, 10, 614. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Lipman, J.; Mouton, J.W.; Hope, W.W.; Roberts, J.A. Applying Pharmacokinetic/Pharmacodynamic Principles in Critically Ill Patients: Optimizing Efficacy and Reducing Resistance Development. Semin. Respir. Crit. Care Med. 2015, 36, 136–153. [Google Scholar] [CrossRef] [Green Version]
- Dhanani, J.A.; Lipman, J.; Pincus, J.; Townsend, S.; Livermore, A.; Wallis, S.C.; Pandey, S.; Abdul-Aziz, M.H.; Roberts, J.A. Pharmacokinetics of Sulfamethoxazole and Trimethoprim During Venovenous Extracorporeal Membrane Oxygenation: A Case Report. Pharmacotherapy 2020, 40, 713–717. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, D.-H.; Kim, H.S. Prospective Cohort Study of Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Adults on Extracorporeal Membrane Oxygenation. Antimicrob. Agents Chemother. 2021, 65, e02408-20. [Google Scholar] [CrossRef]
- Lim, S.K.; Lee, S.A.; Kim, C.-W.; Kang, E.; Choi, Y.H.; Park, I. High Variability of Teicoplanin Concentration in Patients with Continuous Venovenous Hemodiafiltration. Hemodial. Int. Int. Symp. Home Hemodial. 2019, 23, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.A.; Avedissian, S.N.; Al-Qamari, A.; Bohling, T.; Pham, M.; Scheetz, M.H. Pharmacokinetic Assessment of Pre- and Post-Oxygenator Vancomycin Concentrations in Extracorporeal Membrane Oxygenation: A Prospective Observational Study. Clin. Pharmacokinet. 2020, 59, 1575–1587. [Google Scholar] [CrossRef]
- Wahby, K.A.; Cunmuljaj, L.; Mouabbi, K.; Almadrahi, Z.; Wilpula, L. Evaluation of Dosing Strategies and Trough Concentrations of Vancomycin in Patients Undergoing Continuous Venovenous Hemofiltration. Pharmacotherapy 2021, 41, 554–561. [Google Scholar] [CrossRef]
- Oda, K.; Jono, H.; Kamohara, H.; Nishi, K.; Tanoue, N.; Saito, H. Development of Vancomycin Dose Individualization Strategy by Bayesian Prediction in Patients Receiving Continuous Renal Replacement Therapy. Pharm. Res. 2020, 37, 108. [Google Scholar] [CrossRef]
- Xu, X.; Khadzhynov, D.; Peters, H.; Chaves, R.L.; Hamed, K.; Levi, M.; Corti, N. Population pharmacokinetics of daptomycin in adult patients undergoing continuous renal replacement therapy. Br. J. Clin. Pharmacol. 2017, 83, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Cies, J.J.; Moore, W.S.; Giliam, N.; Low, T.; Enache, A.; Chopra, A. Impact of Ex-Vivo Extracorporeal Membrane Oxygenation Circuitry on Daptomycin. Perfusion 2018, 33, 624–629. [Google Scholar] [CrossRef]
- Cabanilla, M.G.; Villalobos, N. A Successful Daptomycin and Micafungin Dosing Strategy in Veno-Venous ECMO and Continuous Renal Replacement. J. Clin. Pharm. Ther. 2022, 47, 251–253. [Google Scholar] [CrossRef]
- Barrasa, H.; Soraluce, A.; Isla, A.; Martín, A.; Maynar, J.; Canut, A.; Sánchez-Izquierdo, J.A.; Rodríguez-Gascón, A. Pharmacokinetics of Linezolid in Critically Ill Patients on Continuous Renal Replacement Therapy: Influence of Residual Renal Function on PK/PD Target Attainment. J. Crit. Care 2019, 50, 69–76. [Google Scholar] [CrossRef]
- Nikolos, P.; Osorio, J.; Mohrien, K.; Rose, C. Pharmacokinetics of linezolid for methicillin-resistant Staphylococcus aureus pneumonia in an adult receiving extracorporeal membrane oxygenation. Am. J. Health Syst. Pharm. 2020, 77, 877–888. [Google Scholar] [CrossRef]
- Onichimowski, D.; Wolska, J.; Ziółkowski, H.; Nosek, K.; Jaroszewski, J.; Czuczwar, M. Pharmacokinetics of Ciprofloxacin during Continuous Renal Replacement Therapy in Intensive Care Patients—New Assessment. Anaesthesiol. Intensive Ther. 2020, 52, 267–273. [Google Scholar] [CrossRef]
- Alihodzic, D.; Wicha, S.G.; Frey, O.R.; König, C.; Baehr, M.; Jarczak, D.; Kluge, S.; Langebrake, C. Ciprofloxacin in Patients Undergoing Extracorporeal Membrane Oxygenation (ECMO): A Population Pharmacokinetic Study. Pharmaceutics 2022, 14, 965. [Google Scholar] [CrossRef]
- Veinstein, A.; Debouverie, O.; Grégoire, N.; Goudet, V.; Adier, C.; Robert, R.; Couet, W. Lack of effect of extracorporeal membrane oxygenation on tigecycline pharmacokinetics. J. Antimicrob. Chemother. 2012, 67, 1047–1048. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.M.; Lee, A.; Choi, G.; Bellomo, R.; Kanji, S.; Mudaliar, M.Y.; Peake, S.L.; Stephens, D.; Taccone, F.S.; et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data From the Multinational Sampling Antibiotics in Renal Replacement Therapy Study. Clin. Infect. Dis. 2021, 72, 1369–1378. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin. Pharmacokinet. 2021, 60, 1271–1289. [Google Scholar] [CrossRef] [PubMed]
- Pistolesi, V.; Morabito, S.; Di Mario, F.; Regolisti, G.; Cantarelli, C.; Fiaccadori, E. A Guide to Understanding Antimicrobial Drug Dosing in Critically Ill Patients on Renal Replacement Therapy. Antimicrob. Agents Chemother. 2019, 63, e00583-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Bai, J.; Wen, A.; Shen, S.; Duan, M.; Li, X. Pharmacokinetic and Pharmacodynamic Analysis of Critically Ill Patients Undergoing Continuous Renal Replacement Therapy With Imipenem. Clin. Ther. 2020, 42, 1564–1577.e8. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Peluso, L.; Taccone, F.S.; Hites, M. The Impact of Continuous Renal Replacement Therapy on Antibiotic Pharmacokinetics in Critically Ill Patients. Expert Opin. Drug Metab. Toxicol. 2021, 17, 543–554. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Vaquer, S.; Llauradó-Serra, M.; Pontes, C.; Calvo, G.; Soy, D.; Martín-Loeches, I. Beta-Lactam Dosing in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy. Crit. Care 2014, 18, 227. [Google Scholar] [CrossRef] [Green Version]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharmacother. 2020, 54, 43–55. [Google Scholar] [CrossRef]
- Jamal, J.-A.; Udy, A.A.; Lipman, J.; Roberts, J.A. The Impact of Variation in Renal Replacement Therapy Settings on Piperacillin, Meropenem, and Vancomycin Drug Clearance in the Critically Ill: An Analysis of Published Literature and Dosing Regimens*. Crit. Care Med. 2014, 42, 1640–1650. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Soy, D.; Llaurado-Serra, M.; Vaquer, S.; Castro, P.; Rodríguez, A.H.; Pontes, C.; Calvo, G.; Torres, A.; Martín-Loeches, I. Meropenem Population Pharmacokinetics in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy: Influence of Residual Diuresis on Dose Requirements. Antimicrob. Agents Chemother. 2015, 59, 5520–5528. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.M.; Roberts, J.A.; Roberts, M.S.; Liu, X.; Nair, P.; Cole, L.; Lipman, J.; Bellomo, R.; RENAL Replacement Therapy Study Investigators. Variability of Antibiotic Concentrations in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Multicentre Pharmacokinetic Study. Crit. Care Med. 2012, 40, 1523–1528. [Google Scholar] [CrossRef]
- Leuppi-Taegtmeyer, A.B.; Decosterd, L.; Osthoff, M.; Mueller, N.J.; Buclin, T.; Corti, N. Multicenter Population Pharmacokinetic Study of Colistimethate Sodium and Colistin Dosed as in Normal Renal Function in Patients on Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2019, 63, e01957-18. [Google Scholar] [CrossRef] [Green Version]
- Burger, R.; Guidi, M.; Calpini, V.; Lamoth, F.; Decosterd, L.; Robatel, C.; Buclin, T.; Csajka, C.; Marchetti, O. Effect of Renal Clearance and Continuous Renal Replacement Therapy on Appropriateness of Recommended Meropenem Dosing Regimens in Critically Ill Patients with Susceptible Life-Threatening Infections. J. Antimicrob. Chemother. 2018, 73, 3413–3422. [Google Scholar] [CrossRef] [PubMed]
- Claure-Del Granado, R.; Clark, W.R. Continuous renal replacement therapy principles. Semin Dial. 2021, 34, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, K.U.; Santhi, S.; Malar, R.J. Cystatin C: An alternative dialysis adequacy marker in high flux hemodialysis. Indian J. Nephrol. 2015, 25, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Pea, F.; Viale, P.; Pavan, F.; Furlanut, M. Pharmacokinetic Considerations for Antimicrobial Therapy in Patients Receiving Renal Replacement Therapy. Clin. Pharmacokinet. 2007, 46, 997–1038. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Bréchot, N.; Hariri, S.; Guiguet, M.; Luyt, C.E.; Makri, R.; Leprince, P.; Trouillet, J.-L.; Pavie, A.; Chastre, J.; et al. Nosocomial Infections in Adult Cardiogenic Shock Patients Supported by Venoarterial Extracorporeal Membrane Oxygenation. Clin. Infect. Dis. 2012, 55, 1633–1641. [Google Scholar] [CrossRef] [Green Version]
- Hahn, J.; Choi, J.H.; Chang, M.J. Pharmacokinetic Changes of Antibiotic, Antiviral, Antituberculosis and Antifungal Agents during Extracorporeal Membrane Oxygenation in Critically Ill Adult Patients. J. Clin. Pharm. Ther. 2017, 42, 661–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shekar, K.; Roberts, J.A.; Welch, S.; Buscher, H.; Rudham, S.; Burrows, F.; Ghassabian, S.; Wallis, S.C.; Levkovich, B.; Pellegrino, V.; et al. ASAP ECMO: Antibiotic, Sedative and Analgesic Pharmacokinetics during Extracorporeal Membrane Oxygenation: A Multi-Centre Study to Optimise Drug Therapy during ECMO. BMC Anesthesiol. 2012, 12, 29. [Google Scholar] [CrossRef]
- Wildschut, E.D.; Ahsman, M.J.; Allegaert, K.; Mathot, R.A.A.; Tibboel, D. Determinants of Drug Absorption in Different ECMO Circuits. Intensive Care Med. 2010, 36, 2109–2116. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Aziz, M.H.; Roberts, J.A. Antibiotic Dosing during Extracorporeal Membrane Oxygenation: Does the System Matter? Curr. Opin. Anaesthesiol. 2020, 33, 71–82. [Google Scholar] [CrossRef]
- Cheng, V.; Abdul-Aziz, M.-H.; Roberts, J.A.; Shekar, K. Optimising Drug Dosing in Patients Receiving Extracorporeal Membrane Oxygenation. J. Thorac. Dis. 2018, 10 (Suppl. S5), S629–S641. [Google Scholar] [CrossRef]
- Tukacs, M. Pharmacokinetics and Extracorporeal Membrane Oxygenation in Adults: A Literature Review. AACN Adv. Crit. Care 2018, 29, 246–258. [Google Scholar]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Abdulla, A.; Ewoldt, T.M.J.; Hunfeld, N.G.M.; Muller, A.E.; Rietdijk, W.J.R.; Polinder, S.; van Gelder, T.; Endeman, H.; Koch, B.C.P. The Effect of Therapeutic Drug Monitoring of Beta-Lactam and Fluoroquinolones on Clinical Outcome in Critically Ill Patients: The DOLPHIN Trial Protocol of a Multi-Centre Randomised Controlled Trial. BMC Infect. Dis. 2020, 20, 57. [Google Scholar] [CrossRef]
- Luxton, T.N.; King, N.; Wälti, C.; Jeuken, L.J.C.; Sandoe, J.A.T. A Systematic Review of the Effect of Therapeutic Drug Monitoring on Patient Health Outcomes during Treatment with Carbapenems. Antibiotics 2022, 11, 1311. [Google Scholar] [CrossRef]
- Cusumano, J.A.; Klinker, K.P.; Huttner, A.; Luther, M.K.; Roberts, J.A.; LaPlante, K.L. Towards precision medicine: Therapeutic drug monitoring-guided dosing of vancomycin and β-lactam antibiotics to maximize effectiveness and minimize toxicity. Am. J. Health-Syst. Pharm. 2020, 77, 1104–1112. [Google Scholar] [CrossRef]
- Davidson, R.; Cavalcanti, R.; Brunton, J.L.; Bast, D.J.; de Azavedo, J.C.; Kibsey, P.; Fleming, C.; Low, D.E. Resistance to levofloxacin and failure of treatment of pneumococcal pneumonia. N. Engl. J. Med. 2002, 346, 747–750. [Google Scholar] [CrossRef]
- Guillemot, D.; Carbon, C.; Balkau, B.; Geslin, P.; Lecoeur, H.; Vauzelle-Kervroëdan, F.; Bouvenot, G.; Eschwége, E. Low dosage and long treatment duration of beta-lactam: Risk factors for carriage of penicillin-resistant Streptococcus pneumoniae. JAMA 1998, 279, 365–370. [Google Scholar] [CrossRef]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Blondeau, J.M.; Hansen, G.; Metzler, K.; Hedlin, P. The Role of PK/PD Parameters to Avoid Selection and Increase of Resistance: Mutant Prevention Concentration. J. Chemother. 2004, 16 (Suppl. S3), 1–19. [Google Scholar] [CrossRef]
- Drlica, K.; Zhao, X. Mutant Selection Window Hypothesis Updated. Clin. Infect. Dis. 2007, 44, 681–688. [Google Scholar] [CrossRef]
- Ungphakorn, W.; Tängdén, T.; Sandegren, L.; Nielsen, E.I. A Pharmacokinetic-Pharmacodynamic Model Characterizing the Emergence of Resistant Escherichia coli Subpopulations during Ertapenem Exposure. J. Antimicrob. Chemother. 2016, 71, 2521–2533. [Google Scholar] [CrossRef] [Green Version]
- Smith, H.J.; Nichol, K.A.; Hoban, D.J.; Zhanel, G.G. Stretching the mutant prevention concentration (MPC) beyond its limits. J. Antimicrob. Chemother. 2003, 51, 1323–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livermore, D.M. Overstretching the mutant prevention concentration. J. Antimicrob. Chemother. 2003, 52, 732–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felton, T.W.; Goodwin, J.; O’Connor, L.; Sharp, A.; Gregson, L.; Livermore, J.; Howard, S.J.; Neely, M.N.; Hope, W.W. Impact of Bolus Dosing versus Continuous Infusion of Piperacillin and Tazobactam on the Development of Antimicrobial Resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 5811–5819. [Google Scholar] [CrossRef] [Green Version]
- Hovde, L.B.; Rotschafer, S.E.; Ibrahim, K.H.; Gunderson, B.; Hermsen, E.D.; Rotschafer, J.C. Mutation Prevention Concentration of Ceftriaxone, Meropenem, Imipenem, and Ertapenem against Three Strains of Streptococcus pneumoniae. Diagn. Microbiol. Infect. Dis. 2003, 45, 265–267. [Google Scholar] [CrossRef]
- MacVane, S.H.; Kuti, J.L.; Nicolau, D.P. Clinical Pharmacodynamics of Antipseudomonal Cephalosporins in Patients with Ventilator-Associated Pneumonia. Antimicrob. Agents Chemother. 2014, 58, 1359–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhaese, S.A.M.; Roberts, J.A.; Carlier, M.; Verstraete, A.G.; Stove, V.; De Waele, J.J. Population Pharmacokinetics of Continuous Infusion of Piperacillin in Critically Ill Patients. Int. J. Antimicrob. Agents 2018, 51, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Alobaid, A.S.; Wallis, S.C.; Jarrett, P.; Starr, T.; Stuart, J.; Lassig-Smith, M.; Mejia, J.L.O.; Roberts, M.S.; Roger, C.; Udy, A.A.; et al. Population Pharmacokinetics of Piperacillin in Nonobese, Obese, and Morbidly Obese Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e01276-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, N.J.; Grove, M.E.; Kiel, P.J.; O’Donnell, J.N.; Whited, L.K.; Rose, D.T.; Jones, D.R.; Scheetz, M.H. Population Pharmacokinetics of Cefepime in Febrile Neutropenia: Implications for Dose-Dependent Susceptibility and Contemporary Dosing Regimens. Int. J. Antimicrob. Agents 2017, 50, 482–486. [Google Scholar] [CrossRef]
- Madaras-Kelly, K.J.; Ostergaard, B.E.; Hovde, L.B.; Rotschafer, J.C. Twenty-Four-Hour Area under the Concentration-Time Curve/MIC Ratio as a Generic Predictor of Fluoroquinolone Antimicrobial Effect by Using Three Strains of Pseudomonas aeruginosa and an in Vitro Pharmacodynamic Model. Antimicrob. Agents Chemother. 1996, 40, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Tam, V.H.; Ledesma, K.R.; Vo, G.; Kabbara, S.; Lim, T.-P.; Nikolaou, M. Pharmacodynamic Modeling of Aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: Identifying Dosing Regimens to Suppress Resistance Development. Antimicrob. Agents Chemother. 2008, 52, 3987–3993. [Google Scholar] [CrossRef] [Green Version]
- Carcas, A.J.; Sevillano, D.; González, N.; Alou, L.; Gómez-Gil, R.; Muñoz, M.; Llanos, L.; Sanchez-Villanueva, R.J.; Gonzalez-Parra, E.; Giménez, M.-J.; et al. Evaluating the Optimal Time for Amikacin Administration with Respect to Haemodialysis Using an in Vitro Pharmacodynamic Simulation against Epidemic Nosocomial OXA-48 Producing Klebsiella pneumoniae ST405 Strains. J. Glob. Antimicrob. Resist. 2019, 19, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Docobo-Pérez, F.; Drusano, G.L.; Johnson, A.; Goodwin, J.; Whalley, S.; Ramos-Martín, V.; Ballestero-Tellez, M.; Rodriguez-Martinez, J.M.; Conejo, M.C.; van Guilder, M.; et al. Pharmacodynamics of Fosfomycin: Insights into Clinical Use for Antimicrobial Resistance. Antimicrob. Agents Chemother. 2015, 59, 5602–5610. [Google Scholar] [CrossRef] [Green Version]
- Plachouras, D.; Karvanen, M.; Friberg, L.E.; Papadomichelakis, E.; Antoniadou, A.; Tsangaris, I.; Karaiskos, I.; Poulakou, G.; Kontopidou, F.; Armaganidis, A.; et al. Population Pharmacokinetic Analysis of Colistin Methanesulfonate and Colistin after Intravenous Administration in Critically Ill Patients with Infections Caused by Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2009, 53, 3430–3436. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, B.T.; Landersdorfer, C.B.; Lenhard, J.R.; Cheah, S.-E.; Thamlikitkul, V.; Rao, G.G.; Holden, P.N.; Forrest, A.; Bulitta, J.B.; Nation, R.L.; et al. Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 3913–3920. [Google Scholar] [CrossRef] [Green Version]
- Dudhani, R.V.; Turnidge, J.D.; Nation, R.L.; Li, J. FAUC/MIC Is the Most Predictive Pharmacokinetic/Pharmacodynamic Index of Colistin against Acinetobacter baumannii in Murine Thigh and Lung Infection Models. J. Antimicrob. Chemother. 2010, 65, 1984–1990. [Google Scholar] [CrossRef] [Green Version]
- Boak, L.M.; Li, J.; Rayner, C.R.; Nation, R.L. Pharmacokinetic/Pharmacodynamic Factors Influencing Emergence of Resistance to Linezolid in an in Vitro Model. Antimicrob. Agents Chemother. 2007, 51, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Louie, A.; Kaw, P.; Liu, W.; Jumbe, N.; Miller, M.H.; Drusano, G.L. Pharmacodynamics of Daptomycin in a Murine Thigh Model of Staphylococcus aureus Infection. Antimicrob. Agents Chemother. 2001, 45, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Rose, W.E.; Leonard, S.N.; Rybak, M.J. Evaluation of Daptomycin Pharmacodynamics and Resistance at Various Dosage Regimens against Staphylococcus aureus Isolates with Reduced Susceptibilities to Daptomycin in an in Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrob. Agents Chemother. 2008, 52, 3061–3067. [Google Scholar] [CrossRef] [Green Version]
- Falcone, M.; Russo, A.; Venditti, M.; Novelli, A.; Pai, M.P. Considerations for Higher Doses of Daptomycin in Critically Ill Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia. Clin. Infect. Dis. 2013, 57, 1568–1576. [Google Scholar] [CrossRef] [Green Version]
- Nicasio, A.M.; Bulitta, J.B.; Lodise, T.P.; D’Hondt, R.E.; Kulawy, R.; Louie, A.; Drusano, G.L. Evaluation of Once-Daily Vancomycin against Methicillin-Resistant Staphylococcus aureus in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2012, 56, 682–686. [Google Scholar] [CrossRef] [Green Version]
- Lenhard, J.R.; Brown, T.; Rybak, M.J.; Meaney, C.J.; Norgard, N.B.; Bulman, Z.P.; Brazeau, D.A.; Gill, S.R.; Tsuji, B.T. Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure. Antimicrob. Agents Chemother. 2015, 60, 1584–1591. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-G.; Murakami, Y.; Andes, D.R.; Craig, W.A. Inoculum Effects of Ceftobiprole, Daptomycin, Linezolid, and Vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at Inocula of 10(5) and 10(7) CFU Injected into Opposite Thighs of Neutropenic Mice. Antimicrob. Agents Chemother. 2013, 57, 1434–1441. [Google Scholar] [CrossRef] [Green Version]
- Giacobbe, D.R.; Mora, S.; Giacomini, M.; Bassetti, M. Machine Learning and Multidrug-Resistant Gram-Negative Bacteria: An Interesting Combination for Current and Future Research. Antibiotics 2020, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, M.; Kabanza, F.; Nault, V.; Valiquette, L. Evaluation of a Machine Learning Capability for a Clinical Decision Support System to Enhance Antimicrobial Stewardship Programs. Artif. Intell. Med. 2016, 68, 29–36. [Google Scholar] [CrossRef]
- Poynton, M.R.; Choi, B.M.; Kim, Y.M.; Park, I.S.; Noh, G.J.; Hong, S.O.; Boo, Y.K.; Kang, S.H. Machine Learning Methods Applied to Pharmacokinetic Modelling of Remifentanil in Healthy Volunteers: A Multi-Method Comparison. J. Int. Med. Res. 2009, 37, 1680–1691. [Google Scholar] [CrossRef]
- Woillard, J.-B.; Labriffe, M.; Prémaud, A.; Marquet, P. Estimation of Drug Exposure by Machine Learning Based on Simulations from Published Pharmacokinetic Models: The Example of Tacrolimus. Pharmacol. Res. 2021, 167, 105578. [Google Scholar] [CrossRef]
- Smith, N.M.; Lenhard, J.R.; Boissonneault, K.R.; Landersdorfer, C.B.; Bulitta, J.B.; Holden, P.N.; Forrest, A.; Nation, R.L.; Li, J.; Tsuji, B.T. Using Machine Learning to Optimize Antibiotic Combinations: Dosing Strategies for Meropenem and Polymyxin B against Carbapenem-Resistant Acinetobacter baumannii. Clin. Microbiol. Infect. Dis. 2020, 26, 1207–1213. [Google Scholar] [CrossRef]
- Alshaer, M.H.; Maranchick, N.; Bai, C.; Maguigan, K.L.; Shoulders, B.; Felton, T.W.; Mathew, S.K.; Mardini, M.T.; Peloquin, C.A. Using Machine Learning to Define the Impact of Beta-Lactam Early and Cumulative Target Attainment on Outcomes in Intensive Care Unit Patients with Hospital-Acquired and Ventilator-Associated Pneumonia. Antimicrob. Agents Chemother. 2022, 66, e0056322. [Google Scholar] [CrossRef]
- Matsuzaki, T.; Kato, Y.; Mizoguchi, H.; Yamada, K. A Machine Learning Model That Emulates Experts’ Decision Making in Vancomycin Initial Dose Planning. J. Pharmacol. Sci. 2022, 148, 358–363. [Google Scholar] [CrossRef]
- Elbers, P.W.G.; Girbes, A.; Malbrain, M.L.N.G.; Bosman, R. Right Dose, Right Now: Using Big Data to Optimize Antibiotic Dosing in the Critically Ill. Anaesthesiol. Intensive Ther. 2015, 47, 457–463. [Google Scholar] [CrossRef]
- Tang, B.-H.; Guan, Z.; Allegaert, K.; Wu, Y.-E.; Manolis, E.; Leroux, S.; Yao, B.-F.; Shi, H.-Y.; Li, X.; Huang, X.; et al. Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction. Clin. Pharmacokinet. 2021, 60, 1435–1448. [Google Scholar] [CrossRef]
- Gowers, S.A.N.; Freeman, D.M.E.; Rawson, T.M.; Rogers, M.L.; Wilson, R.C.; Holmes, A.H.; Cass, A.E.; O’Hare, D. Development of a Minimally Invasive Microneedle-Based Sensor for Continuous Monitoring of β-Lactam Antibiotic Concentrations in Vivo. ACS Sens. 2019, 4, 1072–1080. [Google Scholar] [CrossRef]
Drug | Renal Elimination | Pk/Pd Target | Dosage Regimen Proposed in cRRT | Dosage Regimen Proposed in ECMO | |
---|---|---|---|---|---|
Time dependent antibiotics | |||||
β-lactams | fT > 100% MIC or fT > 100% 4 × MIC | fT > 1 × MIC (2–4 mg/L) | fT > 4 × MIC or high MIC (4–16 mg/L) | ||
Ceftriaxone | 30–60% | 2 g/24 h | 2 g/24 h [12] | Standard dose | |
Meropenem | 70–80% | 1 g/12 h, 500 mg/8 h 3 h PI or 500 mg/6 h. 1 g/8 h high flow rate [12,13] | 1 g/6 h 30 min or 500 mg/6 h 3 h PI [12,13] | Standard dose | |
Imipenem | 70% | 500 mg/6 h or 1 g/6 h high flow rate [12] | 1 g/6 h [12] | Standard dose | |
Piperacillin/Tazob. | 70–75% | 4 g/6 h or 12 g CI [14] | 4 g/6 h or 12 g CI [14] | Standard dose | |
Ceftazidime | 85% | 1 g/12 h [13] | 1250 mg/8 h or 1500 mg/8 h high flow rate [13] | Standard dose | |
Cefepime | 85% | 2 g/24 h low flow rate or 2 g/12 h high flow rate | 1 g/8 h or 2 g/12 h low flow rate; 2 g/8 h 3 h PI or 1 g/6 h or 4 g/24 h CI high flow rate [12,13] | 1 g/8 h or 1 g/12 h [15] | |
Ceftolozane/Tazob. | 85% | 0.5/0.25 g/8 h or 1/0.5 g CI low flow rate; 1/0.5 g/8 h or 1.5/0.75 g CI high flow rate [12] | 1/0.5 g/8 h or 1.5/0.75 g CI; 2/1 g/8 h IC high flow rate [12] | Standard dose | |
Ceftazidime/Avib. | 85% | 1/0.25 g/12 h [13] | 1/0.25 g/8 h or 2/0.5 g/8 h [12,13] | Standard dose | |
Ceftaroline | 85–90% | 400 mg/12 h [16] | 400 mg/12 h [16] | No data | |
Cefiderocol | 90% | 1.5 g/12 h [17] | 1.5 g/12 h or 2 g/8 h high flow rate [17] | No data | |
Clindamycin | 10–15% | AUC/MIC or fT > 100% MIC | 600–900 mg/6–8 h | No data | |
Fosfomycin | 85% | fT > 100% MIC or fT > 100% 4 × MIC. | 8 g/12 h or 4 g/6 h or 16 g CI [18] | No data | |
Concentration-dependent antibiotics | |||||
Aminoglycosides | >95% | Cmax/MIC > 8–12 | Amikacin 25 mg/kg/48 h; Gentamicin and Tobramicin 7–8 mg/kg/48 h | Standard dose [19] | |
If high effluent (≥35 mL/kg/h) assess c/24 h [20] | |||||
Concentration-dependent with time-dependent antibiotics | |||||
Azithromycin | 10–15% | AUC/MIC > 5 | 500 mg/24 h [21] | Standard dose [22] | |
Colistin | 60–70% | AUC/MIC > 50–65 | 3 MUI/8 h or 4.5 MUI/12 h [12,23] | Standard dose [24] | |
Cotrimoxazole | 80% Trimethoprim | Cmax/MIC and AUC/MIC | 5 mg Trimethoprim/kg/12 h [25] | Standard dose [26] | |
Glycopeptides | |||||
Teicoplanin | 65% | AUC/MIC ≥ 750 (CmIn 10–20 mg/L) or AUC/MIC ≥ 1500 (≥20–30 mg/L) | 10 mg/kg/12 h 4 doses and then if: | High standard dose [27] | |
CVVH: 10 mg/kg/48 h | |||||
CVVHD: 8 mg/kg/24 h | |||||
CVVHDF: 6 mg/kg/24 h | |||||
If high effluent rate (30–35 mL/kg/h), increase dose 30%. [28] | |||||
Vancomycin | 80% | AUC/MIC > 400 | 15–22 mg/kg/24 h if low effluent rates | High standard doses (higher doses than those recommended in renal dysfunction) [29] | |
15 mg/kg/12 h high effluent rate [30] | |||||
If residual diuresis > 0.5 mL/kg/h and effluent rate 0.6–3 L/h: 12.2–23.1 mg/kg/12 h. [31] | |||||
500 mg/12 h CVVH and 500 mg/8 h CVVHD [12] | |||||
Lipoglycopeptides | |||||
Dalbavancin | 20–35% | AUC/MIC > 111 | No data | No data | |
Daptomycin | 60% | AUC/MIC ≥ 666 | 6–8 mg/kg/24 h [12,32] | 10 mg/kg/24 h [33,34] | |
Oxazolidinones | |||||
Linezolid | 30–50% | 85%T > MIC y AUC/MIC > 80–120 | 600 mg/8–12 h (900 mg/8 h used by some authors) [35] | 600 mg/8–12 h [36] | |
Tedizolid | 15–20% | AUC/MIC > 3 | No data | No data | |
Quinolones | |||||
Ciprofloxacin | 65% | AUC/MIC > 125 or Cmax/MIC > 10 Gram-negative; AUC/MIC > 25–30 Gram-positive | 400 mg/12 h or 200–400 mg/8 h [12,37] | 400 mg/24 h [38] | |
Levofloxacin | 65% | 250 mg/24 h [12] | Standard dose | ||
Moxifloxacin | 20–25% | No data | No data | ||
Tigecycline | 10–15% | AUC/MIC: | 50 mg/12 h; Pneumonia: 100 mg/12 h | 100 mg/12 h | Standard dose [39] |
Intrabdominal > 6.96 | |||||
Pneumonia > 10.1 | |||||
Soft-tissue > 17.9 |
Antibiotic Group | Pk/Pd Index | Pk/Pd Suggested to Prevent Resistance | Clinical Pk/Pd Threshold for Toxicity | Main Side Effect Expected at High Dose |
---|---|---|---|---|
β-lactams | ||||
Carbapenems | %T > MIC | Cmin/MIC ≥ 6–8 | Cmin > 44.5 mg/L | Neurotoxicity |
Cephalosporins | %T > MIC | Cmin/MIC ≥ 6–8 | Cmin > 20 mg/L | Neurotoxicity |
Penicillins | %T > MIC | Cmin/MIC ≥ 6–8 | Cmin > 361 mg/L | Neurotoxicity |
Aminoglycosides | Cmax/MIC | Cmax/MIC ≥ 13 | Amikacin: Cmin > 2.5 mg/L Gentamicin, Tobramicin: Cmin > 0.5 mg/L | Nephrotoxicity |
Daptomycin | AUC/MIC | AUC/MIC ≥ 200 | Cmin ≥ 24.3 mg/L | Myopathy |
Fluoroquinolones | AUC/MIC | AUCMIC ≥ 200 | Unclear | QT prolongation, dysrhythmias, Neurotoxicity, gastrointestinal disorders |
Glycopeptides | AUC/MIC | AUC/MIC > 400–1800 | Cmin > 20 mg/L | Nephrotoxicity |
Linezolid | AUC/MIC | AUC > 124 mg/L/h | Cmin > 7 mg/L | Hematological toxicity |
Polymyxins * | AUC/MIC | Cmin ≥ 10 mg/L | Cmin > 2.4 mg/L | Nephrotoxicity |
Fosmomycin * | AUC/MIC | AUC/MIC > 3136 | Unclear | Hypernatremia, gastrointestinal disorders |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Ramos, J.; Gras-Martín, L.; Ramírez, P. Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics 2023, 12, 475. https://doi.org/10.3390/antibiotics12030475
Ruiz-Ramos J, Gras-Martín L, Ramírez P. Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics. 2023; 12(3):475. https://doi.org/10.3390/antibiotics12030475
Chicago/Turabian StyleRuiz-Ramos, Jesus, Laura Gras-Martín, and Paula Ramírez. 2023. "Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria" Antibiotics 12, no. 3: 475. https://doi.org/10.3390/antibiotics12030475
APA StyleRuiz-Ramos, J., Gras-Martín, L., & Ramírez, P. (2023). Antimicrobial Pharmacokinetics and Pharmacodynamics in Critical Care: Adjusting the Dose in Extracorporeal Circulation and to Prevent the Genesis of Multiresistant Bacteria. Antibiotics, 12(3), 475. https://doi.org/10.3390/antibiotics12030475