Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of U. narum Leaf Extract
2.3. Synthesis of AgNPs
2.4. Characterization of Green Synthesised AgNPs
2.5. Catalytic Capacity Evaluation
2.6. Cyclic Voltammetry Analysis
2.7. Chick Chorioallantoic Membrane Assay
2.8. Cytotoxicity of AgNps in Cancer Cell Lines
2.9. Cytotoxicity of AgNPs in Fish Cell Lines
2.10. Antimicrobial Activity
3. Results and Discussion
3.1. UV-Vis Spectral Analysis
3.2. FTIR Spectral Analysis
3.3. SEM and TEM Analysis
3.4. Catalytic Studies (Reduction of 4-Nitrophenol to 4-Aminophenol)
3.5. CV Analysis
3.6. Antiangiogenic Assay
3.7. Anticancer Activity of AgNPs
3.8. Cytotoxicity Assay in Fish Cell Lines
3.9. Antimicrobial Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmudin, L.; Suharyadi, E.; Utomo, A.B.S.; Abraha, K. Optical Properties of Silver Nanoparticles for Surface Plasmon Resonance (SPR)-Based Biosensor Applications. J. Mod. Phys. 2015, 6, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles and Assessment of Their Anticancer, Antimicrobial, Antioxidant and Catalytic Properties. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh, G.; Gunasekar, P.H.; Kokila, D.; Prabhu, D.; Dinesh, D.; Ravichandran, N.; Ramesh, B.; Koodalingam, A.; Siva, G.V. Green Synthesis of Silver Nanoparticles Using Delphinium denudatum Root Extract Exhibits Antibacterial and Mosquito Larvicidal Activities. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2014, 127, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Makwana, B.A.; Vyas, D.J.; Bhatt, K.D.; Darji, S.; Jain, V.K. Novel Fluorescent Silver Nanoparticles: Sensitive and Selective Turn off Sensor for Cadmium Ions. Appl. Nanosci. 2016, 6, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Nnemeka, I.; Sule, M.; Friday, A.; Philbus, D.; Godwin, E.; Shola, O.; Moses, O.; Rufus, S. Rapid Synthesis of Silver Nano Particles Capped In Starch and its Anti–Mold Activity. Int. J. Innov. Sci. Res. 2014, 9, 16–25. [Google Scholar]
- Temple, T.L.; Mahanama, G.D.K.; Reehal, H.S.; Bagnall, D.M. Influence of Localized Surface Plasmon Excitation in Silver Nanoparticles on the Performance of Silicon Solar Cells. Sol. Energy Mater. Sol. Cells 2009, 93, 1978–1985. [Google Scholar] [CrossRef]
- Al-Thabaiti, S.A.; Al-Nowaiser, F.M.; Obaid, A.Y.; Al-Youbi, A.O.; Khan, Z. Formation and Characterization of Surfactant Stabilized Silver Nanoparticles: A Kinetic Study. Coll. Surf. B Biointerfaces 2008, 67, 230–237. [Google Scholar] [CrossRef]
- Khan, Z.; Al-Thabaiti, S.A.; El-Mossalamy, E.H.; Obaid, A.Y. Studies on the Kinetics of Growth of Silver Nanoparticles in Different Surfactant Solutions. Coll. Surf. B Biointerfaces 2009, 73, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Mulfinger, L.; Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322–325. [Google Scholar] [CrossRef]
- Won, H.I.; Nersisyan, H.; Won, C.W.; Lee, J.-M.; Hwang, J.-S. Preparation of Porous Silver Particles Using Ammonium Formate and Its Formation Mechanism. Chem. Eng. J. 2010, 156, 459–464. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Reduction of Silver Nanoparticles in DMF. Formation of Monolayers and Stable Colloids. Pure Appl. Chem. 2000, 72, 83–90. [Google Scholar] [CrossRef]
- LidstroÈm, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave Assisted Organic Synthesis-a Review. Tetrahedron 2001, 57, 9225–9283. [Google Scholar] [CrossRef]
- Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Microwave Assisted Green Synthesis of Silver Nanoparticles Using Leaf Extract of Elephantopus scaber and Its Environmental and Biological Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 795–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, S.; Mathew, B. Synthesis of Silver Nanoparticles by Microwave Irradiation and Investigation of Their Catalytic Activity. Res. J. Recent Sci. 2014, 3, 185–191. [Google Scholar]
- Saidu, F.K.; Mathew, A.; Parveen, A.; Valiyathra, V.; Thomas, G.V. Novel Green Synthesis of Silver Nanoparticles Using Clammy Cherry (Cordia obliqua Willd) Fruit Extract and Investigation on Its Catalytic and Antimicrobial Properties. SN Appl. Sci. 2019, 1, 1368. [Google Scholar] [CrossRef] [Green Version]
- Smitha, K.R.; Babu, T.D.; Achuthan, C.R. phytochemical screening and in vitro cytotoxicity analysis of Uvaria narum (dunal) wall. Asian J. Phytomed. Clin. Res. 2014, 2, 40–47. [Google Scholar]
- Patil, K.; Wadekar, R.; Wadekar, R.; Wadekar, R. Phyto-Pharmacognostical Studies and HPTLC Fingerprinting Profile of Uvaria narum (Dunal) Wall. Ex Wight. Pharmacogn. J. 2017, 9, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Patil, J.; Tatiya, A.; Wadekar, R.; Girase, T.; Patel, K. Phytochemistry of Uvaria Narum: A Multifaceted Perspec tive and Ethnopharmacological Potential. Chem. Proc. 2022, 12, 18. [Google Scholar] [CrossRef]
- Qiao, Z.; Guo, P.; Yang, D.; Pei, Z.; Wang, M.; Liu, J.; Wang, Q. Evaluation of Acute Toxicity Response to the Algae Chlorella Pyrenoidosa of Biosynthetic Silver Nanoparticles Catalysts. Environ. Sci. Pollut. Res. 2023, 30, 10955–10968. [Google Scholar] [CrossRef]
- Giri, S.; Bose, J.C.; Chandrasekar, A.; Tiwary, B.K.; Gajalakshmi, P.; Chatterjee, S. Increased Plasma Nitrite and von Willebrand Factor Indicates Early Diagnosis of Vascular Diseases in Chemotherapy Treated Cancer Patients. Cardiovasc. Toxicol. 2019, 19, 36–47. [Google Scholar] [CrossRef]
- Niemisto, A.; Dunmire, V.; Yli-Harja, O.; Zhang, W.; Shmulevich, I. Robust Quantification of in Vitro Angiogenesis through Image Analysis. IEEE Trans. Med. Imaging 2005, 24, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Mathew, B. Microwave Assisted Biosynthesis of Silver Nanoparticles Using the Rhizome Extract of Alpinia galanga and Evaluation of Their Catalytic and Antimicrobial Activities. J. Nanopart. 2014, 2014, 967802. [Google Scholar] [CrossRef] [Green Version]
- Jana, J.; Ganguly, M.; Pal, T. Enlightening Surface Plasmon Resonance Effect of Metal Nanoparticles for Practical Spectroscopic Application. RSC Adv. 2016, 6, 86174–86211. [Google Scholar] [CrossRef]
- Singh, C.K.; Baboota, R.; Kr Naik, P.; Singh, H. Biocompatible Synthesis Of Silver And Gold Nanoparticles Using Leaf Extract of Dalbergia Sissoo. Adv. Mater. Lett. 2012, 3, 279–285. [Google Scholar] [CrossRef]
- Gangula, A.; Podila, R.M.R.; Karanam, L.; Janardhana, C.; Rao, A.M. Catalytic Reduction of 4-Nitrophenol Using Biogenic Gold and Silver Nanoparticles Derived from Breynia rhamnoides. Langmuir 2011, 27, 15268–15274. [Google Scholar] [CrossRef]
- Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T. Photochemical green synthesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 2010, 26, 2885–2893. [Google Scholar] [CrossRef] [PubMed]
- Guadie Assefa, A.; Adugna Mesfin, A.; Legesse Akele, M.; Kokeb Alemu, A.; Gangapuram, B.R.; Guttena, V.; Alle, M. Microwave-assisted green synthesis of gold nanoparticles using Olibanum gum (Boswellia serrate) and its catalytic reduction of 4- nitrophenol and hexacyanoferrate (III) by sodium borohydride. J. Clust. Sci. 2016, 28, 917–935. [Google Scholar] [CrossRef]
- Pradhan, N.; Pal, A.; Pal, T. Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Coll. Surf. A Physicochem. Eng. Asp. 2002, 196, 247–257. [Google Scholar] [CrossRef]
- Pal, T.; De, S.; Jana, N.R.; Pradhan, N.; Mandal, R.; Pal, A.; Beezer, A.E.; Mitchell, J.C. Organized media as redox catalysts. Langmuir 1998, 14, 4724–4730. [Google Scholar] [CrossRef]
- Pourmortazavi, S.M.; Taghdiri, M.; Makari, V.; Rahimi-Nasrabadi, M.; Batooli, H. Reducing Power of Eucalyptus Oleosa Leaf Extracts and Green Synthesis of Gold Nanoparticles Using the Extract. Int. J. Food Prop. 2017, 20, 1097–1103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S. Recent Progress toward Antiangiogenesis Application of Nanomedicine in Cancer Therapy. Future Sci. OA 2018, 4, FSO318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setyawati, M.I.; Leong, D.T. Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. ACS Appl. Mater. Interfaces 2017, 9, 6690–6703. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Lee, K.-J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic Properties of Silver Nanoparticles. Biomaterials 2009, 30, 6341–6350. [Google Scholar] [CrossRef]
- Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of Anti-Angiogenic Property of Gold Nanoparticles: Role of Nanoparticle Size and Surface Charge. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Jo, D.H.; Kim, J.H.; Son, J.G.; Piao, Y.; Lee, T.G.; Kim, J.H. Inhibitory Activity of Gold and Silica Nanospheres to Vascular Endothelial Growth Factor (VEGF)-Mediated Angiogenesis Is Determined by Their Sizes. Nano Res. 2014, 7, 844–852. [Google Scholar] [CrossRef]
- Oves, M.; Aslam, M.; Rauf, M.A.; Qayyum, S.; Qari, H.A.; Khan, M.S.; Alam, M.Z.; Tabrez, S.; Pugazhendhi, A.; Ismail, I.M.I. Antimicrobial and Anticancer Activities of Silver Nanoparticles Synthesized from the Root Hair Extract of Phoenix dactylifera. Mater. Sci. Eng. C 2018, 89, 429–443. [Google Scholar] [CrossRef]
- Bethu, M.S.; Netala, V.R.; Domdi, L.; Tartte, V.; Janapala, V.R. Potential Anticancer Activity of Biogenic Silver Nanoparticles Using Leaf Extract of Rhynchosia suaveolens: An Insight into the Mechanism. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 1), 104–114. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, Y.-Y.; Huang, J.; Chen, C.-Y.; Wang, Z.-X.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Vo, N.T.; Bufalino, M.R.; Hartlen, K.D.; Kitaev, V.; Lee, L.E. Cytotoxicity Evaluation of Silica Nanoparticles Using Fish Cell Lines. Vitro Cell. Dev. Biol.-Anim. 2014, 50, 427–438. [Google Scholar] [CrossRef]
- Chae, Y.J.; Pham, C.H.; Lee, J.; Bae, E.; Yi, J.; Gu, M.B. Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2009, 94, 320–327. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Q.; Li, H.; Liu, W.; Wang, T.; Jiang, G. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquat. Toxicol. 2010, 100, 160–167. [Google Scholar] [CrossRef]
- Bilberg, K.; Hovgaard, M.B.; Besenbacher, F.; Baatrup, E. In vivo toxicity of silver nanoparticles and silver ions in zebra fish (Danio rerio). J. Toxicol. 2012, 2012, 293784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.E.; Kim, S.; Ahn, J.H.; Youn, P.; Kang, J.S.; Park, K.; Yi, J.; Ryu, D.Y. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebra fish. Aquat. Toxicol. 2010, 100, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Griffitt, R.J.; Luo, J.; Gao, J.; Bonzongo, J.-C.; Barber, D.S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008, 27, 1972–1978. [Google Scholar] [CrossRef]
- Johari, S.A.; Kalbassi, M.R.; Soltani, M.; Yu, I.J. Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iran. J. Fish. Sci. 2013, 12, 76–95. [Google Scholar]
- Griffitt, R.J.; Brown-Peterson, N.J.; Savin, D.A.; Manning, C.S.; Boube, I.; Ryan, R.A.; Brouwer, M. Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows (Cyprinodon variegatus). Environ. Toxicol. Chem. 2012, 31, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Hogstrand, C.; Galvez, F.; Munger, R.S. The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss): 1. The effects of ionic Ag+ Aquat. Toxicology 1996, 35, 93–109. [Google Scholar] [CrossRef]
- Hogstrand, C.; Galvez, F.; Wood, C.M. Toxicity, silver accumulation and metallothionein induction in freshwater rainbow trout during exposure to different silver salts. Environ. Toxicol. Chem. 1996, 15, 1102–1108. [Google Scholar] [CrossRef]
- Thangaraj, R.S.; Narendrakumar, L.; Prasannan Geetha, P.; Shanmuganathan, A.R.; Dharmaratnam, A. and Nithianantham, S.R. Comprehensive update on inventory of finfish cell lines developed during the last decade (2010–2020). Rev. Aquacult. 2021, 13, 2248–2288. [Google Scholar] [CrossRef]
- Fernández, D.; García-Gómez, C.; Babín, M. In vitro evaluation of cellular responses induced by ZnO na-noparticles, zinc ions and bulk ZnO in fish cells. Sci. Total Environ. 2013, 452–453, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Connolly, M.; Fernández-Cruz, M.L.; Vijver, M.G.; Fernández, M.; Conde, E.; de Snoo, G.R.; Peijnenburg, W.J.; Navas, J.M. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 2014, 8, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Taju, G.; Abdul-Majeed, S.; Nambi, K.S.; Sahul-Hameed, A.S. In vitro assay for the toxicity of silver na-noparticles using heart and gill cell lines of Catla catla and gill cell line of Labeo rohita. Comp. Bio-Chem. Physiol. Pt. C 2014, 161, 41–52. [Google Scholar]
- Connolly, M.; Fernandez-Cruz, M.L.; Quesada-Garcia, A.; Alte, L.; Segner, H.; Navas, J.M. Comparative Cyto-toxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines (RTL-W1, RTH-149, RTG-2) and Primary Hepatocytes. Int. J. Environ. Res. Public Health 2015, 12, 5386–5405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver Nanoparticles: A New View on Mechanistic Aspects on Antimicrobial Activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar] [CrossRef]
- Mathew, A.; Analiparambil Ravindran, R.; Vazhanthodi, A.R.; Valiyaparambil Sivadasan, B.; Ovungal, S.; Madathilpadi Subrahmanian, S.; Chittadimangalath, P.; Anthyalam Parambil, A. Microwave-assisted greener synthesis of Silver nanoparticles using Entada rheedii leaf extract and investigation of its anticancer and antimicrobial properties. Int. J. Nano Dimens. 2022, 13, 329–334. [Google Scholar]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajaykumar, A.P.; Mathew, A.; Chandni, A.P.; Varma, S.R.; Jayaraj, K.N.; Sabira, O.; Rasheed, V.A.; Binitha, V.S.; Swaminathan, T.R.; Basheer, V.S.; et al. Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics 2023, 12, 564. https://doi.org/10.3390/antibiotics12030564
Ajaykumar AP, Mathew A, Chandni AP, Varma SR, Jayaraj KN, Sabira O, Rasheed VA, Binitha VS, Swaminathan TR, Basheer VS, et al. Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics. 2023; 12(3):564. https://doi.org/10.3390/antibiotics12030564
Chicago/Turabian StyleAjaykumar, Anthyalam Parambil, Anjaly Mathew, Ayanam Parambath Chandni, Sudhir Rama Varma, Kodangattil Narayanan Jayaraj, Ovungal Sabira, Vazhanthodi Abdul Rasheed, Valiyaparambil Sivadasan Binitha, Thangaraj Raja Swaminathan, Valaparambil Saidumohammad Basheer, and et al. 2023. "Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties" Antibiotics 12, no. 3: 564. https://doi.org/10.3390/antibiotics12030564
APA StyleAjaykumar, A. P., Mathew, A., Chandni, A. P., Varma, S. R., Jayaraj, K. N., Sabira, O., Rasheed, V. A., Binitha, V. S., Swaminathan, T. R., Basheer, V. S., Giri, S., & Chatterjee, S. (2023). Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties. Antibiotics, 12(3), 564. https://doi.org/10.3390/antibiotics12030564