Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Results
2.1. Inclusion of Studies
2.2. Assessment of Quality
2.3. Baseline Characteristics in Patients Where CS Was Used Alone
2.4. Baseline Characteristics When CS Was Used in Combination
2.5. Antimicrobial Susceptibility, Dosage of CS, and Outcome of Patients When CS Was Used Alone
2.6. Outcome of Patients When CS Was Used in Combination
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Inclusion and Exclusion Criteria
4.3. Screening and Full-Text Review
4.4. Data Extraction
4.5. Critical Appraisal of the Included Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cisneros, J.; Rodríguez-Baño, J. Nosocomial bacteremia due to Acinetobacter baumannii: Epidemiology, clinical features and treatment. Clin. Microbiol. Infect. 2002, 8, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernández-Hinojosa, E.; Aldabó-Pallás, T.; Cayuela, A.; Marquez-Vácaro, J.A.; Garcia-Curiel, A.; Jiménez-Jiménez, F.J. Acinetobacter baumannii ventilator-associated pneumonia: Epidemiological and clinical findings. Intensiv. Care Med. 2005, 31, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Chopra, T.; Marchaim, D.; Awali, R.A.; Krishna, A.; Johnson, P.; Tansek, R.; Chaudary, K.; Lephart, P.; Slim, J.; Hothi, J.; et al. Epidemiology of Bloodstream Infections Caused by Acinetobacter baumannii and Impact of Drug Resistance to both Carbapenems and Ampicillin-Sulbactam on Clinical Outcomes. Antimicrob. Agents Chemother. 2013, 57, 6270–6275. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S. ReviewA parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J. Infect. Public Health 2023, 16, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Manchanda, V.; Sanchaita, S.; Singh, N. Multidrug resistant Acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Han, Y.; Zhao, J.; Wei, C.; Cui, J.; Wang, R.; Liu, Y. Tigecycline treatment experience against multidrug-resistant Acinetobacter baumannii infections: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2016, 47, 107–116. [Google Scholar] [CrossRef]
- Fragkou, P.C.; Poulakou, G.; Blizou, A.; Blizou, M.; Rapti, V.; Karageorgopoulos, D.E.; Koulenti, D.; Papadopoulos, A.; Matthaiou, D.K.; Tsiodras, S. The Role of Minocycline in the Treatment of Nosocomial Infections Caused by Multidrug, Extensively Drug and Pandrug Resistant Acinetobacter baumannii: A Systematic Review of Clinical Evidence. Microorganisms 2019, 7, 159. [Google Scholar] [CrossRef]
- Vázquez-López, R.; Solano-Gálvez, S.G.; Vignon-Whaley, J.J.J.; Vaamonde, J.A.A.; Alonzo, L.A.P.; Reséndiz, A.R.; Álvarez, M.M.; López, E.N.V.; Franyuti-Kelly, G.; Álvarez-Hernández, D.A.; et al. Acinetobacter baumannii Resistance: A Real Challenge for Clinicians. Antibiotics 2020, 9, 205. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, H.; Lu, H.; Qiu, Z.; He, J. Bioprosthetic Tricuspid Valve Endocarditis Caused by {Acinetobacter} Baumannii Complex, a Case Report and Brief Review of the Literature. J. Cardiothorac. Surg. 2015, 10, 149. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kim, C.O.; Park, Y.S.; Yoon, H.J.; Shin, S.Y.; Kim, Y.K.; Kim, M.S.; Kim, Y.A.; Song, Y.G.; Yong, D.; et al. Comparison of Efficacy of Cefoperazone/Sulbactam and Imipenem/Cilastatin for Treatment of {Acinetobacter} Bacteremia. Yonsei Med. J. 2006, 47, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wang, X.; Wang, W.; Zhao, X. Comparison of the efficacies of three empirically-selected antibiotics for treating Acinetobacter baumannii pulmonary infection: Experience from a teaching hospital in China a. Int. J. Clin. Pharmacol. Ther. 2017, 55, 588–593. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Q.; Wang, P.; Zhu, D.; Ye, X.; Wu, S.; Wang, M. Clonal dissemination of extensively drug-resistant Acinetobacter baumannii producing an OXA-23 β-lactamase at a teaching hospital in Shanghai, China. J. Microbiol. Immunol. Infect. 2015, 48, 101–108. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Chen, L.; Meng, T.; Liu, L.; Hao, R.; Dong, H.; Wang, X.; Dong, Y. Treatment efficacy of tigecycline in comparison to cefoperazone/ sulbactam alone or in combination therapy for carbapenenm-resistant Acinetobacter baumannii infections. Pak. J. Pharm. Sci. 2020, 33, 161–168. [Google Scholar] [PubMed]
- Lin, S.-Y.; Huang, Z.-H.; Chen, H.-C.; Chang, D.-M.; Lu, C.-C. Multidrug-resistance Acinetobacter baumannii pneumonia in a rheumatoid arthritis patient receiving tumor necrosis factor inhibitor: A Case Report. Medicine 2018, 97, e11730. [Google Scholar] [CrossRef] [PubMed]
- Nakwan, N.; Wannaro, J.; Nakwan, N.; Patungkalo, W.; Chokephaibulkit, K. Clinical Features, Risk Factors, and Outcome of Carbapenem-Resistant Acinetobacter Baumannii Bacteremia in a Thai Neonatal Intensive Care Unit. Asian Biomed. 2012, 6, 473–479. [Google Scholar] [CrossRef]
- Niu, T.; Luo, Q.; Li, Y.; Zhou, Y.; Yu, W.; Xiao, Y. Comparison of Tigecycline or Cefoperazone/Sulbactam therapy for bloodstream infection due to Carbapenem-resistant Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2019, 8, 52. [Google Scholar] [CrossRef]
- Pan, T.; Liu, X.; Xiang, S.; Ji, W. Treatment for patients with multidrug resistant Acinetobacter baumannii pulmonary infection. Exp. Ther. Med. 2016, 11, 1345–1347. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Zeng, W.; Xu, Y.; Liao, W.; Xu, W.; Zhou, T.; Cao, J.; Chen, L. Bloodstream infections caused by ST2 Acinetobacter baumannii: Risk factors, antibiotic regimens, and virulence over 6 years period in China. Antimicrob. Resist. Infect. Control 2021, 10, 16. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, M.; Zhou, S. Observation of clinical efficacy of the cefoperazone/sulbactam anti-infective regimen in the treatment of multidrug-resistant Acinetobacter baumannii lung infection. J. Clin. Pharm. Ther. 2022, 47, 1020–1027. [Google Scholar] [CrossRef]
- Arslan Gülen, T.; Imre, A.; Ödemiş, I.; Kayabaş, Ü. Acinetobacter Baumannii Infections and Antibiotic Resistance in Hospitalized Patients in an Education and Research Hospital: {A} Six-Year Analysis. Flora 2021, 25, 563–571. [Google Scholar] [CrossRef]
- Ning, F.; Shen, Y.; Chen, X.; Zhao, X.; Wang, C.; Rong, Y.; Du, W.; Wen, C.; Zhang, G. A combination regimen of meropenem, cefoperazone-sulbactam and minocycline for extensive burns with pan-drug resistant Acinetobacter baumannii infection. Chin. Med. J. 2014, 127, 1177–1179. [Google Scholar] [PubMed]
- Qin, Y.; Zhang, J.; Wu, L.; Zhang, D.; Fu, L.; Xue, X. Comparison of the treatment efficacy between tigecycline plus high-dose cefoperazone-sulbactam and tigecycline monotherapy against ventilator-associated pneumonia caused by extensively drug-resistant Acinetobacter baumannii. Int. J. Clin. Pharmacol. Ther. 2018, 56, 120–129. [Google Scholar] [CrossRef]
- Xue, X.; Zhou, T.; Wang, G.; Zhou, S. Treatment of Pulmonary Infection of Extensively Drug-Resistant {Acinetobacter} Baumannii with Intravenous Colistin Sulfate Combined with Atomization: A Case Report. Ann. Palliat. Med. 2021, 10, 9288–9296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Wang, Y.; Cao, W.; Zhang, J. A Case Report of Persistent Acinetobacter baumannii Bloodstream Infection. Jundishapur J. Microbiol. 2019, 12, e81946. [Google Scholar] [CrossRef]
- Masoud, S.S.; Kovacevich, A.; Gangji, R.; Nyawale, H.; Nyange, M.; Ntukula, A. Extent and Resistance Patterns of ESKAPE Pathogens Isolated in Pus Swabs from Hospitalized Patients. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 3511306. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Chen, Y.; Wu, J.; Guo, B.; Wu, X.; Zhang, Y.; Wang, M.; Ya, R.; Huang, H. Combined PK/PD Index May Be a More Appropriate PK/PD Index for Cefoperazone/Sulbactam against Acinetobacter baumannii in Patients with Hospital-Acquired Pneumonia. Antibiotics 2022, 11, 703. [Google Scholar] [CrossRef]
- Ku, Y.-H.; Yu, W.-L. Cefoperazone/sulbactam: New composites against multiresistant gram negative bacteria? Infect. Genet. Evol. 2021, 88, 104707. [Google Scholar] [CrossRef]
- Santimaleeworagun, W.; Saelim, W.; Thunyaharn, S.; Changpradub, D.; Juntanawiwat, P. Pharmacodynamic profiling of optimal sulbactam regimens against carbapenem-resistant Acinetobacter baumannii for critically ill patients. Asian Pac. J. Trop. Biomed. 2018, 8, 14. [Google Scholar] [CrossRef]
- Craig, W.A.; Gerber, A.U. Pharmacokinetics of Cefoperazone: A Review. Drugs 1981, 22 (Suppl. 1), 35–45. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, A.R.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase–Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2021, 74, 2089–2114. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.-J.; Cuberos, L.; Pichardo, C.; Caballero, F.J.; Moreno, I.; Jiménez-Mejías, M.E.; García-Curiel, A.; Pachón, J. Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J. Antimicrob. Chemother. 2001, 47, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Lee, S.H.; Lee, S.Y.; Yang, S.; Noh, H.; Chung, E.K.; Lee, J.I. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: A systemic review and Bayesian network meta-analysis. Crit Care 2017, 21, 319. [Google Scholar] [CrossRef]
- Lenhard, J.R.; Smith, N.M.; Bulman, Z.P.; Tao, X.; Thamlikitkul, V.; Shin, B.S.; Nation, R.L.; Li, J.; Bulitta, J.B.; Tsuji, B.T. High-Dose Ampicillin-Sulbactam Combinations Combat Polymyxin-Resistant Acinetobacter baumannii in a Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2017, 61, e01268-16. [Google Scholar] [CrossRef] [PubMed]
- Betrosian, A.P.; Frantzeskaki, F.; Xanthaki, A.; Georgiadis, G. High-dose ampicillin-sulbactam as an alternative treatment of late-onset VAP from multidrug-resistant Acinetobacter baumannii. Scand. J. Infect. Dis. 2007, 39, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Karamouzos, V.; Lefkaditi, A.; Sklavou, C.; Kolonitsiou, F.; Christofidou, M.; Fligou, F.; Gogos, C.; Marangos, M. Triple combination therapy with high-dose ampicillin/sulbactam, high-dose tigecycline and colistin in the treatment of ventilator-associated pneumonia caused by pan-drug resistant Acinetobacter baumannii: A case series study. Le Infez. Med. 2019, 27, 11–16. [Google Scholar]
- Abdul-Mutakabbir, J.; Yim, J.; Nguyen, L.; Maassen, P.; Stamper, K.; Shiekh, Z.; Kebriaei, R.; Shields, R.; Castanheira, M.; Kaye, K.; et al. In Vitro Synergy of Colistin in Combination with Meropenem or Tigecycline against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics 2021, 10, 880. [Google Scholar] [CrossRef]
- Makris, D.; Petinaki, E.; Tsolaki, V.; Manoulakas, E.; Mantzarlis, K.; Apostolopoulou, O.; Sfyras, D.; Zakynthinos, E. Colistin versus Colistin Combined with AmpicillinSulbactam for Multiresistant Acinetobacter baumannii Ventilator-associated Pneumonia Treatment: An Open-label Prospective Study. Indian J. Crit. Care Med. 2018, 22, 67–77. [Google Scholar] [CrossRef]
- Beganovic, M.; Daffinee, K.E.; Luther, M.K.; LaPlante, K.L. Minocycline Alone and in Combination with Polymyxin B, Meropenem, and Sulbactam against CarbapenemSusceptible and -Resistant Acinetobacter baumannii in an In Vitro Pharmacodynamic Model. Antimicrob. Agents Chemother. 2021, 65, e01680-20. [Google Scholar] [CrossRef]
- Li, T.; Sheng, M.; Gu, T.; Zhang, Y.; Yirepanjiang, A.; Li, Y. In vitro assessment of cefoperazone-sulbactam based combination therapy for multidrug-resistant Acinetobacter baumannii isolates in China. J. Thorac. Dis. 2018, 10, 1370–1376. [Google Scholar] [CrossRef]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 2012, 141, 1214–1222. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and Rifampicin Compared With Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter baumannii: A Multicenter, Randomized Clinical Trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
- Kaye, K.S.; University of Michigan. Trial for the Treatment of Extensively Drug-Resistant Gram-Negative Bacilli. Available online: https://clinicaltrials.gov/ct2/show/NCT01597973 (accessed on 14 August 2021).
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J. Glob. Antimicrob. Resist. 2018, 17, 66–71. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Mavroudis, A.D.; Georgiou, M.; Falagas, M.E. Intravenous colistin combination antimicrobial treatment vs. monotherapy: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 51, 535–547. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 10–39. [Google Scholar] [CrossRef]
- Dixit, D.; Madduri, R.P.; Sharma, R. The role of tigecycline in the treatment of infections in light of the new black box warning. Expert Rev. Anti-Infect. Ther. 2014, 12, 397–400. [Google Scholar] [CrossRef]
- Gong, J.; Su, D.; Shang, J.; Yu, H.; Du, G.; Lin, Y.; Sun, Z.; Liu, G. Efficacy and safety of high-dose tigecycline for the treatment of infectious diseases: A meta-analysis. Medicine 2019, 98, e17091. [Google Scholar] [CrossRef]
- Laishram, S.; Anandan, S.; Devi, B.Y.; Elakkiya, M.; Priyanka, B.; Bhuvaneshwari, T.; Peter, J.V.; Subramani, K.; Balaji, V. Determination of synergy between sulbactam, meropenem and colistin in carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii isolates and correlation with the molecular mechanism of resistance. J. Chemother. 2016, 28, 297–303. [Google Scholar] [CrossRef]
- Chiang, T.-T.; Huang, T.-W.; Sun, J.-R.; Kuo, S.-C.; Cheng, A.; Liu, C.-P.; Liu, Y.-M.; Yang, Y.-S.; Chen, T.-L.; Lee, Y.-T.; et al. Biofilm formation is not an independent risk factor for mortality in patients with Acinetobacter baumannii bacteremia. Front. Cell. Infect. Microbiol. 2022, 12, 964539. [Google Scholar] [CrossRef]
- Donadu, M.G.; Mazzarello, V.; Cappuccinelli, P.; Zanetti, S.; Madléna, M.; Nagy, L.; Stájer, A.; Burián, K.; Gajdács, M. Relationship between the Biofilm-Forming Capacity and Antimicrobial Resistance in Clinical Acinetobacter baumannii Isolates: Results from a Laboratory-Based In Vitro Study. Microorganisms 2021, 9, 2384. [Google Scholar] [CrossRef]
- National Institutes of Health. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. 2014. Available online: https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/cohort (accessed on 8 March 2023).
Author | Year | Type of Study | Pneumonia | Bloodstream Infection | Urinary Tract Infection | Skin-Soft Tissue Infection | Intra-Abdominal Infection | |
---|---|---|---|---|---|---|---|---|
1 | Chen et al. [9] | 2015 | Case Report | 1 (100%) | ||||
2 | Choi et al. [10] | 2006 | Retrospective Observational Study | 15 (43%) | 13 (37%) | 2 (6%) | 1 (3%) | 4 (11%) |
3 | Li and Wang et al. [11] | 2017 | Retrospective Observational Study | 13 (100%) | ||||
4 | Li and Guo et al. [12] | 2015 | Retrospective Observational Study | 4 (100%) | ||||
5 | Li and Xie et al. [13] | 2020 | Retrospective Observational Study | 50 (71%) | 7 (10%) | 13 (19%) | ||
6 | Lin et al. [14] | 2018 | Case Report | 1 (100%) | ||||
7 | Nakwan et al. [15] | 2012 | Retrospective Observational Study | 3 (100%) | ||||
8 | Niu et al. [16] | 2019 | Retrospective Observational Study | 7 (70%) | 2 (20%) | 1 (10%) | ||
9 | Pan et al. [17] | 2016 | Retrospective Observational Study | 15 (100%) | ||||
10 | Yu et al. [18] | 2021 | Retrospective Observational Study | 14 (100%) | ||||
11 | Wang et al. [19] | 2022 | Retrospective Observational Study | 69 (100%) |
Author | Year | Type of Study | Pneumonia | Bloodstream Infection | Urinary Tract Infection | Skin-Soft Tissue Infection | Intra-Abdominal Infection | |
---|---|---|---|---|---|---|---|---|
1 | Arslan Gülen et al. [20] | 2021 | Retrospective Observational Study | 7 (58%) | 3 (25%) | 1 (8%) | 1 (8%) | |
2 | Li and Guo et al. [12] | 2015 | Retrospective Observational Study | |||||
3 | Li and Xie et al. [13] | 2020 | Retrospective Observational Study | 50 (71%) | 6 (9%) | 7 (10%) | 7 (10%) | |
4 | Ning et al. [21] | 2014 | Retrospective Observational Study | 7 (100%) | ||||
5 | Niu et al. [16] | 2019 | Retrospective Observational Study | 45 (100%) | ||||
6 | Qin et al. [22] | 2018 | Randomized clinical trial | 21 (100%) | ||||
7 | Xue et al. [23] | 2021 | Case report | 1 (100%) | ||||
8 | Yu et al. [18] | 2021 | Retrospective Observational Study | 28 (100%) | ||||
9 | Zhu et al. [24] | 2019 | Case report | 1 (100%) | ||||
10 | Wang et al. [19] | 2022 | Retrospective Observational Study | 52 (100%) |
Author | Method of Antimicrobial Susceptibility Testing | Percentage of Resistant Isolates | |||||||
---|---|---|---|---|---|---|---|---|---|
Carbapenem | Tigecycline | Polymyxin | CS | Carbapenem | Tigecycline | Polymyxin | CS | ||
1 | Chen et al. [9] | - | - | - | - | 100 | 0 | ||
2 | Choi et al. [10] | Disk diffusion | - | - | Disk diffusion | 11 | 0 | ||
3 | Nakwan et al. [15] | Disk diffusion | - | - | Disk diffusion | 100 | |||
4 | Niu et al. [16] | - | - | - | - | 100 | |||
5 | Pan et al. [17] | 100 | |||||||
6 | Yu et al. [18] | VITEK 2 (bioMérieux) | VITEK 2 (bioMérieux) | VITEK 2 (bioMérieux) | 100 | 0 | 0 | ||
7 | Wang et al. [19] | Agar dilution method | 100 |
Author | Total Patients | Dosage of CS Per Day | Duration of Antibiotic (Days) | Outcomes | |||
---|---|---|---|---|---|---|---|
Clinical Cure % (N) | Microbiological Cure % (N) | All-Cause Mortality: N (%) | |||||
1 | Chen et al. [9] | 1 | 28 | 100 (1) | 100 (1) | - | |
2 | Choi et al. [10] | 35 | 77.1 (27) | - | 20 (7) | ||
3 | Li and Wang et al. [11] | 35 | 9–12 g | - | 71.4 (25) | 5.7 (2) | |
4 | Li and Guo et al. [12] | 4 | 6–12 g | 5–21 | - | 75 (3) | - |
5 | Li and Xie et al. [13] | 66 | 9–12 g | 70 (46) | 50 (33) | 5 (3) | |
6 | Lin et al. [14] | 1 | 100 (1) | 100 (1) | - | ||
7 | Nakwan et al. [15] | 3 | 7–14 | - | - | 33 (1) | |
8 | Niu et al. [16] | 30 | 3–8 g | - | - | 40 (12) | |
9 | Pan et al. [17] | 15 | 9 g | 45 (7) | - | 26.6 (4) | |
10 | Yu et al. [18] | 69 | 9–12 g | 8 (IQR 5–12.5) | - | 39 (27) | - |
11 | Wang et al. [19] | 14 | - | - | 71.4 (10) |
Author | Method of Antimicrobial Susceptibility Testing | Percentage of Resistant Isolates | |||||||
---|---|---|---|---|---|---|---|---|---|
Carbapenem | Tigecycline | Polymyxin | CS | Carbapenem R% | Tigecycline R% | Polymyxin R% | CS R% | ||
1 | Arslan Gülen et al. [20] | Disc diffusion and VITEK 2.0 (bioMerieux) | Disc diffusion and VITEK 2.0 (bioMerieux) | - | 100 | 0 | |||
2 | Li and Guo et al. [12] | Agar dilution | Agar dilution | 100 | 0 | ||||
3 | Li and Xie et al. [13] | Disc diffusion | Disc diffusion | - | Disc diffusion | 100 | 0 | ||
100 | 0 | 0 | |||||||
4 | Ning et al. [21] | - | - | - | - | 100 | 100 | 0 | 100 |
5 | Niu et al. [16] | - | - | - | - | 100 | 0 | ||
6 | Qin et al. [22] | - | Broth microdilution | - | Agar dilution method | 100 | 0 | 0 | 100 |
7 | Xue et al. [23] | - | - | - | - | 100 | 100 | 0 | 100 |
8 | Yu et al. [18] | Agar dilution method | Agar dilution method | Agar dilution method | 100 | 0 | 0 | ||
9 | Zhu et al. [24] | 100 | |||||||
10 | Wang et al. [19] | VITEK 2 (bioMérieux) | VITEK 2 (bioMérieux) | 0 | 0 |
Author | Total Patients | Combination Drug | Dosage of CS | Duration of Antibiotic | Clinical Cure % (n) | Microbiological Cure % (n) | Mortality % (n) | |
---|---|---|---|---|---|---|---|---|
1 | Arslan Gülen et al. [20] | 12 | Colistin | 91.7 (11) | 75 (9) | - | ||
2 | Li and Guo et al. [12] | 4 | Carbapenem | 50 (2) | 50 (2) | - | ||
3 | Carbapenem and Tetracycline | 33.3 (1) | 33.3 (1) | - | ||||
3 | Li and Xie et al. [13] | 22 | Tigecycline | 3 g q8–12 h | >5 days | 45 (10) | 41 (9) | - |
4 | Ning et al. [21] | 7 | Carbapenem and Minocycline | 12 g/day | 100 (7) | 88.89 (6) | - | |
5 | Niu et al. [16] | 35 | Carbapenems | 1–2 g q6–8 h | - | - | 20 (7) | |
6 | Qin et al. [22] | 21 | Tigecycline | Cefoperazone/3 g q6 h | 14 days | 85.71 (12) | 9.52 (2) | - |
7 | Xue et al. [23] | 1 | Colistin | 4.5 g q8 h | >7 days | 100 (1) | - | 0 (0) |
8 | Yu et al. [18] | 28 | Tigecycline | - | - | 46 (13) | ||
9 | Zhu et al. [24] | 1 | Minocycline and carbapenem | 3 g q6 h | 42 days | 100 (1) | 0 | 0 (0) |
10 | Wang et al. [19] | 52 | Tigecycline | 3 g q6–8 h | 8 (IQR 5–12.5) days | - | 44.2 (23) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kogilathota Jagirdhar, G.S.; Rama, K.; Reddy, S.T.; Pattnaik, H.; Qasba, R.K.; Elmati, P.R.; Kashyap, R.; Schito, M.; Gupta, N. Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature. Antibiotics 2023, 12, 582. https://doi.org/10.3390/antibiotics12030582
Kogilathota Jagirdhar GS, Rama K, Reddy ST, Pattnaik H, Qasba RK, Elmati PR, Kashyap R, Schito M, Gupta N. Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature. Antibiotics. 2023; 12(3):582. https://doi.org/10.3390/antibiotics12030582
Chicago/Turabian StyleKogilathota Jagirdhar, Gowthami Sai, Kaanthi Rama, Shiva Teja Reddy, Harsha Pattnaik, Rakhtan K. Qasba, Praveen Reddy Elmati, Rahul Kashyap, Marco Schito, and Nitin Gupta. 2023. "Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature" Antibiotics 12, no. 3: 582. https://doi.org/10.3390/antibiotics12030582
APA StyleKogilathota Jagirdhar, G. S., Rama, K., Reddy, S. T., Pattnaik, H., Qasba, R. K., Elmati, P. R., Kashyap, R., Schito, M., & Gupta, N. (2023). Efficacy of Cefoperazone Sulbactam in Patients with Acinetobacter Infections: A Systematic Review of the Literature. Antibiotics, 12(3), 582. https://doi.org/10.3390/antibiotics12030582