Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya
Abstract
:1. Introduction
2. Results
2.1. Sample Distribution across the Retailing Outlets
2.2. Prevalence of Isolated Bacterial Contaminants
2.3. The Overall Antimicrobial Resistance Profiles
2.4. The Antimicrobial Resistance Profiles of the Recovered Isolates
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Processing of the Samples in the Laboratory
4.3. Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davies, S.C.; Fowler, T.; Watson, J.; Livermore, D.M.; Walker, D. Annual Report of the Chief Medical Officer: Infection and the rise of antimicrobial resistance. Lancet 2013, 381, 1606–1609. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2017; pp. 1–28.
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016. Available online: https://iiif.wellcomecollection.org/file/b28644797_160525_Final%20paper_with%20cover.pdf (accessed on 22 December 2022).
- World Health Organization. Antimicrobial Resistance. 2022. Available online: https://www.who.int/westernpacific/health-topics/antimicrobial-resistance (accessed on 29 November 2022).
- Government of Kenya. Republic of Kenya National Policy on Prevention and Containment of Antimicrobial Resistance; Ministry of Health of Kenya: Nairobi, Kenya, 2017; pp. 1–42. Available online: www.health.go.ke (accessed on 14 October 2022).
- Xu, Y.; Zhong, L.-L.; Srinivas, S.; Sun, J.; Huang, M.; Paterson, D.L.; Lei, S.; Lin, J.; Li, X.; Tang, Z.; et al. Spread of MCR-3 Colistin Resistance in China: An Epidemiological, Genomic and Mechanistic Study. Ebiomedicine 2018, 34, 139–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardakas, K.Z.; Rafailidis, P.I.; Konstantelias, A.A.; Falagas, M.E. Predictors of mortality in patients with infections due to multi-drug resistant Gram negative bacteria: The study, the patient, the bug or the drug? J. Infect. 2013, 66, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Bodi, M.; Ardanuy, C.; Rello, J. Impact of Gram-positive resistance on outcome of nosocomial pneumonia. Crit. Care Med. 2001, 29, N82–N86. [Google Scholar] [CrossRef]
- Ena, J.; Dick, R.W.; Jones, R.N.; Wenzel, R.P. The Epidemiology of Intravenous Vancomycin Usage in a University Hospital: A 10-Year Study. JAMA 1993, 269, 598–602. [Google Scholar] [CrossRef]
- World Bank. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017; pp. 433–448. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- International Livestock Research Institution. Managing Antimicrobial Use in Livestock Farming Promotes Human and Animal Health and Supports Livelihoods. 2021. Available online: https://hdl.handle.net/10568/113057 (accessed on 12 January 2023).
- Page, S.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech.-OIE 2012, 31, 145–188. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050|Global Perspectives Studies|Food and Agriculture Organization of the United Nations; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- African Union—Interafrican Bureau for Animal Resources (AU–IBAR). Livestock Policy Landscape in Africa: A Review; Vet-Gov. 2016. Available online: https://www.au-ibar.org/sites/default/files/2020-11/doc_20160524_livestock_policy_lanscape_africa_en.pdf (accessed on 16 November 2022).
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE. OIE Annual Report on Antimicrobial Agents Intended for Use in Animals; World Organisation for Animal Health: Paris, France, 2021; pp. 1–134. Available online: https://www.oie.int/en/document/fifth-oie-annual-report-on-antimicrobial-agents-intended-for-use-in-animals/ (accessed on 29 November 2022).
- Jones, P.; Roe, J.; Miller, B. Effects of stressors on immune parameters and on the faecal shedding of enterotoxigenic Escherichia coli in piglets following experimental inoculation. Res. Vet. Sci. 2001, 70, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Morrow, J.L.; Edrington, T.S.; Genovese, K.J.; Dowd, S.; Carroll, J.; Dailey, J.W.; Harvey, R.B.; Poole, T.L.; Anderson, R.C.; et al. Social stress increases fecal shedding of Salmonella typhimurium by early weaned piglets. Curr. Issues Intest. Microbiol. 2006, 7, 65–72. [Google Scholar] [PubMed]
- Rostagno, M.H. Can Stress in Farm Animals Increase Food Safety Risk? Foodborne Pathog. Dis. 2009, 6, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Carron, M.; Chang, Y.-M.; Momanyi, K.; Akoko, J.; Kiiru, J.; Bettridge, J.; Chaloner, G.; Rushton, J.; O’Brien, S.; Williams, N.; et al. Campylobacter, a zoonotic pathogen of global importance: Prevalence and risk factors in the fast-evolving chicken meat system of Nairobi, Kenya. PLoS Negl. Trop. Dis. 2018, 12, e0006658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bengtsson, B.; Wierup, M. Antimicrobial resistance in Scandinavia after ban of antimicrobial growth promoters. Anim. Biotechnol. 2006, 17, 147–156. [Google Scholar] [CrossRef]
- Oniciuc, E.-A.; Nicolau, A.I.; Hernández, M.; Rodríguez-Lázaro, D. Presence of methicillin-resistant Staphylococcus aureus in the food chain. Trends Food Sci. Technol. 2017, 61, 49–59. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.; Singh, P.; Rajurkar, M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016, 2016, 4065603. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef] [Green Version]
- Hoff, R.T.; Patel, A.; Shapiro, A. Pseudomonas aeruginosa: An Uncommon Cause of Antibiotic-Associated Diarrhea in an Immunocompetent Ambulatory Adult. Case Rep. Gastrointest. Med. 2020, 2020, 6261748. [Google Scholar] [CrossRef] [PubMed]
- McQuade, E.T.R.; Shaheen, F.; Kabir, F.; Rizvi, A.; Platts-Mills, J.A.; Aziz, F.; Kalam, A.; Qureshi, S.; Elwood, S.; Liu, J.; et al. Epidemiology of Shigella infections and diarrhea in the first two years of life using culture-independent diagnostics in 8 low-resource settings. PLoS Negl. Trop. Dis. 2020, 14, e0008536. [Google Scholar] [CrossRef]
- Wardhana, D.K.; Haskito, A.E.P.; Purnama, M.T.E.; Safitri, D.A.; Annisa, S. Detection of microbial contamination in chicken meat from local markets in Surabaya, East Java, Indonesia. Vet. World 2021, 14, 3138–3143. [Google Scholar] [CrossRef]
- Ngo, H.H.T.; Nguyen-Thanh, L.; Pham-Duc, P.; Dang-Xuan, S.; Le-Thi, H.; Denis-Robichaud, J.; Nguyen-Viet, H.; Le, T.T.; Grace, D.; Unger, F. Microbial contamination and associated risk factors in retailed pork from key value chains in Northern Vietnam. Int. J. Food Microbiol. 2021, 346, 109163. [Google Scholar] [CrossRef] [PubMed]
- Scheinberg, J.A.; Dudley, E.G.; Campbell, J.; Roberts, B.; DiMarzio, M.; DebRoy, C.; Cutter, C.N. Prevalence and Phylogenetic Characterization of Escherichia coli and Hygiene Indicator Bacteria Isolated from Leafy Green Produce, Beef, and Pork Obtained from Farmers’ Markets in Pennsylvania. J. Food Prot. 2017, 80, 237–244. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.E.; Pitcher, J.I.; Ballard, S.A.; Grabsch, E.A.; Bell, J.M.; Barton, M.; Grayson, M.L. Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. Antimicrob. Resist. Infect. Control 2018, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rortana, C.; Nguyen-Viet, H.; Tum, S.; Unger, F.; Boqvist, S.; Dang-Xuan, S.; Koam, S.; Grace, D.; Osbjer, K.; Heng, T.; et al. Prevalence of Salmonella spp. and Staphylococcus aureus in Chicken Meat and Pork from Cambodian Markets. Pathogens 2021, 10, 556. [Google Scholar] [CrossRef]
- Dafale, N.A.; Srivastava, S.; Purohit, H.J. Zoonosis: An Emerging Link to Antibiotic Resistance Under “One Health Approach”. Indian J. Microbiol. 2020, 60, 139–152. [Google Scholar] [CrossRef]
- Ndukui, J.G.; Gikunju, J.K.; Aboge, G.O.; Mbaria, J.M. Antimicrobial Use in Commercial Poultry Production Systems in Kiambu County, Kenya: A Cross-Sectional Survey on Knowledge, Attitudes and Practices. Open J. Anim. Sci. 2021, 11, 658–681. [Google Scholar] [CrossRef]
- Odwar, J.A.; Kikuvi, G.; Kariuki, J.N.; Kariuki, S. A cross-sectional study on the microbiological quality and safety of raw chicken meats sold in Nairobi, Kenya. BMC Res. Notes 2014, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Fox, J.G.; Besser, T.E. Zoonotic Enterohemorrhagic Escherichia coli: A One Health Perspective. ILAR J. 2010, 51, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.T.A.; Bebora, L.C.; Odongo, M.O.; Muchemi, G.M.; Kariuki, S.M.; Gathumbi, P.K. Antimicrobial resistance profiles of E. coli isolated from pooled samples of Sick, Farm and Market chickens in Nairobi County, Kenya. Res. Sq. 2022, 5456, 1–12. [Google Scholar] [CrossRef]
- Nhung, N.T.; Van, N.T.B.; Van Cuong, N.; Duong, T.T.Q.; Nhat, T.T.; Hang, T.T.T.; Nhi, N.T.H.; Kiet, B.T.; Hien, V.B.; Ngoc, P.T.; et al. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int. J. Food Microbiol. 2018, 266, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kenya National Bureau of Statistics (KNBS). 2019 Kenya Population and Housing Census Results. Available online: https://www.knbs.or.ke/2019-kenya-population-and-housing-census-results/ (accessed on 27 February 2023).
Type of Supermarket | Supermarket Name | No. of Poultry Samples Collected | No. of Pork Samples Collected | Total |
---|---|---|---|---|
International | A | 31 (15.0%) | 76 (40.6%) | 107 (27.2%) |
Regional | B | 64 (31.1%) | 33 (17.6%) | 97 (24.7%) |
Local | C | 30 (14.6%) | 32 (17.1%) | 62 (15.8%) |
D | 41 (19.9%) | 15 (8.0%) | 56 (14.2%) | |
E | 25 (12.2%) | 26 (13.9%) | 51 (13.0%) | |
F | 15 (7.3%) | 5 (2.7%) | 20 (5.1%) | |
Total | 206 (100%) | 187 (100%) | 393 (100%) |
Organism | Antibiotics | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | AMP | AMC | CAZ | CTX | FEP | FOX | CN | RD | NAL | CIP | SMX | TRIM | CHL | TET | |
E. coli | 275 | 71 (26) | 41 (15) | 5 (2) | 11 (4) | 6 (2) | 70 (25) | 11 (4) | 269 (98) | 33 (12) | 26 (9) | 95 (35) | 78 (28) | 28 (10) | 100 (36) |
Klebsiella spp. | 95 | 53 (58) | 11 (12) | 3 (3) | 5 (5) | 3 (3) | 14 (15) | 1 (1) | 94 (99) | 9 (9) | 8 (8) | 41 (43) | 35 (37) | 8 (8) | 44 (46) |
P. aeruginosa | 2 | 2 (100) | 2 (100) | 0 | 2 (100) | 0 | 2 (100) | 0 | 2 (100) | 1 (50) | 0 | 2 (100) | 2 (100) | 1 (50) | 2 (100) |
Salmonella spp. | 101 | 18 (18) | 7 (7) | 1 (1) | 4 (4) | 3 (3) | 15 (15) | 0 | 98 (97) | 10 (10) | 5 (5) | 20 (20) | 24 (24) | 6 (6) | 31 (31) |
Shigella spp. | 36 | 7 (20) | 4 (11) | 1 (3) | 4 (11) | 1 (3) | 6 (17) | 0 | 34 (94) | 3 (8) | 2 (6) | 10 (28) | 10 (28) | 2 (6) | 11 (31) |
Staph spp. | 42 | 37 (88) | 21 (50) | 21 (50) | 21 (50) | 21 (50) | 20 (48) | 3 (7) | 32 (76) | 13 (32) | 0 | 15 (36) | 15 (36) | 6 (14) | 24 (57) |
Organism | Number of Antibiotic Resistance Classes | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |||
E. coli | Count | 100 | 96 | 55 | 17 | 5 | 1 | 1 | 275 |
(36.4%) | (34.9%) | (20.0%) | (6.2%) | (1.8%) | (0.4%) | (0.4%) | (49.9%) | ||
Klebsiella | Count | 21 | 39 | 20 | 8 | 4 | 2 | 1 | 95 |
(22.1%) | (41.1%) | (21.1%) | (8.4%) | (4.2%) | (2.1%) | (1.1%) | (17.2%) | ||
Pseudomonas | Count | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 2 |
(0.0%) | (0.0% | (0.0%) | (50.0%) | (50.0%) | (0.0%) | (0.0%) | (0.4%) | ||
Salmonella | Count | 37 | 30 | 22 | 7 | 4 | 0 | 1 | 101 |
(36.6%) | (29.7%) | (21.8%) | (6.9%) | (4.0%) | (0.0%) | (1.0%) | (18.3%) | ||
Shigella | Count | 15 | 11 | 6 | 2 | 2 | 0 | 0 | 36 |
(41.7%) | (30.6%) | (16.7%) | (5.6%) | (5.6%) | (0.0%) | (0.0%) | (6.5%) | ||
Staphylococcus | Count | 4 | 2 | 4 | 3 | 9 | 18 | 2 | 42 |
(9.5%) | (4.8%) | (9.5%) | (7.1%) | (21.4%) | (42.9%) | (4.8%) | (7.6%) | ||
Count | 177 | 178 | 107 | 38 | 25 | 21 | 5 | 551 | |
(32.1%) | (32.3%) | (19.4%) | (6.9%) | (4.5%) | (3.8%) | (0.9%) | (100.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muinde, P.; Maina, J.; Momanyi, K.; Yamo, V.; Mwaniki, J.; Kiiru, J. Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya. Antibiotics 2023, 12, 613. https://doi.org/10.3390/antibiotics12030613
Muinde P, Maina J, Momanyi K, Yamo V, Mwaniki J, Kiiru J. Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya. Antibiotics. 2023; 12(3):613. https://doi.org/10.3390/antibiotics12030613
Chicago/Turabian StyleMuinde, Patrick, John Maina, Kelvin Momanyi, Victor Yamo, John Mwaniki, and John Kiiru. 2023. "Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya" Antibiotics 12, no. 3: 613. https://doi.org/10.3390/antibiotics12030613
APA StyleMuinde, P., Maina, J., Momanyi, K., Yamo, V., Mwaniki, J., & Kiiru, J. (2023). Antimicrobial Resistant Pathogens Detected in Raw Pork and Poultry Meat in Retailing Outlets in Kenya. Antibiotics, 12(3), 613. https://doi.org/10.3390/antibiotics12030613