All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches
Abstract
:1. Introduction
2. Development of Ceftazidime/Avibactam: Using Modelling to Determine the PK/PD Target
Type of Model | Purpose | Reference |
---|---|---|
Compartmental PK/PD model | Prediction of PTA in vivo and in humans for P. aeruginosa and Enterobacteriaceae | [67,69,70,73] |
Compartmental population PK/PD model | Estimation of PTA in adults for different indications | [78,79,80,81,82,83,84] |
3. The Case of Omadacycline: PK/PD Modelling Data Still Scarce
4. Gepotidacin and Zoliflodacin: Novel Bacterial Topoisomerase II Inhibitors under Clinical Development
5. New Routes with Cefiderocol: From In Silico Studies to Market
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laxminarayan, R. The Overlooked Pandemic of Antimicrobial Resistance. Lancet 2022, 399, 606–607. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (Ed.) Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 978-92-4-156474-8. [Google Scholar]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The Global Preclinical Antibacterial Pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. [Google Scholar] [CrossRef] [Green Version]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Gottwalt, S.; Beyer, P.; Butler, M.; Czaplewski, L.; Lienhardt, C.; Moja, L.; Paul, M.; Paulin, S.; Rex, J.H.; et al. Analysis of the Clinical Antibacterial and Antituberculosis Pipeline. Lancet Infect. Dis. 2019, 19, e40–e50. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Piddock, L.J.V. Non-Traditional Antibacterial Therapeutic Options and Challenges. Cell Host Microbe 2019, 26, 61–72. [Google Scholar] [CrossRef]
- Walesch, S.; Birkelbach, J.; Jézéquel, G.; Haeckl, F.P.J.; Hegemann, J.D.; Hesterkamp, T.; Hirsch, A.K.H.; Hammann, P.; Müller, R. Fighting Antibiotic Resistance—Strategies and (Pre)Clinical Developments to Find New Antibacterials. EMBO Rep. 2023, 24, e56033. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the Sustainable Discovery and Development of New Antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J.V.; Paccaud, J.-P.; O’Brien, S.; Childs, M.; Malpani, R.; Balasegaram, M. A Nonprofit Drug Development Model Is Part of the Antimicrobial Resistance (AMR) Solution. Clin. Infect. Dis. 2022, 74, 1866–1871. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration Advancing Regulatory Cience at FDA: Focus Areas of Regulatory Science (FARS). 2022. Available online: https://www.fda.gov/media/161381/download (accessed on 28 March 2023).
- Müller, M.; dela Peña, A.; Derendorf, H. Issues in Pharmacokinetics and Pharmacodynamics of Anti-Infective Agents: Distribution in Tissue. Antimicrob. Agents Chemother. 2004, 48, 1441–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Hop, C.E.C.A.; Patilea-Vrana, G.; Gampa, G.; Seneviratne, H.K.; Unadkat, J.D.; Kenny, J.R.; Nagapudi, K.; Di, L.; Zhou, L.; et al. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule–Related Therapeutic Modalities. Drug Metab. Dispos. 2019, 47, 1122–1135. [Google Scholar] [CrossRef] [PubMed]
- Jager, N.G.L.; van Hest, R.M.; Lipman, J.; Roberts, J.A.; Cotta, M.O. Antibiotic Exposure at the Site of Infection: Principles and Assessment of Tissue Penetration. Expert Rev. Clin. Pharmacol. 2019, 12, 623–634. [Google Scholar] [CrossRef]
- Mouton, J.W.; Theuretzbacher, U.; Craig, W.A.; Tulkens, P.M.; Derendorf, H.; Cars, O. Tissue Concentrations: Do We Ever Learn? J. Antimicrob. Chemother. 2007, 61, 235–237. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, D.R.; Wise, R.; Andrews, J.M.; Honeybourne, D. Microlavage: A Technique for Determining the Volume of Epithelial Lining Fluid. Thorax 1991, 46, 658–662. [Google Scholar] [CrossRef] [Green Version]
- de la Peña, A.; Liu, P.; Derendorf, H. Microdialysis in Peripheral Tissues. Adv. Drug Deliv. Rev. 2000, 45, 189–216. [Google Scholar] [CrossRef]
- Joukhadar, C.; Derendorf, H.; Müller, M. Microdialysis. Eur. J. Clin. Pharmacol. 2001, 57, 211–219. [Google Scholar] [CrossRef]
- Joukhadar, C.; Müller, M. Microdialysis. Clin. Pharmacokinet. 2005, 44, 895–913. [Google Scholar] [CrossRef]
- Marchand, S.; Chauzy, A.; Dahyot-Fizelier, C.; Couet, W. Microdialysis as a Way to Measure Antibiotics Concentration in Tissues. Pharmacol. Res. 2016, 111, 201–207. [Google Scholar] [CrossRef]
- Heffernan, A.J.; Sime, F.B.; Sarovich, D.S.; Neely, M.; Guerra-Valero, Y.; Naicker, S.; Cottrell, K.; Harris, P.; Andrews, K.T.; Ellwood, D.; et al. Pharmacodynamic Evaluation of Plasma and Epithelial Lining Fluid Exposures of Amikacin against Pseudomonas Aeruginosa in a Dynamic In Vitro Hollow-Fiber Infection Model. Antimicrob. Agents Chemother. 2020, 64, e00879-00820. [Google Scholar] [CrossRef]
- Drwiega, E.N.; Rodvold, K.A. Penetration of Antibacterial Agents into Pulmonary Epithelial Lining Fluid: An Update. Clin. Pharmacokinet. 2022, 61, 17–46. [Google Scholar] [CrossRef] [PubMed]
- Landersdorfer, C.B.; Nation, R.L. Limitations of Antibiotic MIC-Based PK-PD Metrics: Looking Back to Move Forward. Front. Pharmacol. 2021, 12, 3024. [Google Scholar] [CrossRef] [PubMed]
- VanScoy, B.D.; Lakota, E.A.; Conde, H.; Fikes, S.; Bhavnani, S.M.; Elefante, P.B.; Scangarella-Oman, N.E.; Ambrose, P.G. Gepotidacin Pharmacokinetics-Pharmacodynamics against Escherichia Coli in the One-Compartment and Hollow-Fiber In Vitro Infection Model Systems. Antimicrob. Agents Chemother. 2021, 65, e00122-21. [Google Scholar] [CrossRef] [PubMed]
- Buyck, J.M.; Lemaire, S.; Seral, C.; Anantharajah, A.; Peyrusson, F.; Tulkens, P.M.; Van Bambeke, F. In Vitro Models for the Study of the Intracellular Activity of Antibiotics. Methods Mol. Biol. Clifton NJ 2016, 1333, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Prochnow, H.; Fetz, V.; Hotop, S.-K.; García-Rivera, M.A.; Heumann, A.; Brönstrup, M. Subcellular Quantification of Uptake in Gram-Negative Bacteria. Anal. Chem. 2019, 91, 1863–1872. [Google Scholar] [CrossRef]
- McSharry, J.J.; Drusano, G.L. Antiviral Pharmacodynamics in Hollow Fibre Bioreactors. Antivir. Chem. Chemother. 2011, 21, 183–192. [Google Scholar] [CrossRef]
- Sadouki, Z.; McHugh, T.D.; Aarnoutse, R.; Ortiz Canseco, J.; Darlow, C.; Hope, W.; van Ingen, J.; Longshaw, C.; Manissero, D.; Mead, A.; et al. Application of the Hollow Fibre Infection Model (HFIM) in Antimicrobial Development: A Systematic Review and Recommendations of Reporting. J. Antimicrob. Chemother. 2021, 76, 2252–2259. [Google Scholar] [CrossRef]
- Hvidberg, H.; Struve, C.; Krogfelt, K.A.; Christensen, N.; Rasmussen, S.N.; Frimodt-Møller, N. Development of a Long-Term Ascending Urinary Tract Infection Mouse Model for Antibiotic Treatment Studies. Antimicrob. Agents Chemother. 2000, 44, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Lepak, A.J.; Andes, D.R. Animal Models in the Pharmacokinetic/Pharmacodynamic Evaluation of Antimicrobial Agents. Bioorg. Med. Chem. 2016, 24, 6390–6400. [Google Scholar] [CrossRef] [PubMed]
- Andes, D.R.; Lepak, A.J. In Vivo Infection Models in the Pre-Clinical Pharmacokinetic/Pharmacodynamic Evaluation of Antimicrobial Agents. Curr. Opin. Pharmacol. 2017, 36, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Drusano, G.L. From Lead Optimization to NDA Approval for a New Antimicrobial: Use of Pre-Clinical Effect Models and Pharmacokinetic/Pharmacodynamic Mathematical Modeling. Bioorg. Med. Chem. 2016, 24, 6401–6408. [Google Scholar] [CrossRef]
- Arrazuria, R.; Kerscher, B.; Huber, K.E.; Hoover, J.L.; Lundberg, C.V.; Hansen, J.U.; Sordello, S.; Renard, S.; Aranzana-Climent, V.; Hughes, D.; et al. Expert Workshop Summary: Advancing toward a Standardized Murine Model to Evaluate Treatments for Antimicrobial Resistance Lung Infections. Front. Microbiol. 2022, 13, 988725. [Google Scholar] [CrossRef]
- Arrazuria, R.; Kerscher, B.; Huber, K.E.; Hoover, J.L.; Lundberg, C.V.; Hansen, J.U.; Sordello, S.; Renard, S.; Aranzana-Climent, V.; Hughes, D.; et al. Variability of Murine Bacterial Pneumonia Models Used to Evaluate Antimicrobial Agents. Front. Microbiol. 2022, 13, 988728. [Google Scholar] [CrossRef]
- Rox, K. Influence of Tramadol on Bacterial Burden in the Standard Neutropenic Thigh Infection Model. Sci. Rep. 2022, 12, 19606. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, P.G.; Bhavnani, S.M.; Rubino, C.M.; Louie, A.; Gumbo, T.; Forrest, A.; Drusano, G.L. Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It’s Not Just for Mice Anymore. Clin. Infect. Dis. 2007, 44, 79–86. [Google Scholar] [CrossRef]
- Lodise, T.P.; Drusano, G.L. Use of Pharmacokinetic/Pharmacodynamic Systems Analyses to Inform Dose Selection of Tedizolid Phosphate. Clin. Infect. Dis. 2014, 58, S28–S34. [Google Scholar] [CrossRef]
- Khan, D.D.; Friberg, L.E.; Nielsen, E.I. A Pharmacokinetic–Pharmacodynamic (PKPD) Model Based on in Vitro Time–Kill Data Predicts the in Vivo PK/PD Index of Colistin. J. Antimicrob. Chemother. 2016, 71, 1881–1884. [Google Scholar] [CrossRef] [Green Version]
- Sou, T.; Kukavica-Ibrulj, I.; Levesque, R.C.; Friberg, L.E.; Bergström, C.A.S. Model-Informed Drug Development in Pulmonary Delivery: Preclinical Pharmacokinetic-Pharmacodynamic Modelling for Evaluation of Treatments against Chronic Pseudomonas Aeruginosa Lung Infections. Mol. Pharm. 2020, 17, 1458–1469. [Google Scholar] [CrossRef]
- Sou, T.; Kukavica-Ibrulj, I.; Soukarieh, F.; Halliday, N.; Levesque, R.C.; Williams, P.; Stocks, M.; Cámara, M.; Friberg, L.E.; Bergström, C.A.S. Model-Based Drug Development in Pulmonary Delivery: Pharmacokinetic Analysis of Novel Drug Candidates for Treatment of Pseudomonas Aeruginosa Lung Infection. J. Pharm. Sci. 2019, 108, 630–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sou, T.; Hansen, J.; Liepinsh, E.; Backlund, M.; Ercan, O.; Grinberga, S.; Cao, S.; Giachou, P.; Petersson, A.; Tomczak, M.; et al. Model-Informed Drug Development for Antimicrobials: Translational PK and PK/PD Modeling to Predict an Efficacious Human Dose for Apramycin. Clin. Pharmacol. Ther. 2021, 109, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Rayner, C.R.; Smith, P.F.; Andes, D.; Andrews, K.; Derendorf, H.; Friberg, L.E.; Hanna, D.; Lepak, A.; Mills, E.; Polasek, T.M.; et al. Model-Informed Drug Development for Anti-Infectives: State of the Art and Future. Clin. Pharmacol. Ther. 2021, 109, 867–891. [Google Scholar] [CrossRef] [PubMed]
- Velkov, T.; Bergen, P.; Lora-Tamayo, J.; Landersdorfer, C.B.; Li, J. PK/PD Models in Antibacterial Development. Curr. Opin. Microbiol. 2013, 16, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Rostami-Hodjegan, A.; Toon, S. Physiologically Based Pharmacokinetics as a Component of Model-Informed Drug Development: Where We Were, Where We Are, and Where We Are Heading. J. Clin. Pharmacol. 2020, 60, S12–S16. [Google Scholar] [CrossRef]
- Bouzom, F.; Ball, K.; Perdaems, N.; Walther, B. Physiologically Based Pharmacokinetic (PBPK) Modelling Tools: How to Fit with Our Needs? Biopharm. Drug Dispos. 2012, 33, 55–71. [Google Scholar] [CrossRef]
- Jones, H.M.; Mayawala, K.; Poulin, P. Dose Selection Based on Physiologically Based Pharmacokinetic (PBPK) Approaches. AAPS J. 2013, 15, 377–387. [Google Scholar] [CrossRef]
- Tsamandouras, N.; Rostami-Hodjegan, A.; Aarons, L. Combining the ‘Bottom up’ and ‘Top down’ Approaches in Pharmacokinetic Modelling: Fitting PBPK Models to Observed Clinical Data. Br. J. Clin. Pharmacol. 2015, 79, 48–55. [Google Scholar] [CrossRef]
- Ito, M.; Kusuhara, H.; Ose, A.; Kondo, T.; Tanabe, K.; Nakayama, H.; Horita, S.; Fujita, T.; Sugiyama, Y. Pharmacokinetic Modeling and Monte Carlo Simulation to Predict Interindividual Variability in Human Exposure to Oseltamivir and Its Active Metabolite, Ro 64-0802. AAPS J. 2017, 19, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Lippert, J.; Burghaus, R.; Edginton, A.; Frechen, S.; Karlsson, M.; Kovar, A.; Lehr, T.; Milligan, P.; Nock, V.; Ramusovic, S.; et al. Open Systems Pharmacology Community-An Open Access, Open Source, Open Science Approach to Modeling and Simulation in Pharmaceutical Sciences. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 878–882. [Google Scholar] [CrossRef] [Green Version]
- Kuepfer, L.; Niederalt, C.; Wendl, T.; Schlender, J.; Willmann, S.; Lippert, J.; Block, M.; Eissing, T.; Teutonico, D. Applied Concepts in PBPK Modeling: How to Build a PBPK/PD Model. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 516–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, E.I.; Viberg, A.; Löwdin, E.; Cars, O.; Karlsson, M.O.; Sandström, M. Semimechanistic Pharmacokinetic/Pharmacodynamic Model for Assessment of Activity of Antibacterial Agents from Time-Kill Curve Experiments. Antimicrob. Agents Chemother. 2007, 51, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, E.I.; Friberg, L.E. Pharmacokinetic-Pharmacodynamic Modeling of Antibacterial Drugs. Pharmacol. Rev. 2013, 65, 1053–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penney, M.; Agoram, B. At the Bench: The Key Role of PK–PD Modelling in Enabling the Early Discovery of Biologic Therapies. Br. J. Clin. Pharmacol. 2014, 77, 740–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.W.; Nielsen, E.I.; Khachman, D.; Conil, J.-M.; Georges, B.; Houin, G.; Laffont, C.M.; Karlsson, M.O.; Friberg, L.E. A Whole-Body Physiologically Based Pharmacokinetic (WB-PBPK) Model of Ciprofloxacin: A Step towards Predicting Bacterial Killing at Sites of Infection. J. Pharmacokinet. Pharmacodyn. 2017, 44, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Ehmann, D.E.; Jahić, H.; Ross, P.L.; Gu, R.-F.; Hu, J.; Durand-Réville, T.F.; Lahiri, S.; Thresher, J.; Livchak, S.; Gao, N.; et al. Kinetics of Avibactam Inhibition against Class A, C, and D β-Lactamases. J. Biol. Chem. 2013, 288, 27960–27971. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Castanheira, M.; Mendes, R.E.; Flamm, R.K.; Farrell, D.J.; Jones, R.N. Ceftazidime-Avibactam Activity against Multidrug-Resistant Pseudomonas Aeruginosa Isolated in U.S. Medical Centers in 2012 and 2013. Antimicrob. Agents Chemother. 2015, 59, 3656–3659. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; de Jonge, B.L.M.; Kazmierczak, K.M.; Karlowsky, J.A.; Sahm, D.F. In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas Aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 4743–4749. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, B.L.M.; Karlowsky, J.A.; Kazmierczak, K.M.; Biedenbach, D.J.; Sahm, D.F.; Nichols, W.W. In Vitro Susceptibility to Ceftazidime-Avibactam of Carbapenem-Nonsusceptible Enterobacteriaceae Isolates Collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob. Agents Chemother. 2016, 60, 3163–3169. [Google Scholar] [CrossRef] [Green Version]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef]
- Satapoomin, N.; Dulyayangkul, P.; Avison, M.B. Klebsiella Pneumoniae Mutants Resistant to Ceftazidime-Avibactam Plus Aztreonam, Imipenem-Relebactam, Meropenem-Vaborbactam, and Cefepime-Taniborbactam. Antimicrob. Agents Chemother. 2022, 66, e02179-21. [Google Scholar] [CrossRef] [PubMed]
- Bongiorno, D.; Bivona, D.A.; Cicino, C.; Trecarichi, E.M.; Russo, A.; Marascio, N.; Mezzatesta, M.L.; Musso, N.; Privitera, G.F.; Quirino, A.; et al. Omic Insights into Various Ceftazidime-Avibactam-Resistant Klebsiella Pneumoniae Isolates from Two Southern Italian Regions. Front. Cell. Infect. Microbiol. 2023, 12, 1010979. [Google Scholar] [CrossRef]
- Gaibani, P.; Gatti, M.; Rinaldi, M.; Crovara Pesce, C.; Lazzarotto, T.; Giannella, M.; Lombardo, D.; Amadesi, S.; Viale, P.; Pea, F.; et al. Suboptimal Drug Exposure Leads to Selection of Different Subpopulations of Ceftazidime-Avibactam-Resistant Klebsiella Pneumoniae Carbapenemase-Producing Klebsiella Pneumoniae in a Critically Ill Patient. Int. J. Infect. Dis. 2021, 113, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.W.; Bradford, P.A.; Stone, G.G. The Primary Pharmacology of Ceftazidime/Avibactam: In Vivo Translational Biology and Pharmacokinetics/Pharmacodynamics (PK/PD). J. Antimicrob. Chemother. 2022, 77, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Sy, S.K.B.; Zhuang, L.; Xia, H.; Beaudoin, M.-E.; Schuck, V.J.; Nichols, W.W.; Derendorf, H. A Mathematical Model-Based Analysis of the Time–Kill Kinetics of Ceftazidime/Avibactam against Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 2018, 73, 1295–1304. [Google Scholar] [CrossRef]
- Bhagunde, P.; Chang, K.-T.; Hirsch, E.B.; Ledesma, K.R.; Nikolaou, M.; Tam, V.H. Novel Modeling Framework To Guide Design of Optimal Dosing Strategies for β-Lactamase Inhibitors. Antimicrob. Agents Chemother. 2012, 56, 2237–2240. [Google Scholar] [CrossRef] [Green Version]
- Sy, S.; Zhuang, L.; Xia, H.; Beaudoin, M.-E.; Schuck, V.; Derendorf, H. Prediction of in Vivo and in Vitro Infection Model Results Using a Semimechanistic Model of Avibactam and Aztreonam Combination against Multidrug Resistant Organisms. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 197–207. [Google Scholar] [CrossRef]
- Sy, S.K.B.; Zhuang, L.; Xia, H.; Schuck, V.J.; Nichols, W.W.; Derendorf, H. A Model-Based Analysis of Pharmacokinetic–Pharmacodynamic (PK/PD) Indices of Avibactam against Pseudomonas Aeruginosa. Clin. Microbiol. Infect. 2019, 25, 904.e9. [Google Scholar] [CrossRef]
- Berkhout, J.; Melchers, M.J.; van Mil, A.C.; Seyedmousavi, S.; Lagarde, C.M.; Schuck, V.J.; Nichols, W.W.; Mouton, J.W. Pharmacodynamics of Ceftazidime and Avibactam in Neutropenic Mice with Thigh or Lung Infection. Antimicrob. Agents Chemother. 2015, 60, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; Newell, P.; Critchley, I.A.; Riccobene, T.; Das, S. Avibactam Pharmacokinetic/Pharmacodynamic Targets. Antimicrob. Agents Chemother. 2018, 62, e02446-17. [Google Scholar] [CrossRef] [Green Version]
- Kristoffersson, A.N.; Bissantz, C.; Okujava, R.; Haldimann, A.; Walter, I.; Shi, T.; Zampaloni, C.; Nielsen, E.I. A Novel Mechanism-Based Pharmacokinetic–Pharmacodynamic (PKPD) Model Describing Ceftazidime/Avibactam Efficacy against β-Lactamase-Producing Gram-Negative Bacteria. J. Antimicrob. Chemother. 2020, 75, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Toshimoto, K.; Tomaru, A.; Hosokawa, M.; Sugiyama, Y. Virtual Clinical Studies to Examine the Probability Distribution of the AUC at Target Tissues Using Physiologically-Based Pharmacokinetic Modeling: Application to Analyses of the Effect of Genetic Polymorphism of Enzymes and Transporters on Irinotecan Induced Side Effects. Pharm. Res. 2017, 34, 1584–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Toshimoto, K.; Lee, W.; Imamura, C.K.; Tanigawara, Y.; Sugiyama, Y. Application of PBPK Modeling and Virtual Clinical Study Approaches to Predict the Outcomes of CYP2D6 Genotype-Guided Dosing of Tamoxifen. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Sayama, H.; Marcantonio, D.; Nagashima, T.; Shimazaki, M.; Minematsu, T.; Apgar, J.F.; Burke, J.M.; Wille, L.; Nagasaka, Y.; Kirouac, D.C. Virtual Clinical Trial Simulations for a Novel KRASG12C Inhibitor (ASP2453) in Non-Small Cell Lung Cancer. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 864–877. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.-F.; Wu, Y.-E.; Tang, B.-H.; Hao, G.-X.; Jacqz-Aigrain, E.; van den Anker, J.; Zhao, W. Predictive Performance of Pharmacokinetic Model-Based Virtual Trials of Vancomycin in Neonates: Mathematics Matches Clinical Observation. Clin. Pharmacokinet. 2022, 61, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Bensman, T.J.; Wang, J.; Jayne, J.; Fukushima, L.; Rao, A.P.; D’Argenio, D.Z.; Beringer, P.M. Pharmacokinetic-Pharmacodynamic Target Attainment Analyses To Determine Optimal Dosing of Ceftazidime-Avibactam for the Treatment of Acute Pulmonary Exacerbations in Patients with Cystic Fibrosis. Antimicrob. Agents Chemother. 2017, 61, e00988-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimelow, R.; Wright, J.G.; MacPherson, M.; Newell, P.; Das, S. Population Pharmacokinetic Modelling of Ceftazidime and Avibactam in the Plasma and Epithelial Lining Fluid of Healthy Volunteers. Drugs RD 2018, 18, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lovern, M.; Green, M.L.; Chiu, J.; Zhou, D.; Comisar, C.; Xiong, Y.; Hing, J.; MacPherson, M.; Wright, J.G.; et al. Ceftazidime-Avibactam Population Pharmacokinetic Modeling and Pharmacodynamic Target Attainment Across Adult Indications and Patient Subgroups. Clin. Transl. Sci. 2019, 12, 151–163. [Google Scholar] [CrossRef]
- Kidd, J.M.; Stein, G.E.; Nicolau, D.P.; Kuti, J.L. Monte Carlo Simulation Methodologies for β-Lactam/β-Lactamase Inhibitor Combinations: Effect on Probability of Target Attainment Assessments. J. Clin. Pharmacol. 2020, 60, 172–180. [Google Scholar] [CrossRef]
- Li, J.; Lovern, M.; Riccobene, T.; Carrothers, T.J.; Newell, P.; Das, S.; Talley, A.K.; Tawadrous, M. Considerations in the Selection of Renal Dosage Adjustments for Patients with Serious Infections and Lessons Learned from the Development of Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2020, 64, e02105-19. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, Q.; Cui, J. Pharmacokinetic/Pharmacodynamic Modelling to Evaluate the Efficacy of Various Dosing Regimens of Ceftazidime/Avibactam in Patients with Pneumonia Caused by Klebsiella Pneumoniae Carbapenemase (KPC)-Producing, K. Pneumoniae: A Multicentre Study in Northern China. J. Glob. Antimicrob. Resist. 2021, 27, 67–71. [Google Scholar] [CrossRef]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; Chan, P.L.S.; Raber, S.; Bradley, J.S.; Lovern, M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin. Pharmacol. Ther. 2022, 111, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Broadhurst, H.; Cheng, K.; Mendez, M.; Newell, P.; Prchlik, M.; Stone, G.G.; Talley, A.K.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime-Avibactam Plus Metronidazole in the Treatment of Children ≥3 Months to <18 Years With Complicated Intra-Abdominal Infection: Results From a Phase 2, Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 816. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Roilides, E.; Broadhurst, H.; Cheng, K.; Huang, L.-M.; MasCasullo, V.; Newell, P.; Stone, G.G.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime–Avibactam in the Treatment of Children ≥3 Months to <18 Years With Complicated Urinary Tract Infection: Results from a Phase 2 Randomized, Controlled Trial. Pediatr. Infect. Dis. J. 2019, 38, 920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolau, D.P.; Siew, L.; Armstrong, J.; Li, J.; Edeki, T.; Learoyd, M.; Das, S. Phase 1 Study Assessing the Steady-State Concentration of Ceftazidime and Avibactam in Plasma and Epithelial Lining Fluid Following Two Dosing Regimens. J. Antimicrob. Chemother. 2015, 70, 2862–2869. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Li, J.; Riccobene, T.; Carrothers, T.J.; Newell, P.; Melnick, D.; Critchley, I.A.; Stone, G.G.; Nichols, W.W. Dose Selection and Validation for Ceftazidime-Avibactam in Adults with Complicated Intra-Abdominal Infections, Complicated Urinary Tract Infections, and Nosocomial Pneumonia. Antimicrob. Agents Chemother. 2019, 63, e02187-18. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; et al. Omadacycline: A Novel Oral and Intravenous Aminomethylcycline Antibiotic Agent. Drugs 2020, 80, 285–313. [Google Scholar] [CrossRef]
- Chopra, I. Tetracycline Analogs Whose Primary Target Is Not the Bacterial Ribosome. Antimicrob. Agents Chemother. 1994, 38, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Draper, M.P.; Weir, S.; Macone, A.; Donatelli, J.; Trieber, C.A.; Tanaka, S.K.; Levy, S.B. Mechanism of Action of the Novel Aminomethylcycline Antibiotic Omadacycline. Antimicrob. Agents Chemother. 2014, 58, 1279–1283. [Google Scholar] [CrossRef] [Green Version]
- Villano, S.; Steenbergen, J.; Loh, E. Omadacycline: Development of a Novel Aminomethylcycline Antibiotic for Treating Drug-Resistant Bacterial Infections. Future Microbiol. 2016, 11, 1421–1434. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Wang, Z.; Shang, Y.; Zheng, J.; Yu, Z.; Shi, Y. Comparison of Antibacterial Activities and Resistance Mechanisms of Omadacycline and Tigecycline against Enterococcus Faecium. J. Antibiot. 2022, 75, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Lakota, E.A.; Van Wart, S.A.; Trang, M.; Tzanis, E.; Bhavnani, S.M.; Safir, M.C.; Friedrich, L.; Steenbergen, J.N.; Ambrose, P.G.; Rubino, C.M. Population Pharmacokinetic Analyses for Omadacycline Using Phase 1 and 3 Data. Antimicrob. Agents Chemother. 2020, 64, e02263-19. [Google Scholar] [CrossRef]
- Yang, H.; Huang, Z.; Chen, Y.; Zhu, Y.; Cao, G.; Wang, J.; Guo, Y.; Yu, J.; Wu, J.; Liu, L.; et al. Pharmacokinetics, Safety and Pharmacokinetics/Pharmacodynamics Analysis of Omadacycline in Chinese Healthy Subjects. Front. Pharmacol. 2022, 13, 869237. [Google Scholar] [CrossRef] [PubMed]
- Santimaleeworagun, W.; Hemapanpairoa, J.; Changpradub, D.; Thunyaharn, S. Optimizing the Dosing Regimens of Tigecycline against Vancomycin-Resistant Enterococci in the Treatment of Intra-Abdominal and Skin and Soft Tissue Infections. Infect. Chemother. 2020, 52, 345–351. [Google Scholar] [CrossRef]
- Zou, D.; Yao, G.; Shen, C.; Ji, J.; Ying, C.; Wang, P.; Liu, Z.; Wang, J.; Jin, Y.; Xiao, Y. The Monte Carlo Simulation of Three Antimicrobials for Empiric Treatment of Adult Bloodstream Infections With Carbapenem-Resistant Enterobacterales in China. Front. Microbiol. 2021, 12, 738812. [Google Scholar] [CrossRef] [PubMed]
- Bastida, C.; Hernández-Tejero, M.; Cariqueo, M.; Aziz, F.; Fortuna, V.; Sanz, M.; Brunet, M.; Fernández, J.; Soy, D. Tigecycline Population Pharmacokinetics in Critically Ill Patients with Decompensated Cirrhosis and Severe Infections. J. Antimicrob. Chemother. 2022, 77, 1365–1371. [Google Scholar] [CrossRef]
- Bradford, P.A.; Miller, A.A.; O’Donnell, J.; Mueller, J.P. Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria Gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect. Dis. 2020, 6, 1332–1345. [Google Scholar] [CrossRef]
- Unemo, M.; Ahlstrand, J.; Sánchez-Busó, L.; Day, M.; Aanensen, D.; Golparian, D.; Jacobsson, S.; Cole, M.J.; the European Collaborative Group. High Susceptibility to Zoliflodacin and Conserved Target (GyrB) for Zoliflodacin among 1209 Consecutive Clinical Neisseria Gonorrhoeae Isolates from 25 European Countries, 2018. J. Antimicrob. Chemother. 2021, 76, 1221–1228. [Google Scholar] [CrossRef]
- Biedenbach, D.J.; Bouchillon, S.K.; Hackel, M.; Miller, L.A.; Scangarella-Oman, N.E.; Jakielaszek, C.; Sahm, D.F. In Vitro Activity of Gepotidacin, a Novel Triazaacenaphthylene Bacterial Topoisomerase Inhibitor, against a Broad Spectrum of Bacterial Pathogens. Antimicrob. Agents Chemother. 2016, 60, 1918–1923. [Google Scholar] [CrossRef] [Green Version]
- Flamm, R.K.; Farrell, D.J.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Sader, H.S. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2017, 61, e00468-17. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S.; Vavra, M.; Köser, R.; Rossen, J.W.A.; Kern, W.V. New Topoisomerase Inhibitors: Evaluating the Potency of Gepotidacin and Zoliflodacin in Fluoroquinolone-Resistant Escherichia Coli upon TolC Inactivation and Differentiating Their Efflux Pump Substrate Nature. Antimicrob. Agents Chemother. 2021, 65, e01803-20. [Google Scholar] [CrossRef] [PubMed]
- Hackel, M.A.; Karlowsky, J.A.; Canino, M.A.; Sahm, D.F.; Scangarella-Oman, N.E. In Vitro Activity of Gepotidacin against Gram-Negative and Gram-Positive Anaerobes. Antimicrob. Agents Chemother. 2022, 66, e02165-21. [Google Scholar] [CrossRef] [PubMed]
- Scangarella-Oman, N.E.; Hossain, M.; Hoover, J.L.; Perry, C.R.; Tiffany, C.; Barth, A.; Dumont, E.F. Dose Selection for Phase III Clinical Evaluation of Gepotidacin (GSK2140944) in the Treatment of Uncomplicated Urinary Tract Infections. Antimicrob. Agents Chemother. 2022, 66, e01492-21. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.G.; Bax, B.; Chan, P.F.; Osheroff, N. Mechanistic and Structural Basis for the Actions of the Antibacterial Gepotidacin against Staphylococcus Aureus Gyrase. ACS Infect. Dis. 2019, 5, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Basarab, G.S.; Kern, G.H.; McNulty, J.; Mueller, J.P.; Lawrence, K.; Vishwanathan, K.; Alm, R.A.; Barvian, K.; Doig, P.; Galullo, V.; et al. Responding to the Challenge of Untreatable Gonorrhea: ETX0914, a First-in-Class Agent with a Distinct Mechanism-of-Action against Bacterial Type II Topoisomerases. Sci. Rep. 2015, 5, 11827. [Google Scholar] [CrossRef] [Green Version]
- Fishman, C.; Caverly Rae, J.M.; Posobiec, L.M.; Laffan, S.B.; Lerman, S.A.; Pearson, N.; Janmohamed, S.; Dumont, E.; Nunn-Floyd, D.; Stanislaus, D.J. Novel Bacterial Topoisomerase Inhibitor Gepotidacin Demonstrates Absence of Fluoroquinolone-Like Arthropathy in Juvenile Rats. Antimicrob. Agents Chemother. 2022, 66, e00483-22. [Google Scholar] [CrossRef]
- Hossain, M.; Tiffany, C.; Raychaudhuri, A.; Nguyen, D.; Tai, G.; Alcorn, H., Jr.; Preston, R.A.; Marbury, T.; Dumont, E. Pharmacokinetics of Gepotidacin in Renal Impairment. Clin. Pharmacol. Drug Dev. 2020, 9, 560–572. [Google Scholar] [CrossRef]
- Nguyen, D.; Shaik, J.S.; Tai, G.; Tiffany, C.; Perry, C.; Dumont, E.; Gardiner, D.; Barth, A.; Singh, R.; Hossain, M. Comparison between Physiologically Based Pharmacokinetic and Population Pharmacokinetic Modelling to Select Paediatric Doses of Gepotidacin in Plague. Br. J. Clin. Pharmacol. 2022, 88, 416–428. [Google Scholar] [CrossRef]
- Scangarella-Oman, N.E.; Hossain, M.; Perry, C.R.; Tiffany, C.; Powell, M.; Swift, B.; Dumont, E.F. Dose Selection for a Phase III Study Evaluating Gepotidacin (GSK2140944) in the Treatment of Uncomplicated Urogenital Gonorrhoea. Sex. Transm. Infect. 2023, 99, 64–69. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Oxelbark, J.; Alirol, E.; Franceschi, F.; Gustafsson, T.N.; Brown, D.; Louie, A.; Drusano, G.; Unemo, M. Pharmacodynamic Evaluation of Dosing, Bacterial Kill, and Resistance Suppression for Zoliflodacin Against Neisseria Gonorrhoeae in a Dynamic Hollow Fiber Infection Model. Front. Pharmacol. 2021, 12, 682135. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Oxelbark, J.; Franceschi, F.; Brown, D.; Louie, A.; Drusano, G.; Unemo, M. Pharmacodynamic Evaluation of Zoliflodacin Treatment of Neisseria Gonorrhoeae Strains With Amino Acid Substitutions in the Zoliflodacin Target GyrB Using a Dynamic Hollow Fiber Infection Model. Front. Pharmacol. 2022, 13, 874176. [Google Scholar] [CrossRef]
- Taylor, S.N.; Marrazzo, J.; Batteiger, B.E.; Hook, E.W.; Seña, A.C.; Long, J.; Wierzbicki, M.R.; Kwak, H.; Johnson, S.M.; Lawrence, K.; et al. Single-Dose Zoliflodacin (ETX0914) for Treatment of Urogenital Gonorrhea. N. Engl. J. Med. 2018, 379, 1835–1845. [Google Scholar] [CrossRef] [PubMed]
- Bulik, C.C.; Okusanya, Ó.O.; Lakota, E.A.; Forrest, A.; Bhavnani, S.M.; Hoover, J.L.; Andes, D.R.; Ambrose, P.G. Pharmacokinetic-Pharmacodynamic Evaluation of Gepotidacin against Gram-Positive Organisms Using Data from Murine Infection Models. Antimicrob. Agents Chemother. 2017, 61, e00115-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Riordan, W.; Tiffany, C.; Scangarella-Oman, N.; Perry, C.; Hossain, M.; Ashton, T.; Dumont, E. Efficacy, Safety, and Tolerability of Gepotidacin (GSK2140944) in the Treatment of Patients with Suspected or Confirmed Gram-Positive Acute Bacterial Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 2017, 61, e02095-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, W.A. Post-Antibiotic Effects in Experimental Infection Models: Relationship to in-Vitro Phenomena and to Treatment of Infections in Man. J. Antimicrob. Chemother. 1993, 31, 149–158. [Google Scholar] [CrossRef]
- Craig, W.A. Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin. Infect. Dis. 1998, 26, 1–12. [Google Scholar] [CrossRef]
- Kaye, K.S.; Naas, T.; Pogue, J.M.; Rossolini, G.M. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect. Dis. Ther. 2023, 13, 874176. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69, S538–S543. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; Sadouki, Z.; Vickers, A.; Livermore, D.M.; Woodford, N. In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, against Multidrug-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2020, 64, e01582-20. [Google Scholar] [CrossRef]
- Simner, P.J.; Patel, R. Cefiderocol Antimicrobial Susceptibility Testing Considerations: The Achilles’ Heel of the Trojan Horse? J. Clin. Microbiol. 2020, 59, e00951-20. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Juárez-Hernández, R.E.; Miller, M.J. Exploiting Bacterial Iron Acquisition: Siderophore Conjugates. Future Med. Chem. 2012, 4, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol. Med. 2016, 22, 1077–1090. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Kohira, N.; Bouchillon, S.K.; West, J.; Rittenhouse, S.; Sader, H.S.; Rhomberg, P.R.; Jones, R.N.; Yoshizawa, H.; Nakamura, R.; et al. In Vitro Antimicrobial Activity of S-649266, a Catechol-Substituted Siderophore Cephalosporin, When Tested against Non-Fermenting Gram-Negative Bacteria. J. Antimicrob. Chemother. 2016, 71, 670–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Naseer, S.; Weinstein, E.A.; Rubin, D.B.; Suvarna, K.; Wei, X.; Higgins, K.; Goodwin, A.; Jang, S.H.; Iarikov, D.; Farley, J.; et al. US Food and Drug Administration (FDA): Benefit-Risk Considerations for Cefiderocol (Fetroja®). Clin. Infect. Dis. 2021, 72, e1103–e1111. [Google Scholar] [CrossRef]
- Katsube, T.; Wajima, T.; Ishibashi, T.; Arjona Ferreira, J.C.; Echols, R. Pharmacokinetic/Pharmacodynamic Modeling and Simulation of Cefiderocol, a Parenteral Siderophore Cephalosporin, for Dose Adjustment Based on Renal Function. Antimicrob. Agents Chemother. 2016, 61, e01381-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic Analysis of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Healthy Subjects, Subjects with Various Degrees of Renal Function, and Patients with Complicated Urinary Tract Infection or Acute Uncomplicated Pyelonephritis. Antimicrob. Agents Chemother. 2018, 62, e01391-17. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, e01437-20. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T.; Nicolau, D.P. Intrapulmonary Pharmacokinetic Modeling and Simulation of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients With Pneumonia and Healthy Subjects. J. Clin. Pharmacol. 2022, 62, 670–680. [Google Scholar] [CrossRef]
- Zahr, N.; Urien, S.; Llopis, B.; Noé, G.; Tissot, N.; Bihan, K.; Junot, H.; Marin, C.; Mansour, B.; Luyt, C.-E.; et al. Total and Unbound Pharmacokinetics of Cefiderocol in Critically Ill Patients. Pharmaceutics 2022, 14, 2786. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Butler, D.; Tan, X.; Katsube, T.; Wajima, T. Pharmacokinetics, Pharmacodynamics, and Dose Optimization of Cefiderocol during Continuous Renal Replacement Therapy. Clin. Pharmacokinet. 2022, 61, 539–552. [Google Scholar] [CrossRef] [PubMed]
Type of Model | Purpose | Reference |
---|---|---|
PBPK | Prediction of GEP dosages in renally impaired patients | [109] |
PBPK and PopPK | Prediction of GEP dose needed to treat pediatrics in case of plaque | [110] |
PopPK | Prediction of dose and dose selection for GEP for a phase 3 study of the treatment of uncomplicated urogenital gonorrhea | [111] |
Compartmental PK/PD model | Prediction of efficacious dose for ZOL that also suppresses resistance selection | [112,113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalid, K.; Rox, K. All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics 2023, 12, 690. https://doi.org/10.3390/antibiotics12040690
Khalid K, Rox K. All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics. 2023; 12(4):690. https://doi.org/10.3390/antibiotics12040690
Chicago/Turabian StyleKhalid, Kashaf, and Katharina Rox. 2023. "All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches" Antibiotics 12, no. 4: 690. https://doi.org/10.3390/antibiotics12040690
APA StyleKhalid, K., & Rox, K. (2023). All Roads Lead to Rome: Enhancing the Probability of Target Attainment with Different Pharmacokinetic/Pharmacodynamic Modelling Approaches. Antibiotics, 12(4), 690. https://doi.org/10.3390/antibiotics12040690