Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment
Abstract
:1. Introduction
2. Pathogenicity
2.1. Biofilm
2.2. Virulence Factors
3. Resistance Patterns
4. Epidemiology
4.1. Ambulatory Population
4.2. Hospitalized Population
4.3. At Risk Population (Immunocompromised and Comorbidities)
4.4. Asymptomatic Bacteriuria (ASB)
5. Treatment
Catheter Associated Urinary Tract Infection (CAUTI)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLellan, L.K.; Hunstad, D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol. Med. 2016, 22, 946–957. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Shorr, A.F. Descriptive Epidemiology and Outcomes of Hospitalizations with Complicated Urinary Tract Infections in the United States, 2018. Open Forum Infect. Dis. 2022, 9, ofab591. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhan, J.; Zhang, K.; Chen, H.; Cheng, S. Global, regional, and national burden of urinary tract infections from 1990 to 2019: An analysis of the global burden of disease study 2019. World J. Urol. 2022, 40, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Dunny, G.M.; Hancock, L.E.; Shankar, N. Enterococcal Biofilm Structure and Role in Colonization and Disease. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Eds.; Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190433/ (accessed on 22 March 2023).
- García-Solache, M.; Rice, L.B. The Enterococcus: A Model of Adaptability to Its Environment. Clin. Microbiol. Rev. 2019, 32, e00058-18. [Google Scholar] [CrossRef] [PubMed]
- Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2018, 17, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Delcaru, C.; Alexandru, I.; Podgoreanu, P.; Grosu, M.; Stavropoulos, E.; Chifiriuc, M.C.; Lazar, V. Microbial Biofilms in Urinary Tract Infections and Prostatitis: Etiology, Pathogenicity, and Combating strategies. Pathogens 2016, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Tien, B.Y.Q.; Goh, H.M.S.; Chong, K.K.L.; Bhaduri-Tagore, S.; Holec, S.; Dress, R.; Ginhoux, F.; Ingersoll, M.A.; Williams, R.B.H.; Kline, K.A. Enterococcus faecalis Promotes Innate Immune Suppression and Polymicrobial Catheter-Associated Urinary Tract Infection. Infect. Immun. 2017, 85, e00378-17. [Google Scholar] [CrossRef]
- Sharma, A.K.; Dhasmana, N.; Dubey, N.; Kumar, N.; Gangwal, A.; Gupta, M. Bacterial Virulence Factors: Secreted for Survival. Indian J. Microbiol. 2016, 57, 1–10. [Google Scholar] [CrossRef]
- Shankar, N.; Lockatell, C.V.; Baghdayan, A.S.; Drachenberg, C.; Gilmore, M.S.; Johnson, D.E. Role of Enterococcus faecalis Surface Protein Esp in the Pathogenesis of Ascending Urinary Tract Infection. Infect. Immun. 2001, 69, 4366–4372. [Google Scholar] [CrossRef]
- Hashem, Y.A.; Abdelrahman, K.A.; Aziz, R.K. Phenotype–Genotype Correlations and Distribution of Key Virulence Factors in Enterococcus faecalis Isolated from Patients with Urinary Tract Infections. Infect. Drug Resist. 2021, 14, 1713–1723. [Google Scholar] [CrossRef] [PubMed]
- Süßmuth, S.D.; Muscholl-Silberhorn, A.; Wirth, R.; Susa, M.; Marre, R.; Rozdzinski, E. Aggregation Substance Promotes Adherence, Phagocytosis, and Intracellular Survival of Enterococcus faecalis within Human Macrophages and Suppresses Respiratory Burst. Infect. Immun. 2000, 68, 4900–4906. [Google Scholar] [CrossRef] [PubMed]
- Coburn, P.S.; Gilmore, M.S. The Enterococcus faecalis cytolysin: A novel toxin active against eukaryotic and prokaryotic cells. Cell. Microbiol. 2003, 5, 661–669. [Google Scholar] [CrossRef]
- Nallapareddy, S.R.; Qin, X.; Weinstock, G.M.; Höök, M.; Murray, B.E. Enterococcus faecalis Adhesin, Ace, Mediates Attachment to Extracellular Matrix Proteins Collagen Type IV and Laminin as well as Collagen Type I. Infect. Immun. 2000, 68, 5218–5224. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC101781/ (accessed on 22 March 2023). [CrossRef] [PubMed]
- Toledo-Arana, A.; Valle, J.; Solano, C.; Arrizubieta, M.J.; Cucarella, C.; Lamata, M.; Amorena, B.; Leiva, J.; Penade, R.; Lasa, I. The Enterococcal Surface Protein, Esp, Is Involved in Enterococcus faecalis Biofilm Formation. Appl. Environ. Microbiol. 2001, 67, 4538–4545. [Google Scholar] [CrossRef] [PubMed]
- Vergis, E.N.; Shankar, N.; Chow, J.W.; Hayden, M.K.; Snydman, D.R.; Zervos, M.J.; Linden, P.K.; Wagener, M.M.; Muder, R.R. Association between the Presence of Enterococcal Virulence Factors Gelatinase, Hemolysin, and Enterococcal Surface Protein and Mortality among Patients with Bacteremia Due to Enterococcus faecalis. Clin. Infect. Dis. 2002, 35, 570–575. [Google Scholar] [CrossRef]
- Louis, B.R.; Carias, L.; Rudin, S.; Vael, C.; Goossens, H.; Konstabel, C.; Klare, I.; Nallapareddy, S.R.; Huang, W.; Murray, B.E. A Potential Virulence Gene, hylEfm, Predominates in Enterococcus faecium of Clinical Origin. J. Infect. Dis. 2003, 187, 508–512. [Google Scholar] [CrossRef]
- Sava, I.G.; Heikens, E.; Huebner, J. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 2010, 16, 533–540. [Google Scholar] [CrossRef]
- Zou, J.; Baghdayan, A.S.; Payne, S.J.; Shankar, N. A TIR Domain Protein from E. faecalis Attenuates MyD88-Mediated Signaling and NF-κB Activation. PLoS ONE 2014, 9, e112010. [Google Scholar] [CrossRef]
- Kraemer, T.D.; Quintanar Haro, O.D.; Domann, E.; Chakraborty, T.; Tchatalbachev, S. The TIR Domain Containing Locus of Enterococcus faecalis Is Predominant among Urinary Tract Infection Isolates and Downregulates Host Inflammatory Response. Int. J. Microbiol. 2014, 2014, 918143. [Google Scholar] [CrossRef]
- Said, M.; Tirthani, E.; Lesho, E.; Enterococcus Infections. StatPearls. 2022. Available online: https://www.statpearls.com/ArticleLibrary/viewarticle/127216#ref_822713 (accessed on 22 March 2023).
- Palmer, K.L.; Kos, V.N.; Gilmore, M.S. Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr. Opin. Microbiol. 2010, 13, 632–639. [Google Scholar] [CrossRef]
- Hegstad, K.; Mikalsen, T.; Coque, T.M.; Werner, G.; Sundsfjord, A. Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin. Microbiol. Infect. 2010, 16, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Alangaden, G.J. Treatment of Resistant Enterococcal Urinary Tract Infections. Curr. Infect. Dis. Rep. 2010, 12, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, J.; Knezevich, A.; Luzzati, R.; Di Bella, S. Clinical management of non-faecium non-faecalis vancomycin-resistant enterococci infection. Focus on Enterococcus gallinarum and Enterococcus casseliflavus/flavescens. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2018, 24, 237–246. [Google Scholar] [CrossRef]
- Levitus, M.; Rewane, A.; Perera, T.B.; Vancomycin-Resistant Enterococci. PubMed. 2021. Available online: https://pubmed.ncbi.nlm.nih.gov/30020605/ (accessed on 22 March 2023).
- Perichon, B.; Courvalin, P. VanA-Type Vancomycin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 4580–4587. [Google Scholar] [CrossRef]
- Chang, S.; Sievert, D.M.; Hageman, J.C.; Boulton, M.L.; Tenover, F.C.; Downes, F.P.; Shah, S.; Rudrik, J.T.; Pupp, G.R.; Brown, W.J. Infection with Vancomycin-Resistant Staphylococcus aureus Containing the van AResistance Gene. N. Engl. J. Med. 2003, 348, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Leggett, J. Aminoglycoside—An overview|ScienceDirect Topics. 2017. Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/aminoglycoside (accessed on 22 March 2023).
- Pogliano, J.; Pogliano, N.; Silverman, J.A. Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins. J. Bacteriol. 2012, 194, 4494–4504. [Google Scholar] [CrossRef] [PubMed]
- Naber, K.G.; Schito, G.; Botto, H.; Palou, J.; Mazzei, T. Surveillance Study in Europe and Brazil on Clinical Aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): Implications for Empiric Therapy. Eur. Urol. 2008, 54, 1164–1178. [Google Scholar] [CrossRef]
- Malmartel, A.; Ghasarossian, C. Epidemiology of urinary tract infections, bacterial species and resistances in primary care in France. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 447–451. [Google Scholar] [CrossRef]
- Seitz, M.; Stief, C.; Waidelich, R. Local epidemiology and resistance profiles in acute uncomplicated cystitis (AUC) in women: A prospective cohort study in an urban urological ambulatory setting. BMC Infect. Dis. 2017, 17, 685. [Google Scholar] [CrossRef] [PubMed]
- Laupland, K.B.; Ross, T.; Pitout, J.D.D.; Church, D.L.; Gregson, D.B. Community-onset Urinary Tract Infections: A Population-based Assessment. Infection 2007, 35, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Costa, E.; Freitas, A.; Almeida, A. Revisiting the Frequency and Antimicrobial Resistance Patterns of Bacteria Implicated in Community Urinary Tract Infections. Antibiotics 2022, 11, 768. [Google Scholar] [CrossRef]
- Salm, J.; Salm, F.; Arendarski, P.; Kramer, T.S. High antimicrobial resistance in urinary tract infections in male outpatients in routine laboratory data, Germany, 2015 to 2020. Eurosurveillance 2022, 27, 2101012. [Google Scholar] [CrossRef]
- Xiong, S.; Liu, X.; Deng, W.; Zhou, Z.; Li, Y.; Tu, Y.; Chen, L.; Wang, G.; Fu, B. Pharmacological Interventions for Bacterial Prostatitis. Front. Pharmacol. 2020, 11, 504. [Google Scholar] [CrossRef]
- Che, B.; Zhang, W.; Xu, S.; Yin, J.; He, J.; Huang, T.; Li, W.; Yu, Y.; Tang, K. Prostate Microbiota and Prostate Cancer: A New Trend in Treatment. Front. Oncol. 2021, 11, 5260. [Google Scholar] [CrossRef]
- Balzan, S.; de Almeida Quadros, C.; de Cleva, R.; Zilberstein, B.; Cecconello, I. Bacterial translocation: Overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 2007, 22, 464–471. [Google Scholar] [CrossRef] [PubMed]
- D’Agata, E.M.; Jirjis, J.; Gouldin, C.; Tang, Y.W. Community dissemination of vancomycin-resistant Enterococcus faecium. Am. J. Infect. Control 2001, 29, 316–320. [Google Scholar] [CrossRef]
- Nicastri, E.; Leone, S.; Mehtar, S.; Healthcare Associated Urinary Tract Infections—Guide. ISID. 2021. Available online: https://isid.org/guide/hospital/urinary-tract-infections/ (accessed on 22 March 2023).
- Urinary Tract Infection (Catheter-Associated Urinary Tract Infection [CAUTI] and Non-Catheter-Associated Urinary Tract Infection [UTI]) Events. 2016. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/7psccauticurrent.pdf (accessed on 22 March 2023).
- Neely, A.N.; Maley, M.P. Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef]
- Lin, E.; Bhusal, Y.; Horwitz, D.; Shelburne, S.A.; Trautner, B.W. Overtreatment of Enterococcal Bacteriuria. Arch. Intern. Med. 2012, 172, 33. [Google Scholar] [CrossRef]
- Guiton, P.S.; Hannan, T.J.; Ford, B.; Caparon, M.G.; Hultgren, S.J. Enterococcus faecalis Overcomes Foreign Body-Mediated Inflammation to Establish Urinary Tract Infections. Infect. Immun. 2012, 81, 329–339. [Google Scholar] [CrossRef]
- Shin, H.R.; Moon, J.; Lee, H.S.; Ahn, S.J.; Kim, T.J.; Jun, J.S.; Sunwoo, J.S.; Lee, S.T.; Jung, K.H.; Park, K.I.; et al. Increasing prevalence of antimicrobial resistance in urinary tract infections of neurological patients, Seoul, South Korea, 2007–2016. Int. J. Infect. Dis. 2019, 84, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, H.; Ragos, V. Impact of Enterococcal Urinary Tract Infections in Immunocompromised—Neoplastic Patients Antibiotic Resistance View Project. 2019. Available online: https://www.researchgate.net/publication/336915810_Impact_of_enterococcal_urinary_tract_infections_in_immunocompromised_-_neoplastic_patients (accessed on 22 March 2023).
- Kotagiri, P.; Chembolli, D.; Ryan, J.; Hughes, P.D.; Toussaint, N.D. Urinary Tract Infections in the First Year Post–Kidney Transplantation: Potential Benefits of Treating Asymptomatic Bacteriuria. Transplant. Proc. 2017, 49, 2070–2075. [Google Scholar] [CrossRef] [PubMed]
- Plackett, B. Why big pharma has abandoned antibiotics. Nature 2020, 586, S50–S52. [Google Scholar] [CrossRef]
- Richey, E.M.; Waters, P.W.; Jovic, M.; Rakhman, C. Treatment of Ampicillin-Resistant Enterococcus faecium Urinary Tract Infections. Fed. Pract. Health Care Prof. VA DoD PHS 2015, 32, 20–23. Available online: http://www.ncbi.nlm.nih.gov/pubmed/30766068 (accessed on 22 March 2023).
- Murray, B.E. Vancomycin-Resistant Enterococcal Infections. N. Engl. J. Med. 2000, 342, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; Miller, W. UpToDate. Available online: https://www.uptodate.com/contents/treatment-of-enterococcal-infections/print?search=treatmentofenterococcusuti&source=search_result&selected%E2%80%A61/43OfficialreprintfromUpToDatewww.uptodate.com (accessed on 22 March 2023).
- Anger, J.; Lee, U.; Ackerman, A.L.; Chou, R.; Chughtai, B.; Clemens, J.Q.; Hickling, D.; Kapoor, A.; Kenton, K.S.; Kaufman, M.R.; et al. Recurrent Uncomplicated Urinary Tract Infections in Women: AUA/CUA/SUFU Guideline. J. Urol. 2019, 202, 282–289. [Google Scholar] [CrossRef]
- de Llano, D.G.; Moreno-Arribas, M.V.; Bartolomé, B. Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules 2020, 25, 3523. [Google Scholar] [CrossRef]
- Wojnicz, D.; Tichaczek-Goska, D.; Korzekwa, K.; Kicia, M.; Hendrich, A.B. Study of the impact of cranberry extract on the virulence factors and biofilm formation by Enterococcus faecalis strains isolated from urinary tract infections. Int. J. Food Sci. Nutr. 2016, 67, 1005–1016. [Google Scholar] [CrossRef]
- Hooton, T.M.; Bradley, S.F.; Cardenas, D.D.; Colgan, R.; Geerlings, S.E.; Rice, J.C.; Saint, S.; Schaeffer, A.J.; Tambayh, P.A.; Tenke, P.; et al. Diagnosis, Prevention, and Treatment of Catheter-Associated Urinary Tract Infection in Adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 2010, 50, 625–663. [Google Scholar] [CrossRef] [PubMed]
- Hazan, Z.; Zumeris, J.; Jacob, H.; Raskin, H.; Kratysh, G.; Vishnia, M.; Dror, N.; Barliya, T.; Mandel, M.; Lavie, G. Effective Prevention of Microbial Biofilm Formation on Medical Devices by Low-Energy Surface Acoustic Waves. Antimicrob. Agents Chemother. 2006, 50, 4144–4152. [Google Scholar] [CrossRef] [PubMed]
Virulence Factor | Function |
---|---|
Aggregation substance [6,9,12,13] |
|
Collagen binding protein [12] |
|
Cytolysin [14,15] |
|
Enterococcal surface protein [7,16] |
|
Gelatinase [9,17] |
|
Hyaluronidase [18] |
|
Pilin gene clusters (PGCs) [6,19] |
|
TcpF [9,20,21] |
|
Antibiotic | Mechanism of Action | Mechanism of Resistance |
Aminoglycosides [25,31,32] | Interferes with bacterial protein synthesis by binding to the 30S ribosome subunit | Aminoglycoside modifying enzymes, the only exceptions being streptomycin and gentamicin Streptomycin resistance occurs in 2 ways: enzymatic inactivation or ‘absolute’ inhibition Gentamicin resistance occurs due to the enzyme AAC(6′)-Ie/APH(2′), which contains 6′ acetyltransferase and 2′ phosphotransferase |
β-lactam [5,25,26,31] | Ampicillin and penicillin function against enterococci infections by inhibiting the synthesis of peptidoglycan, which is an essential part of the cell wall. | Enterococci can resist the effects of these β-lactam compounds through the expression of the pbp5 gene This gene encodes for a penicillin-binding protein in which ampicillin and cephalosporins have a poor binding affinity. A two-component regulatory system consisting of IreK, a serine/threonine kinase, and IreP, a phosphatase, was shown to contribute to cephalosporin resistance |
Daptomycin [5,25,31,33] | Disrupts bacterial cell membrane function causing loss of membrane potential | There are 3 genes associated with Daptomycin resistance: LiaF (part of the LiaFSR regulatory system), gpdD, and Cls (both involved in phospholipid metabolism Mechanism of resistance differs in both E. faecalis and E. faecium, but LiaFSR seems to play a role in both |
Glycopeptides [5,23,24,25,31] | Binds to precursors and inhibits the synthesis and permeability of both the bacterial cell wall and membrane | Encoded in van clusters that alter cell wall precursors that vancomycin binds |
Oxazolidinones [25,31] | Binds to the 23SrRNA and disrupts protein synthesis | Resistance commonly occurs due to mutations in the gene that encodes for 23SrRNA, preventing antibacterial binding |
Quinolones [5,31] | Targets the enzymes necessary for transcription and replication | Quinolone resistance commonly occurs by mutations in the target genes that decrease the binding affinity |
Rifampicin [31] | Inhibits mRNA transcription by binding to the β-subunit of RNA polymerase, encoded by rpoB gene | Resistance of this drug occurs through mutations in the rpoB Gene |
Trimethoprim and sulphamethoxazole [31] | Inhibits the enzymes required in the folate synthesis pathway, as many bacteria are unable to exogenously acquire folate | Enterococci can exogenously acquire folate |
Simple Cystitis | |
Preferred oral agents | Amoxicillin, nitrofurantoin, and fosfomycin |
Alternative oral agents | Levofloxacin and linezolid |
Intravenous alternative agents | Ampicillin, vacomycin, daptomycin, or linezolid |
Complicated Cystitis | |
Preferred intravenous agents | Ampicillin * |
Alternative intravenous agents | Fluoroquinolones, oxazolidinones, vancomycin, or daptomycin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codelia-Anjum, A.; Lerner, L.B.; Elterman, D.; Zorn, K.C.; Bhojani, N.; Chughtai, B. Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics 2023, 12, 778. https://doi.org/10.3390/antibiotics12040778
Codelia-Anjum A, Lerner LB, Elterman D, Zorn KC, Bhojani N, Chughtai B. Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics. 2023; 12(4):778. https://doi.org/10.3390/antibiotics12040778
Chicago/Turabian StyleCodelia-Anjum, Alia, Lori B. Lerner, Dean Elterman, Kevin C. Zorn, Naeem Bhojani, and Bilal Chughtai. 2023. "Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment" Antibiotics 12, no. 4: 778. https://doi.org/10.3390/antibiotics12040778
APA StyleCodelia-Anjum, A., Lerner, L. B., Elterman, D., Zorn, K. C., Bhojani, N., & Chughtai, B. (2023). Enterococcal Urinary Tract Infections: A Review of the Pathogenicity, Epidemiology, and Treatment. Antibiotics, 12(4), 778. https://doi.org/10.3390/antibiotics12040778