Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria
Abstract
:1. Introduction
2. Results
2.1. Bacteria Characterization
2.2. Synergy Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Bacteria Characterization and Whole-Genome Sequencing (WGS)
5.2. Synergy Testing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papp-Wallace, K.M.; Endiminai, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, K.; van Duin, D. Treatment for carbapenem-resistant Enterobacterales infections: Recent advances and future directions. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2053–2068. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 27 February 2017).
- Centers for Disease Control and Prevention (CDC). Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 23 November 2021).
- Gaibani, P.; Giani, T.; Bovo, F.; Lombardo, D.; Amadesi, S.; Lazzarotto, T.; Coppi, M.; Rossolini, G.M.; Ambretti, S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics 2022, 11, 628. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Nordmann, P.; Poirel, L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob. Agents Chemother. 2015, 59, 5873–5884. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Q.; Yin, Y.; Chen, H.; Jin, L.; Gu, B.; Xie, L.; Yang, C.; Ma, X.; Li, H.; et al. Epidemiology of carbapenem-resistant enterobacteriaceae infections: Report from the China CRE Network. Antimicrob. Agents Chemother. 2018, 62, e01882-17. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Campoli, C.; Lewis, R.E.; Volpe, S.L.; Scaltriti, E.; Giannella, M.; Pongolini, S.; Berlingeri, A.; Cristini, F.; Bartoletti, M.; et al. In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J. Antimicrob. Chemother. 2018, 73, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Lombardo, D.; Bussini, L.; Bovo, F.; Munari, B.; Giannella, M.; Bartoletti, M.; Viale, P.; Lazzarotto, T.; Ambretti, S. Epidemiology of Meropenem/Vaborbactam Resistance in KPC-Producing Klebsiella pneumoniae Causing Bloodstream Infections in Northern Italy, 2018. Antibiotics 2021, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2021, 34, e00021-21. [Google Scholar]
- Bovo, F.; Lombardo, D.; Lazzarotto, T.; Ambretti, S.; Gaibani, P. Epidemiology and In Vitro Activity of Ceftazidime/Avibactam, Meropenem/Vaborbactam andImipenem/Relebactam against KPC-Producing K pneumoniae Collected from Bacteremic Patients, 2018 to 2020. Antibiotics 2022, 11, 1621. [Google Scholar] [CrossRef]
- McCreary, E.K.; Heil, E.L.; Tamma, P.D. New perspectives on antimicrobial agents: Cefiderocol. Antimicrob. Agents Chemother. 2021, 65, e0217120. [Google Scholar] [CrossRef] [PubMed]
- Witzke, O.; Brenner, T. Klinische Erfahrungen mit Cefiderocol. Med. Klin.-Intensivmed. Notf. 2022, 118, 149–155. [Google Scholar] [CrossRef]
- Bovo, F.; Lazzarotto, T.; Ambretti, S.; Gaibani, P. Comparison of Broth Microdilution, Disk Diffusion and Strip Test Methods for Cefiderocol Antimicrobial Susceptibility Testing on KPC-Producing Klebsiella pneumoniae. Antibiotics 2023, 12, 614. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef]
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17, 141–155. [Google Scholar] [CrossRef]
- Gaibani, P.; Crovara-Pesce, C.; Lazzarotto, T.; Pea, F.; Ambretti, S. Evaluation of synergistic activity of fosfomycin in combination with novel ß-lactams/ß-lactamase inhibitor combinations (βL-βLICs) against KPC-producing Klebsiella pneumoniae clinical isolates. Int. J. Antimicrob. Agents 2022, 60, 106671. [Google Scholar] [CrossRef] [PubMed]
- Mussi, M.A.; Limansky, A.S.; Relling, V.; Ravasi, P.; Arakaki, A.; Actis, L.A.; Viale, A.M. Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J. Bacteriol. 2011, 193, 4736–4748. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.C.; Kuo, A.J.; Su, L.H.; Liu, T.P.; Lee, M.H.; Su, I.N.; Wu, T.L. Development of carbapenem resistance in Pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170. J. Antimicrob. Chemother. 2017, 72, 2489–2495. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the synergy of ceftazidimeavibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00779-19. [Google Scholar] [CrossRef]
- Campanella, T.A.; Gallagher, J.C. A Clinical Review and Critical Evaluation of Imipenem-Relebactam: Evidence to Date. Infect. Drug Resist. 2020, 13, 4297–4308. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.P.; Bergman, Y.; Tekle, T.; Fissel, J.A.; Tamma, P.D.; Simner, P.J. Cefiderocol antimicrobial susceptibility testing against multidrug-resistant Gram-negative bacilli: A comparison of disk diffusion to broth microdilution. J. Clin. Microbiol. 2021, 59, e01649-20. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Juhas, M.; Nordmann, P. KPC-mediated resistance to ceftazidime-avibactam and collateral effects in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2021, 65, e00890-21. [Google Scholar] [CrossRef]
- Simner, P.J.; Patel, R. Cefiderocol antimicrobial susceptibility testing considerations: The Achilles’ heel of the Trojan horse? J. Clin. Microbiol. 2021, 59, e00951-20. [Google Scholar] [CrossRef]
- Vázquez-Ucha, J.C.; Arca-Suárez, J.; Bou, G.; Beceiro, A. New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams. Int. J. Mol. Sci. 2020, 21, 9308. [Google Scholar] [CrossRef]
- Chu, H.; Zhao, L.; Wang, M.; Liu, Y.; Gui, T.; Zhang, J. Sulbactam-based therapy for Acinetobacter baumannii infection: A systematic review and meta-analysis. Braz. J. Infect. Dis. 2013, 17, 389–394. [Google Scholar] [CrossRef]
- Rodriguez, C.H.; Brune, A.; Nastro, M.; Vay, C.; Famiglietti, A. In vitro synergistic activity of the sulbactam/avibactam combination against extensively drug-resistant Acinetobacter baumannii. J. Med. Microbiol. 2020, 69, 928–931. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sazlly Lim, S.; Heffernan, A.; Naicker, S.; Wallis, S.; Roberts, J.A.; Sime, F.B. Evaluation of Fosfomycin-Sulbactam Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Isolates in a Hollow-Fibre Infection Model. Antibiotics 2022, 11, 1578. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; Boattini, M.; Bianco, G.; Cavallo, R.; Costa, C. Meropenem/vaborbactam-based combinations against KPC-producing Klebsiella pneumoniae and multidrug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2020, 56, 106066. [Google Scholar] [CrossRef]
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-resistance to cefiderocol and ceftazidime eavibactam in KPC β-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 2021, 27, 1172.e7-1172.e10. [Google Scholar] [CrossRef]
- Chatterjee, M.; Anju, C.P.; Biswas, L.; Anil Kumar, V.; Gopi Mohan, C.; Biswas, R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 2016, 306, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Bussini, L.; Amadesi, S.; Bartoletti, M.; Bovo, F.; Lazzarotto, T.; Viale, P.; Ambretti, S. Successful Treatment of Bloodstream Infection due to a KPC-Producing Klebsiella Pneumoniae Resistant to Imipenem/Relebactam in a Hematological Patient. Microorganisms 2022, 10, 778. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Lombardo, D.; Lewis, R.E.; Mercuri, M.; Bonora, S.; Landini, M.P.; Ambretti, S. In vitro activity and post-antibiotic effects of colistin in combination with other antimicrobials against colistin-resistant KPC-producing Klebsiella pneumoniae bloodstream isolates. J. Antimicrob. Chemother. 2014, 69, 1856–1865. [Google Scholar] [CrossRef]
- Gaibani, P.; Lewis, R.E.; Volpe, S.L.; Giannella, M.; Campoli, C.; Landini, M.P.; Viale, P.; Re, M.C.; Ambretti, S. In vitro interaction of ceftazidime–avibactam in combination with different antimicrobials against KPC-producing Klebsiella pneumoniae clinical isolates. Int. J. Infect. Dis. 2017, 65, 1–3. [Google Scholar] [CrossRef] [PubMed]
Isolates | ST a | β-Lactamase | Multidrug Efflux Pumps | Major Porins |
---|---|---|---|---|
OmpK35 | ||||
CRE 1 | 512 | KPC-66, TEM, SHV-11, OXA-10, OXA-181, CMY-16 | emrD, oqxA, oqxB | OmpK35, truncated at aa 41; OmpK36, INS135GD |
CRE 2 | 307 | KPC-3, TEM-1, SHV-28, | emrD, oqxA, oqxB19 | OmpK35, truncated at aa 229; OmpK36, truncated at aa 183 |
CR-Ab 1 | 2 | ADC-73, OXA-23, OXA-66 | adeC, amvA | carO, variant III, Y245F; oprD, wt |
CR-Ab 2 | 2 | ADC-73, TEM-1, OXA-23, OXA-66, ftsl | adeC, amvA | carO, variant III, Y245F; oprD, wt |
CR-Pa 1 | 298 | OXA-848, BEL, PDC-16 | mexA, mexE, mexX | oprD, variant C2, G425A; oprF, wt |
CR-Pa 2 | 235 | OXA-2, OXA-488, PDC-35, PER-1 | mexA, mexE, mexX | oprD, variant C2, stop codon at aa 64, G425A; oprF, wt |
Isolates | MIC (mg/L) 1 | |||||||
---|---|---|---|---|---|---|---|---|
CFD 2 | SULB 3 | PIP-TAZ 4 | IMI-REL 5 | MER-VAB 6 | CAZ-AVI 7 | AMP-SULB 8 | FOS 9 | |
CRE 1 | 16 | >256 | >256 a | 4 b | 16 c | 48 d | >256 e | >256 |
CRE 2 | 0.032 | >256 | >256 a | 0.25 b | 4 c | 3 d | >256 e | 8 |
CR-Ab 1 | >256 | >256 | >256 a | >32 b | >256 c | >256 d | >256 e | 32 |
CR-Ab 2 | 0.125 | 64 | >256 a | >32 b | >256 c | 48 d | >256 e | >256 |
CR-Pa 1 | 0.5 | >256 | 12 a | 2 b | 16 c | 24 d | >256 e | >256 |
CR-Pa 2 | 0.125 | >256 | 8 a | >32 b | 32 c | 8 d | >256 e | >256 |
Isolates | CFD/PIP-TAZ 1 | CFD/FOS 2 | CFD/CAZ-AVI 3 | CFD/IMI-REL 4 | CFD/MER-VAB 5 | CFD/AMP-SULB 6 |
---|---|---|---|---|---|---|
CRE 1 | 1.25 | 0.50 | 0.38 | 0.63 | 0.63 | 0.88 |
CRE 2 | 1.00 | 0.86 | 0.83 | 1.00 | 0.75 | 1.47 |
CR-Ab 1 | 2.00 | 0.44 | 2.00 | 2.00 | 2.00 | 2.00 |
CR-Ab 2 | 1.50 | 1.01 | 1.75 | 2.00 | 2.00 | 1.50 |
CR-Pa 1 | 1.00 | 1.00 | 0.50 | 0.63 | 1.25 | 0.50 |
CR-Pa 2 | 2 | 1.75 | 2 | 0.63 | 1.26 | 2 |
Isolates | PIP-TAZ/ SULB 1 | FOS/ SULB 2 | CAZ-AVI/ SULB 3 | IMI-REL/ SULB 4 | MER-VAB/ SULB 5 |
---|---|---|---|---|---|
CRE 1 | 2.00 | 0.75 | 0.35 | 1.50 | 1.25 |
CRE 2 | 2.00 | 1.25 | 0.71 | 1.25 | 0.56 |
CR-Ab 1 | 2.00 | 2.25 | 2.00 | 2.00 | 1.00 |
CR-Ab 2 | 2.00 | 1.00 | 0.83 | 1.75 | 0.88 |
CR-Pa 1 | 1.00 | 2.00 | 1.17 | 2.00 | 1.75 |
CR-Pa 2 | 1.00 | 2.00 | 0.88 | 2.00 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palombo, M.; Bovo, F.; Amadesi, S.; Gaibani, P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics 2023, 12, 858. https://doi.org/10.3390/antibiotics12050858
Palombo M, Bovo F, Amadesi S, Gaibani P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics. 2023; 12(5):858. https://doi.org/10.3390/antibiotics12050858
Chicago/Turabian StylePalombo, Marta, Federica Bovo, Stefano Amadesi, and Paolo Gaibani. 2023. "Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria" Antibiotics 12, no. 5: 858. https://doi.org/10.3390/antibiotics12050858
APA StylePalombo, M., Bovo, F., Amadesi, S., & Gaibani, P. (2023). Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics, 12(5), 858. https://doi.org/10.3390/antibiotics12050858