Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens
Abstract
:1. Introduction
2. Mechanism of Action and Spectrum of Activity
3. Main Side Effects and Resistance to Aminoglycosides
4. Pharmacokinetic/Pharmacodynamic (PK/PD) Properties of Aminoglycosides and Optimization for the Critically Ill Patient
4.1. Pharmacokinetic Properties
4.2. Pharmacodynamic Properties
4.3. Optimization for the Critically Ill Patient
5. Aminoglycosides in the Empirical Treatment of Sepsis Due to Gram-Negative Bacteria
6. Beyond Empirical Treatment, Is There a Role for Aminoglycosides in Definitive Therapy?
7. Benefits of Inhaled Aminoglycosides as Adjunctive Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schatz, A.; Bugie, E.; Waksman, S.A. Streptomycin, a Substance Exhibiting Antibiotic Activity against Gram-Positive and Gram-Negative Bacteria. 1944. Clin. Orthop. Relat. Res. 2005, 437, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.J.; Luedemann, G.M.; Oden, E.M.; Wagman, G.H. Gentamicin, A New Broad-Spectrum Antibiotic Complex. Antimicrob. Agents Chemother. 1963, 161, 1–7. [Google Scholar] [PubMed]
- Kluge, R.M.; Standiford, H.C.; Tatem, B.; Young, V.M.; Greene, W.H.; Schimpff, S.C.; Calia, F.M.; Hornick, R.B. Comparative Activity of Tobramycin, Amikacin, and Gentamicin Alone and with Carbenicillin against Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 1974, 6, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.V.; Hamilton-Miller, J.M.; Brumfitt, W. Newer Aminoglycosides—Amikacin and Tobramycin: An in-Vitro Comparison with Kanamycin and Gentamicin. BMJ 1974, 3, 778–780. [Google Scholar] [CrossRef]
- Thwaites, M.; Hall, D.; Shinabarger, D.; Serio, A.W.; Krause, K.M.; Marra, A.; Pillar, C. Evaluation of the Bactericidal Activity of Plazomicin and Comparators against Multidrug-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e00236-18. [Google Scholar] [CrossRef]
- Alfieri, A.; Di Franco, S.; Donatiello, V.; Maffei, V.; Fittipaldi, C.; Fiore, M.; Coppolino, F.; Sansone, P.; Pace, M.C.; Passavanti, M.B. Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review. Life 2022, 12, 1949. [Google Scholar] [CrossRef]
- Haidar, G.; Alkroud, A.; Cheng, S.; Churilla, T.M.; Churilla, B.M.; Shields, R.K.; Doi, Y.; Clancy, C.J.; Nguyen, M.H. Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella Pneumoniae Carbapenemase- and Extended-Spectrum-β-Lactamase-Producing Enterobacter Species. Antimicrob. Agents Chemother. 2016, 60, 5208–5214. [Google Scholar] [CrossRef]
- Becker, B.; Cooper, M.A. Aminoglycoside Antibiotics in the 21st Century. ACS Chem. Biol. 2013, 8, 105–115. [Google Scholar] [CrossRef]
- Cha, M.K.; Kang, C.-I.; Kim, S.H.; Cho, S.Y.; Ha, Y.E.; Wi, Y.M.; Chung, D.R.; Peck, K.R.; Song, J.-H.; on behalf of the Korean Network for Study on Infectious Diseases (KONSID). In Vitro Activities of 21 Antimicrobial Agents Alone and in Combination with Aminoglycosides or Fluoroquinolones against Extended-Spectrum-β-Lactamase-Producing Escherichia Coli Isolates Causing Bacteremia. Antimicrob. Agents Chemother. 2015, 59, 5834–5837. [Google Scholar] [CrossRef]
- Roger, C.; Louart, B.; Elotmani, L.; Barton, G.; Escobar, L.; Koulenti, D.; Lipman, J.; Leone, M.; Muller, L.; Boutin, C.; et al. An International Survey on Aminoglycoside Practices in Critically Ill Patients: The AMINO III Study. Ann. Intensiv. Care 2021, 11, 49. [Google Scholar] [CrossRef]
- Degtyareva, N.N.; Gong, C.; Story, S.; Levinson, N.S.; Oyelere, A.K.; Green, K.D.; Garneau-Tsodikova, S.; Arya, D.P. Antimicrobial Activity, AME Resistance, and A-Site Binding Studies of Anthraquinone-Neomycin Conjugates. ACS Infect. Dis. 2017, 3, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance in the EU/EEA (EARS-Net). Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021 (accessed on 5 May 2023).
- Hu, F.; Guo, Y.; Yang, Y.; Zheng, Y.; Wu, S.; Jiang, X.; Zhu, D.; Wang, F.; China Antimicrobial Surveillance Network (CHINET) Study Group. Resistance Reported from China Antimicrobial Surveillance Network (CHINET) in 2018. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- CDC National Infection & Death Estimates for AR. Available online: https://www.cdc.gov/drugresistance/national-estimates.html (accessed on 5 October 2022).
- Fishbain, J.; Peleg, A.Y. Treatment of Acinetobacter Infections. Clin. Infect. Dis. 2010, 51, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Prawang, A.; Chanjamlong, N.; Rungwara, W.; Santimaleeworagun, W.; Paiboonvong, T.; Manapattanasatein, T.; Pitirattanaworranat, P.; Kitseree, P.; Kanchanasurakit, S. Combination Therapy versus Monotherapy in the Treatment of Stenotrophomonas Maltophilia Infections: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Puech, B.; Canivet, C.; Teysseyre, L.; Miltgen, G.; Aujoulat, T.; Caron, M.; Combe, C.; Jabot, J.; Martinet, O.; Allyn, J.; et al. Effect of Antibiotic Therapy on the Prognosis of Ventilator-Associated Pneumonia Caused by Stenotrophomonas Maltophilia. Ann. Intensiv. Care 2021, 11, 160. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Paul, M. Developing a New Antibiotic for Extensively Drug-Resistant Pathogens: The Case of Plazomicin. Clin. Microbiol. Infect. 2018, 24, 1231–1233. [Google Scholar] [CrossRef]
- McKinnell, J.A.; Dwyer, J.P.; Talbot, G.H.; Connolly, L.E.; Friedland, I.; Smith, A.; Jubb, A.M.; Serio, A.W.; Krause, K.M.; Daikos, G.L. Plazomicin for Infections Caused by Carbapenem-Resistant Enterobacteriaceae. N. Engl. J. Med. 2019, 380, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Bodendoerfer, E.; Marchesi, M.; Imkamp, F.; Courvalin, P.; Böttger, E.C.; Mancini, S. Co-Occurrence of Aminoglycoside and β-Lactam Resistance Mechanisms in Aminoglycoside- Non-Susceptible Escherichia Coli Isolated in the Zurich Area, Switzerland. Int. J. Antimicrob. Agents 2020, 56, 106019. [Google Scholar] [CrossRef]
- Doi, Y.; Wachino, J.; Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. N. Am. 2016, 30, 523–537. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug Resistance Updates 2010, 13, 151–171. [Google Scholar] [CrossRef]
- Nikaido, H.; Takatsuka, Y. Mechanisms of RND Multidrug Efflux Pumps. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2009, 1794, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Stein, G.E. Plazomicin: A New Aminoglycoside. Clin. Infect. Dis. 2020, 70, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://eucast.org/clinical_breakpoints/ (accessed on 22 June 2020).
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-Negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-Line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Wu, P.-H.; Lu, M.-C.; Ho, M.-W.; Hsueh, P.-R. Geographic Patterns of Carbapenem-Resistant, Multi-Drug-Resistant and Difficult-to-Treat Acinetobacter Baumannii in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) Program, 2020. Int. J. Antimicrob. Agents 2023, 61, 106707. [Google Scholar] [CrossRef]
- Lob, S.H.; Hoban, D.J.; Sahm, D.F.; Badal, R.E. Regional Differences and Trends in Antimicrobial Susceptibility of Acinetobacter Baumannii. Int. J. Antimicrob. Agents 2016, 47, 317–323. [Google Scholar] [CrossRef]
- Stead, D.A. Current Methodologies for the Analysis of Aminoglycosides. J. Chromatogr. B Biomed. Sci. Appl. 2000, 747, 69–93. [Google Scholar] [CrossRef]
- Johnston, N.J.; Mukhtar, T.A.; Wright, G.D. Streptogramin Antibiotics: Mode of Action and Resistance. Curr. Drug Targets 2002, 3, 335–344. [Google Scholar] [CrossRef]
- Roberts, J.A.; Lipman, J. Pharmacokinetic Issues for Antibiotics in the Critically Ill Patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef]
- Panidis, D.; Markantonis, S.L.; Boutzouka, E.; Karatzas, S.; Baltopoulos, G. Penetration of Gentamicin into the Alveolar Lining Fluid of Critically Ill Patients with Ventilator-Associated Pneumonia. Chest 2005, 128, 545–552. [Google Scholar] [CrossRef]
- Boselli, E.; Breilh, D.; Duflo, F.; Saux, M.-C.; Debon, R.; Chassard, D.; Allaouchiche, B. Steady-State Plasma and Intrapulmonary Concentrations of Cefepime Administered in Continuous Infusion in Critically Ill Patients with Severe Nosocomial Pneumonia*. Crit. Care Med. 2003, 31, 2102–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xie, X.; Zhou, X.; Chen, Y.-Q.; Yu, J.-C.; Cao, G.-Y.; Wu, X.-J.; Shi, Y.-G.; Zhang, Y.-Y. Permeability and Concentration of Levofloxacin in Epithelial Lining Fluid in Patients with Lower Respiratory Tract Infections. J. Clin. Pharmacol. 2010, 50, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.D.; Lietman, P.S.; Smith, C.R. Clinical Response to Aminoglycoside Therapy: Importance of the Ratio of Peak Concentration to Minimal Inhibitory Concentration. J. Infect. Dis. 1987, 155, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kashuba, A.D.; Nafziger, A.N.; Drusano, G.L.; Bertino, J.S. Optimizing Aminoglycoside Therapy for Nosocomial Pneumonia Caused by Gram-Negative Bacteria. Antimicrob. Agents Chemother. 1999, 43, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Isaksson, B.; Nilsson, L.; Maller, R.; Sörén, L. Postantibiotic Effect of Aminoglycosides on Gram-Negative Bacteria Evaluated by a New Method. J. Antimicrob. Chemother. 1988, 22, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Craig, W.A. Pharmacokinetic Contributions to Postantibiotic Effects. Focus on Aminoglycosides. Clin. Pharmacokinet 1994, 27, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Barza, M.; Ioannidis, J.P.; Cappelleri, J.C.; Lau, J. Single or Multiple Daily Doses of Aminoglycosides: A Meta- Analysis. BMJ 1996, 312, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Taccone, F.; Laterre, P.-F.; Spapen, H.; Dugernier, T.; Delattre, I.; Layeux, B.; De Backer, D.; Wittebole, X.; Wallemacq, P.; Vincent, J.-L.; et al. Revisiting the Loading Dose of Amikacin for Patients with Severe Sepsis and Septic Shock. Crit. Care 2010, 14, R53. [Google Scholar] [CrossRef] [PubMed]
- de Montmollin, E.; Bouadma, L.; Gault, N.; Mourvillier, B.; Mariotte, E.; Chemam, S.; Massias, L.; Papy, E.; Tubach, F.; Wolff, M.; et al. Predictors of Insufficient Amikacin Peak Concentration in Critically Ill Patients Receiving a 25 Mg/Kg Total Body Weight Regimen. Intensiv. Care Med. 2014, 40, 998–1005. [Google Scholar] [CrossRef]
- Roger, C.; Nucci, B.; Louart, B.; Friggeri, A.; Knani, H.; Evrard, A.; Lavigne, J.-P.; Allaouchiche, B.; Lefrant, J.-Y.; Roberts, J.A.; et al. Impact of 30 Mg/Kg Amikacin and 8 Mg/Kg Gentamicin on Serum Concentrations in Critically Ill Patients with Severe Sepsis. JAC 2016, 71, 208–212. [Google Scholar] [CrossRef]
- Meng, L.; Mui, E.; Holubar, M.K.; Deresinski, S.C. Comprehensive Guidance for Antibiotic Dosing in Obese Adults. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1415–1431. [Google Scholar] [CrossRef] [PubMed]
- Duong, A.; Simard, C.; Wang, Y.L.; Williamson, D.; Marsot, A. Aminoglycosides in the Intensive Care Unit: What Is New in Population PK Modeling? Antibiotics 2021, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Veinstein, A.; Venisse, N.; Badin, J.; Pinsard, M.; Robert, R.; Dupuis, A. Gentamicin in Hemodialyzed Critical Care Patients: Early Dialysis after Administration of a High Dose Should Be Considered. Antimicrob. Agents Chemother. 2013, 57, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Sowinski, K.M.; Magner, S.J.; Lucksiri, A.; Scott, M.K.; Hamburger, R.J.; Mueller, B.A. Influence of Hemodialysis on Gentamicin Pharmacokinetics, Removal during Hemodialysis, and Recommended Dosing. Clin. J. Am. Soc. Nephrol. 2008, 3, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Boyer, A.; Timsit, J.-F.; Klouche, K.; Canet, E.; Phan, T.; Bohé, J.; Rubin, S.; Orieux, A.; Lautrette, A.; Gruson, D.; et al. Aminoglycosides in Critically Ill Septic Patients With Acute Kidney Injury Receiving Intermittent Hemodialysis: A Multicenter, Observational Study. Clin. Ther. 2021, 43, 1125–1131. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P.; Pavan, F.; Furlanut, M. Pharmacokinetic Considerations for Antimicrobial Therapy in Patients Receiving Renal Replacement Therapy. Clin. Pharmacokinet. 2007, 46, 997–1038. [Google Scholar] [CrossRef]
- Roger, C.; Wallis, S.C.; Muller, L.; Saissi, G.; Lipman, J.; Lefrant, J.-Y.; Roberts, J.A. Influence of Renal Replacement Modalities on Amikacin Population Pharmacokinetics in Critically Ill Patients on Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2016, 60, 4901–4909. [Google Scholar] [CrossRef]
- Abdul-Aziz, M.H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial Therapeutic Drug Monitoring in Critically Ill Adult Patients: A Position Paper. Intensiv. Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Anaizi, N. Once-Daily Dosing of Aminoglycosides. A Consensus Document. Int. J. Clin. Pharmacol. Ther. 1997, 35, 223–226. [Google Scholar]
- Banerjee, S.; Narayanan, M.; Gould, K. Monitoring Aminoglycoside Level. BMJ 2012, 345, e6354. [Google Scholar] [CrossRef]
- Le, J.; McKee, B.; Srisupha-Olarn, W.; Burgess, D.S. In Vitro Activity of Carbapenems Alone and in Combination with Amikacin against KPC-Producing Klebsiella Pneumoniae. J. Clin. Med. Res. 2011, 3, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of Hypotension before Initiation of Effective Antimicrobial Therapy Is the Critical Determinant of Survival in Human Septic Shock*. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Sjövall, F.; Perner, A.; Hylander Møller, M. Empirical Mono- versus Combination Antibiotic Therapy in Adult Intensive Care Patients with Severe Sepsis—A Systematic Review with Meta-Analysis and Trial Sequential Analysis. J. Infect. 2017, 74, 331–344. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef]
- Paul, M.; Lador, A.; Grozinsky-Glasberg, S.; Leibovici, L. Beta Lactam Antibiotic Monotherapy versus Beta Lactam-Aminoglycoside Antibiotic Combination Therapy for Sepsis. Cochrane Database Syst. Rev. 2014, 2014, CD003344. [Google Scholar] [CrossRef]
- Kumar, A.; Zarychanski, R.; Light, B.; Parrillo, J.; Maki, D.; Simon, D.; Laporta, D.; Lapinsky, S.; Ellis, P.; Mirzanejad, Y.; et al. Early Combination Antibiotic Therapy Yields Improved Survival Compared with Monotherapy in Septic Shock: A Propensity-Matched Analysis. Crit. Care Med. 2010, 38, 1773–1785. [Google Scholar] [CrossRef]
- Kumar, A.; Safdar, N.; Kethireddy, S.; Chateau, D. A Survival Benefit of Combination Antibiotic Therapy for Serious Infections Associated with Sepsis and Septic Shock Is Contingent Only on the Risk of Death: A Meta-Analytic/Meta-Regression Study. Crit. Care Med. 2010, 38, 1651–1664. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.-R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Cantón, R.; et al. Effect of Appropriate Combination Therapy on Mortality of Patients with Bloodstream Infections Due to Carbapenemase-Producing Enterobacteriaceae (INCREMENT): A Retrospective Cohort Study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensiv. Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Alevizakos, M.; Karanika, S.; Detsis, M.; Mylonakis, E. Colonisation with Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae and Risk for Infection among Patients with Solid or Haematological Malignancy: A Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2016, 48, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Rottier, W.C.; Bamberg, Y.R.P.; Dorigo-Zetsma, J.W.; van der Linden, P.D.; Ammerlaan, H.S.M.; Bonten, M.J.M. Predictive Value of Prior Colonization and Antibiotic Use for Third-Generation Cephalosporin-Resistant Enterobacteriaceae Bacteremia in Patients with Sepsis. Clin. Infect. Dis. 2015, 60, 1622–1630. [Google Scholar] [CrossRef] [PubMed]
- Rottier, W.C.; van Werkhoven, C.H.; Bamberg, Y.R.P.; Dorigo-Zetsma, J.W.; van de Garde, E.M.; van Hees, B.C.; Kluytmans, J.A.J.W.; Kuck, E.M.; van der Linden, P.D.; Prins, J.M.; et al. Development of Diagnostic Prediction Tools for Bacteraemia Caused by Third-Generation Cephalosporin-Resistant Enterobacteria in Suspected Bacterial Infections: A Nested Case-Control Study. Clin. Microbiol. Infect. 2018, 24, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Albasanz-Puig, A.; Gudiol, C.; Puerta-Alcalde, P.; Ayaz, C.M.; Machado, M.; Herrera, F.; Martín-Dávila, P.; Laporte-Amargós, J.; Cardozo, C.; Akova, M.; et al. Impact of the Inclusion of an Aminoglycoside to the Initial Empirical Antibiotic Therapy for Gram-Negative Bloodstream Infections in Hematological Neutropenic Patients: A Propensity-Matched Cohort Study (AMINOLACTAM Study). Antimicrob. Agents Chemother. 2021, 65, e0004521. [Google Scholar] [CrossRef] [PubMed]
- Hallander, H.O.; Dornbusch, K.; Gezelius, L.; Jacobson, K.; Karlsson, I. Synergism between Aminoglycosides and Cephalosporins with Antipseudomonal Activity: Interaction Index and Killing Curve Method. Antimicrob. Agents Chemother. 1982, 22, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Hooton, T.M.; Blair, A.D.; Turck, M.; Counts, G.W. Synergism at Clinically Attainable Concentrations of Aminoglycoside and Beta-Lactam Antibiotics. Antimicrob. Agents Chemother. 1984, 26, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Marcus, R.; Paul, M.; Elphick, H.; Leibovici, L. Clinical Implications of β-Lactam-Aminoglycoside Synergism: Systematic Review of Randomised Trials. Int. J. Antimicrob. Agents 2011, 37, 491–503. [Google Scholar] [CrossRef]
- Bliziotis, I.A.; Samonis, G.; Vardakas, K.Z.; Chrysanthopoulou, S.; Falagas, M.E. Effect of Aminoglycoside and Beta-Lactam Combination Therapy versus Beta-Lactam Monotherapy on the Emergence of Antimicrobial Resistance: A Meta-Analysis of Randomized, Controlled Trials. Clin. Infect. Dis. 2005, 41, 149–158. [Google Scholar] [CrossRef]
- Alfandari, S.; Boussekey, N. β-Lactams with or without Aminoglycosides. Clin. Infect. Dis. 2005, 41, 1542–1543. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR- P. Aeruginosa ). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensiv. Care Med.icine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Goodlet, K.J.; Benhalima, F.Z.; Nailor, M.D. A Systematic Review of Single-Dose Aminoglycoside Therapy for Urinary Tract Infection: Is It Time to Resurrect an Old Strategy? Antimicrob. Agents Chemother. 2019, 63, e02165-18. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, C.A.; Verastegui, J.E.; Nicolau, D.P. In Vitro Potency of Amikacin and Comparators against E. Coli, K. Pneumoniae and P. Aeruginosa Respiratory and Blood Isolates. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Davis, A.P.; Mendes, R.E.; Serio, A.W.; Krause, K.M.; Flamm, R.K. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from U.S. Hospitals and Comparative Activities of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes. Antimicrob. Agents Chemother. 2018, 62, e00313-18. [Google Scholar] [CrossRef]
- Fritzenwanker, M.; Imirzalioglu, C.; Herold, S.; Wagenlehner, F.M.; Zimmer, K.-P.; Chakraborty, T. Treatment Options for Carbapenem- Resistant Gram-Negative Infections. Dtsch. Ärzteblatt Int. 2018, 115, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Clancy, C.J.; Press, E.G.; Nguyen, M.H. Aminoglycosides for Treatment of Bacteremia Due to Carbapenem-Resistant Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2016, 60, 3187–3192. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, J.; Fu, Y.; Zhao, Y.; Wang, Y.; Zhao, J.; Guo, Y.; Li, C.; Zhang, X. Synergetic Effects of Combined Treatment of Colistin With Meropenem or Amikacin on Carbapenem-Resistant Klebsiella Pneumoniae in Vitro. Front. Cell. Infect. Microbiol. 2019, 9, 422. [Google Scholar] [CrossRef]
- Ni, W.; Yang, D.; Guan, J.; Xi, W.; Zhou, D.; Zhao, L.; Cui, J.; Xu, Y.; Gao, Z.; Liu, Y. In Vitro and in Vivo Synergistic Effects of Tigecycline Combined with Aminoglycosides on Carbapenem-Resistant Klebsiella Pneumoniae. J. Antimicrob. Chemother. 2021, 76, 2097–2105. [Google Scholar] [CrossRef]
- Medeiros, G.S.; Rigatto, M.H.; Falci, D.R.; Zavascki, A.P. Combination Therapy with Polymyxin B for Carbapenemase-Producing Klebsiella Pneumoniae Bloodstream Infection. Int. J. Antimicrob. Agents 2019, 53, 152–157. [Google Scholar] [CrossRef]
- Daikos, G.L.; Tsaousi, S.; Tzouvelekis, L.S.; Anyfantis, I.; Psichogiou, M.; Argyropoulou, A.; Stefanou, I.; Sypsa, V.; Miriagou, V.; Nepka, M.; et al. Carbapenemase-Producing Klebsiella Pneumoniae Bloodstream Infections: Lowering Mortality by Antibiotic Combination Schemes and the Role of Carbapenems. Antimicrob. Agents Chemother. 2014, 58, 2322–2328. [Google Scholar] [CrossRef]
- Tumbarello, M.; Trecarichi, E.M.; De Rosa, F.G.; Giannella, M.; Giacobbe, D.R.; Bassetti, M.; Losito, A.R.; Bartoletti, M.; Del Bono, V.; Corcione, S.; et al. Infections Caused by KPC-Producing Klebsiella Pneumoniae: Differences in Therapy and Mortality in a Multicentre Study. J. Antimicrob. Chemother. 2015, 70, 2133–2143. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Iacovelli, A.; Restuccia, G.; Ceccarelli, G.; Giordano, A.; Farcomeni, A.; Morelli, A.; Venditti, M. Predictors of Outcome in ICU Patients with Septic Shock Caused by Klebsiella Pneumoniae Carbapenemase-Producing K. Pneumoniae. Clin. Microbiol. Infect. 2016, 22, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Viale, P.; Viscoli, C.; Trecarichi, E.M.; Tumietto, F.; Marchese, A.; Spanu, T.; Ambretti, S.; Ginocchio, F.; Cristini, F.; et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella Pneumoniae Carbapenemase-Producing K. Pneumoniae: Importance of Combination Therapy. Clin. Infect. Dis. 2012, 55, 943–950. [Google Scholar] [CrossRef]
- Freire, M.P.; de Oliveira Garcia, D.; Cury, A.P.; Francisco, G.R.; Dos Santos, N.F.; Spadão, F.; Bueno, M.F.C.; Camargo, C.H.; de Paula, F.J.; Rossi, F.; et al. The Role of Therapy with Aminoglycoside in the Outcomes of Kidney Transplant Recipients Infected with Polymyxin- and Carbapenem-Resistant Enterobacteriaceae. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 755–765. [Google Scholar] [CrossRef]
- van Duin, D.; Cober, E.; Richter, S.S.; Perez, F.; Kalayjian, R.C.; Salata, R.A.; Evans, S.; Fowler, V.G.; Kaye, K.S.; Bonomo, R.A. Impact of Therapy and Strain Type on Outcomes in Urinary Tract Infections Caused by Carbapenem-Resistant Klebsiella Pneumoniae. J. Antimicrob. Chemother. 2015, 70, 1203–1211. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the Combination of Colistin and Rifampicin for the Treatment of Carbapenem-Resistant Acinetobacter Baumannii Ventilator-Associated Pneumonia. Epidemiol. Infect. 2013, 141, 1214–1222. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and Rifampicin Compared With Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter Baumannii: A Multicenter, Randomized Clinical Trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter Baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin Alone versus Colistin plus Meropenem for Treatment of Severe Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria: An Open-Label, Randomised Controlled Trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Zusman, O.; Altunin, S.; Koppel, F.; Dishon Benattar, Y.; Gedik, H.; Paul, M. Polymyxin Monotherapy or in Combination against Carbapenem-Resistant Bacteria: Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2017, 72, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Makris, D.; Petinaki, E.; Tsolaki, V.; Manoulakas, E.; Mantzarlis, K.; Apostolopoulou, O.; Sfyras, D.; Zakynthinos, E. Colistin versus Colistin Combined with Ampicillin-Sulbactam for Multiresistant Acinetobacter Baumannii Ventilator-Associated Pneumonia Treatment: An Open-Label Prospective Study. Indian J. Crit. Care Med. 2018, 22, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Vardakas, K.Z.; Mavroudis, A.D.; Georgiou, M.; Falagas, M.E. Intravenous Colistin Combination Antimicrobial Treatment vs. Monotherapy: A Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2018, 51, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Wicky, P.-H.; d’Humières, C.; Timsit, J.-F. How Common Is Ventilator-Associated Pneumonia after Coronavirus Disease 2019? Curr. Opin. Infect. Dis. 2022, 35, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; He, L.-L.; Che, L.-Q.; Li, W.; Ying, S.-M.; Chen, Z.-H.; Shen, H.-H. Aerosolized Antibiotics for Ventilator-Associated Pneumonia: A Pairwise and Bayesian Network Meta-Analysis. Crit. Care 2018, 22, 301. [Google Scholar] [CrossRef]
- Qin, J.-P.; Huang, H.-B.; Zhou, H.; Zhu, Y.; Xu, Y.; Du, B. Amikacin Nebulization for the Adjunctive Therapy of Gram-Negative Pneumonia in Mechanically Ventilated Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sci. Rep. 2021, 11, 6969. [Google Scholar] [CrossRef]
- Niederman, M.S.; Alder, J.; Bassetti, M.; Boateng, F.; Cao, B.; Corkery, K.; Dhand, R.; Kaye, K.S.; Lawatscheck, R.; McLeroth, P.; et al. Inhaled Amikacin Adjunctive to Intravenous Standard-of-Care Antibiotics in Mechanically Ventilated Patients with Gram-Negative Pneumonia (INHALE): A Double-Blind, Randomised, Placebo-Controlled, Phase 3, Superiority Trial. Lancet Infect. Dis. 2020, 20, 330–340. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.-T.; Peng, Z.-Y.; Zhou, Q.; Hu, B.; Zhou, H.; Li, J.-G. Aerosolized Amikacin as Adjunctive Therapy of Ventilator-Associated Pneumonia Caused by Multidrug-Resistant Gram-Negative Bacteria: A Single-Center Randomized Controlled Trial. Chin. Med. J. 2017, 130, 1196–1201. [Google Scholar] [CrossRef]
- Kollef, M.H.; Ricard, J.-D.; Roux, D.; Francois, B.; Ischaki, E.; Rozgonyi, Z.; Boulain, T.; Ivanyi, Z.; János, G.; Garot, D.; et al. A Randomized Trial of the Amikacin Fosfomycin Inhalation System for the Adjunctive Therapy of Gram-Negative Ventilator-Associated Pneumonia: IASIS Trial. Chest 2017, 151, 1239–1246. [Google Scholar] [CrossRef]
- Stokker, J.; Karami, M.; Hoek, R.; Gommers, D.; van der Eerden, M. Effect of Adjunctive Tobramycin Inhalation versus Placebo on Early Clinical Response in the Treatment of Ventilator-Associated Pneumonia: The VAPORISE Randomized-Controlled Trial. Intensiv. Care Med. 2020, 46, 546–548. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Roberts, J.A.; Abdul-Aziz, M.H.; de Montmollin, E.; Timsit, J.-F.; Bassetti, M. Treatment of Ventilator-Associated Pneumonia Due to Carbapenem-Resistant Gram-Negative Bacteria with Novel Agents: A Contemporary, Multidisciplinary ESGCIP Perspective. Expert Rev. Anti-Infect. Ther. 2022, 20, 963–979. [Google Scholar] [CrossRef] [PubMed]
Effect | Clinical Risk Factor | Treatment Risk Factor | Toxicity Prevention | Potential Treatment | |
---|---|---|---|---|---|
Nephrotoxicity | Acute kidney injury with preserved diuresis, tubular necrosis | Chronic kidney disease, age, dehydration, hyperthermia | Cumulative dose, treatment duration > 5 days, previous AG treatment. | - Avoid cumulative risk factors - Avoid co-nephrotoxic treatments - Therapeutic drug monitoring (TDM) | - Dose adaptation through TDM - Stop AG when unnecessary |
Cochleovestibular toxicity | - Vestibular: vertigo, ataxia, nystagmus - Cochlear: tinnitus, hearing loss | Previous hearing loss | Similar to nephrotoxicity | ||
Neuromuscular toxicity | Neuromuscular blockade | Myasthenia gravis Respiratory acidosis Immediate postoperative period | - | Anticholinesterase treatment |
Administration Modality [40] | Once-Daily Dose 30 min Intravenous Infusion |
---|---|
Dosage [32,41,42,43] | Gentamicin/tobramycin: 5–8 mg/kg Amikacin: 25–30 mg/kg Patients with BMI ≥ 30: the use of adjusted body weight is recommended |
Impaired creatinine clearance and RRT [44,45,46,47,48,49,50] | No adaptation of based-weight dosage Increase in inter-dose interval Intermittent hemodialysis: prioritize administration 2–4 h before dialysis CVVH(D)F: suggested administration of 25 mg/kg every 48 h for amikacin. |
Therapeutic drug monitoring [52,53] | Recommended for aminoglycosides Cmax/peak concentration (efficacy) Measure 30 min after the end of AG infusion Objective for gentamicin/tobramycin: 32–40 mg/L Objective for amikacin: 64–80 mg/L Cmin/trough concentration (toxicity) Measure before reinjection Objective for gentamicin/tobramycin: <0.5 mg/L Objective for amikacin: <2.5 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thy, M.; Timsit, J.-F.; de Montmollin, E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics 2023, 12, 860. https://doi.org/10.3390/antibiotics12050860
Thy M, Timsit J-F, de Montmollin E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics. 2023; 12(5):860. https://doi.org/10.3390/antibiotics12050860
Chicago/Turabian StyleThy, Michaël, Jean-François Timsit, and Etienne de Montmollin. 2023. "Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens" Antibiotics 12, no. 5: 860. https://doi.org/10.3390/antibiotics12050860
APA StyleThy, M., Timsit, J. -F., & de Montmollin, E. (2023). Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics, 12(5), 860. https://doi.org/10.3390/antibiotics12050860