Silver Nanoparticle Targets Fabricated Using Chemical Vapor Deposition Method for Differentiation of Bacteria Based on Lipidomic Profiles in Laser Desorption/Ionization Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Sample Preparation
2.2. SALDI Targets Preparation
2.3. Mass Spectrometry Analysis
2.4. Analysis of MS Results
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, T.; Leung, L.M.; Opene, B.; Fondrie, W.E.; Lee, Y.I.; Chandler, C.E.; Yoon, S.H.; Doi, Y.; Ernst, R.K.; Goodlett, D.R. Rapid Microbial Identification and Antibiotic Resistance Detection by Mass Spectrometric Analysis of Membrane Lipids. Anal. Chem. 2019, 91, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Sauer, S.; Kliem, M. Mass spectrometry tools for the classification and identification of bacteria. Nat. Rev. Microbiol. 2010, 8, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Leung, L.M.; Fondrie, W.E.; Doi, Y.; Johnson, J.K.; Strickland, D.K.; Ernst, R.K.; Goodlett, D.R. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci. Rep. 2017, 7, 6403. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Nagy, E.; Schröttner, P.; Pranada, A.B. How MALDI-TOF mass spectrometry can aid the diagnosis of hard-to-identify pathogenic bacteria–the rare and the unknown. Expert Rev. Mol. Diagn. 2019, 19, 667–682. [Google Scholar] [CrossRef]
- Alcaide, F.; Amlerová, J.; Bou, G.; Ceyssens, P.J.; Coll, P.; Corcoran, D.; Fangous, M.S.; González-Álvarez, I.; Gorton, R.; Greub, G.; et al. How to: Identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2018, 24, 599–603. [Google Scholar] [CrossRef]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53, 124–144. [Google Scholar] [CrossRef]
- Cody, R.B.; McAlpin, C.R.; Cox, C.R.; Jensen, K.R.; Voorhees, K.J. Identification of bacteria by fatty acid profiling with direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 2015, 29, 2007–2012. [Google Scholar] [CrossRef]
- Cox, C.R.; Jensen, K.R.; Saichek, N.R.; Voorhees, K.J. Strain-level bacterial identification by CeO2-catalyzed MALDI-TOF MS fatty acid analysis and comparison to commercial protein-based methods. Sci. Rep. 2015, 5, 10470. [Google Scholar] [CrossRef]
- Ryu, S.Y.; Wendt, G.A.; Chandler, C.E.; Ernst, R.K.; Goodlett, D.R. Model-Based Spectral Library Approach for Bacterial Identification via Membrane Glycolipids. Anal. Chem. 2019, 91, 11482–11487. [Google Scholar] [CrossRef] [PubMed]
- Hines, K.M.; Shen, T.; Ashford, N.K.; Waalkes, A.; Penewit, K.; Holmes, E.A.; McLean, K.; Salipante, S.J.; Werth, B.J.; Xu, L. Occurrence of cross-resistance and β-lactam seesaw effect in glycopeptide-, lipopeptide- and lipoglycopeptide-resistant MRSA correlates with membrane phosphatidylglycerol levels. J. Antimicrob. Chemother. 2020, 75, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Hines, K.M.; Waalkes, A.; Penewit, K.; Holmes, E.A.; Salipante, S.J.; Werth, B.J.; Xu, L. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2017, 2, e00492-17. [Google Scholar] [CrossRef]
- Appala, K.; Bimpeh, K.; Freeman, C.; Hines, K.M. Recent applications of mass spectrometry in bacterial lipidomics. Anal. Bioanal. Chem. 2020, 412, 5935–5943. [Google Scholar] [CrossRef] [PubMed]
- Perry, W.J.; Patterson, N.H.; Prentice, B.M.; Neumann, E.K.; Caprioli, R.M.; Spraggins, J.M. Uncovering matrix effects on lipid analyses in MALDI imaging mass spectrometry experiments. J. Mass Spectrom. 2020, 55, e4491. [Google Scholar] [CrossRef]
- Fuchs, B.; Süß, R.; Schiller, J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res. 2010, 49, 450–475. [Google Scholar] [CrossRef]
- Sunner, J.; Dratz, E.; Chen, Y.C. Graphite Surface-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Peptides and Proteins from Liquid Solutions. Anal. Chem. 1995, 67, 4335–4342. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.; Gao, M.; Wang, Y.; Zhang, P.; Zhang, X. A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J. Sep. Sci. 2013, 36, 629–635. [Google Scholar] [CrossRef]
- Sekuła, J.; Nizioł, J.; Rode, W.; Ruman, T. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Analyst 2015, 140, 6195–6209. [Google Scholar] [CrossRef]
- Dufresne, M.; Thomas, A.; Breault-Turcot, J.; Masson, J.F.; Chaurand, P. Silver-assisted laser desorption ionization for high spatial resolution imaging mass spectrometry of olefins from thin tissue sections. Anal. Chem. 2013, 85, 3318–3324. [Google Scholar] [CrossRef] [PubMed]
- Radtke, A.; Grodzicka, M.; Ehlert, M.; Muzioł, T.M.; Szkodo, M.; Bartmański, M.; Piszczek, P. Studies on silver ions releasing processes and mechanical properties of surface-modified titanium alloy implants. Int. J. Mol. Sci. 2018, 19, 3962. [Google Scholar] [CrossRef] [PubMed]
- Piszczek, P.; Radtke, A. Silver Nanoparticles Fabricated Using Chemical Vapor Deposition and Atomic Layer Deposition Techniques: Properties, Applications and Perspectives: Review. In Noble and Precious Metals—Properties, Nanoscale Effects and Applications; IntechOpen: London, UK, 2018; ISBN 978-1-78923-293-6. [Google Scholar]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef] [PubMed]
- Agasti, N.; Kaushik, N.K. One Pot Synthesis of Crystalline Silver Nanoparticles. Am. J. Nanomater. 2014, 2, 4–7. [Google Scholar]
- Nizioł, J.; Rode, W.; Zieliński, Z.; Ruman, T. Matrix-free laser desorption-ionization with silver nanoparticle-enhanced steel targets. Int. J. Mass Spectrom. 2013, 335, 22–32. [Google Scholar] [CrossRef]
- Arendowski, A.; Szulc, J.; Nizioł, J.; Gutarowska, B.; Ruman, T. Metabolic profiling of moulds with laser desorption/ionization mass spectrometry on gold nanoparticle enhanced target. Anal. Biochem. 2018, 549, 45–52. [Google Scholar] [CrossRef]
- Hansen, R.L.; Dueñas, M.E.; Lee, Y.J. Sputter-Coated Metal Screening for Small Molecule Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30, 299–308. [Google Scholar] [CrossRef]
- Müller, W.H.; De Pauw, E.; Far, J.; Malherbe, C.; Eppe, G. Imaging lipids in biological samples with surface-assisted laser desorption/ionization mass spectrometry: A concise review of the last decade. Prog. Lipid Res. 2021, 83, 101114. [Google Scholar] [CrossRef]
- Jackson, S.N.; Baldwin, K.; Muller, L.; Womack, V.M.; Schultz, J.A.; Balaban, C.; Woods, A.S. Imaging of lipids in rat heart by MALDI-MS with silver nanoparticles. In Proceedings of the Analytical and Bioanalytical Chemistry; Springer: Berlin/Heidelberg, Germany, 2014; Volume 406, pp. 1377–1386. [Google Scholar]
- Guan, M.; Zhang, Z.; Li, S.; Liu, J.; Liu, L.; Yang, H.; Zhang, Y.; Wang, T.; Zhao, Z. Silver nanoparticles as matrix for MALDI FTICR MS profiling and imaging of diverse lipids in brain. Talanta 2018, 179, 624–631. [Google Scholar] [CrossRef]
- Lukowski, J.K.; Bhattacharjee, A.; Yannarell, S.M.; Schwarz, K.; Shor, L.M.; Shank, E.A.; Anderton, C.R. Expanding Molecular Coverage in Mass Spectrometry Imaging of Microbial Systems Using Metal-Assisted Laser Desorption/Ionization. Microbiol. Spectr. 2021, 9, e00520-21. [Google Scholar] [CrossRef]
- Silina, Y.E.; Volmer, D.A. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst 2013, 138, 7053–7065. [Google Scholar] [CrossRef]
- Wei, W.W.; Zhong, Y.; Zou, T.; Chen, X.F.; Ren, L.; Qi, Z.; Liu, G.; Chen, Z.F.; Cai, Z. Fe3O4-assisted laser desorption ionization mass spectrometry for typical metabolite analysis and localization: Influencing factors, mechanisms, and environmental applications. J. Hazard. Mater. 2020, 388, 121817. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Qian, Y.; Deng, Z.; Zhang, J.; Zhou, Y.; Yang, L.; Wang, F.; Wang, J.; Zhou, Z.; Shen, J. Size-selected silver nanoparticles for MALDI-TOF mass spectrometry of amyloid-beta peptides. Nanoscale 2018, 10, 22044–22054. [Google Scholar] [CrossRef]
- Schenk, E.R.; Nau, F.; Thompson, C.J.; Tse-Dinh, Y.C.; Fernandez-Lima, F. Changes in lipid distribution in E. coli strains in response to norfloxacin. J. Mass Spectrom. 2015, 50, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Gonzalez, L.E.; Ferreira, C.R.; Vorsilak, A.; Frabutt, D.; Sobreira, T.J.P.; Pugia, M.; Cooks, R.G. Multiple Reaction Monitoring Profiling (MRM-Profiling) of Lipids to Distinguish Strain-Level Differences in Microbial Resistance in Escherichia coli. Anal. Chem. 2019, 91, 11349–11354. [Google Scholar] [CrossRef] [PubMed]
Precursor | Ag5(O2CC2F5)5(H2O)3 |
---|---|
Precursor weight (mg) | 5, 10, 15 |
Vaporization temperature (TV) (°C) | 230 |
Carrier gas | Ar |
Total reactor pressure (p) (mbar) | 3, 0 |
Substrate temperature (TD) (°C) | 290 |
Substrates | stainless steel (H17) |
Deposition time (min) | 60 |
Sample heating time (min) | 30 (Ar/H2 (3:1%) |
Target | Precursor Weight (mg) | Percentage Substrate Mass Increase after the CVD Process (wt.%) | AgNPs Medium Grain Size (nm) |
---|---|---|---|
Ag 15 | 15 | 0.06 | 240 ± 80 |
Ag 10 | 10 | 0.04 | 150 ± 50 |
Ag 5 | 5 | 0.03 | 50 ± 10 |
Lipid | Ion Formula | Experimental m/z | Calculated m/z | Reg. a | |
---|---|---|---|---|---|
DFI4 | DFI30 | ||||
SALDI | |||||
FA 6:0;O | [C6H12O3 + H]+ | 133.074 | 133.0859 | + | - |
FA 5:1 | [C5H8O2 + Na]+ | 123.132 | 123.0416 | + | - |
FA 6:3;O3 | [C6H6O5 + H]+ | 158.963 | 159.0288 | + | - |
FA 30:1;O2 | [C30H58O4 + K]+ | 521.409 | 521.3967 | + | - |
LPG 17:1 | [C23H45O9P + K]+ | 535.1725 | 535.2433 | + | - |
FA 7:1 | [C7H12O2 + Na]+ | 151.075 | 151.0729 | + | - |
FA 4:1 | [C4H6O2 + K]+ | 124.936 | 124.9999 | + | - |
MALDI | |||||
CAR 3:1 | [C10H17NO4 + H]+ | 216.052 | 216.1230 | + | - |
FA 6:2;O4 | [C6H8O6 + K]+ | 214.9205 | 214.9952 | + | - |
TG 64:3 | [C67H124O6 + H]+ | 1026.025 | 1025.9471 | - | + |
CoA 4:1;O2 | [C25H40N7O19P3S + H]+ | 868.085 | 868.1385 | + | - |
PC 16:4 | [C24H40NO8P + K]+ | 540.132 | 540.2123 | + | - |
FA 6:2;O3 | [C6H8O5 + K]+ | 198.955 | 199.0003 | + | - |
CAR 14:1;O2 | [C21H39NO6 + K]+ | 440.173 | 440.2409 | + | - |
Signals Number (S/N ≥ 3) | |||
---|---|---|---|
Matrix/Nanostructures | Blank MS | E. coli DFI4 | E. coli DFI30 |
DHB | 90 | 262 | 241 |
Super-DHB | 88 | 177 | 144 |
CHCA | 307 | 447 | 485 |
Ag5 | 65 | 462 | 402 |
Ag10 | 47 | 366 | 315 |
Ag15 | 56 | 399 | 358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maślak, E.; Arendowski, A.; Złoch, M.; Walczak-Skierska, J.; Radtke, A.; Piszczek, P.; Pomastowski, P. Silver Nanoparticle Targets Fabricated Using Chemical Vapor Deposition Method for Differentiation of Bacteria Based on Lipidomic Profiles in Laser Desorption/Ionization Mass Spectrometry. Antibiotics 2023, 12, 874. https://doi.org/10.3390/antibiotics12050874
Maślak E, Arendowski A, Złoch M, Walczak-Skierska J, Radtke A, Piszczek P, Pomastowski P. Silver Nanoparticle Targets Fabricated Using Chemical Vapor Deposition Method for Differentiation of Bacteria Based on Lipidomic Profiles in Laser Desorption/Ionization Mass Spectrometry. Antibiotics. 2023; 12(5):874. https://doi.org/10.3390/antibiotics12050874
Chicago/Turabian StyleMaślak, Ewelina, Adrian Arendowski, Michał Złoch, Justyna Walczak-Skierska, Aleksandra Radtke, Piotr Piszczek, and Paweł Pomastowski. 2023. "Silver Nanoparticle Targets Fabricated Using Chemical Vapor Deposition Method for Differentiation of Bacteria Based on Lipidomic Profiles in Laser Desorption/Ionization Mass Spectrometry" Antibiotics 12, no. 5: 874. https://doi.org/10.3390/antibiotics12050874
APA StyleMaślak, E., Arendowski, A., Złoch, M., Walczak-Skierska, J., Radtke, A., Piszczek, P., & Pomastowski, P. (2023). Silver Nanoparticle Targets Fabricated Using Chemical Vapor Deposition Method for Differentiation of Bacteria Based on Lipidomic Profiles in Laser Desorption/Ionization Mass Spectrometry. Antibiotics, 12(5), 874. https://doi.org/10.3390/antibiotics12050874