Molecular Detection of Metronidazole and Tetracycline Resistance Genes in Helicobacter pylori-Like Positive Gastric Samples from Pigs
Abstract
:1. Introduction
2. Results
2.1. PCR Results
2.2. Sequencing and Sequence Analysis of Positive PCR Products
3. Discussion
4. Materials and Methods
4.1. Sample Selection
4.2. PCR Conditions and Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mannion, A.; Dzink-Fox, J.; Shen, Z.; Piazuelo, M.B.; Wilson, K.T.; Correa, P.; Peek, R.M., Jr.; Camargo, M.C.; Fox, J.G. Helicobacter pylori Antimicrobial Resistance and Gene Variants in High- and Low-Gastric-Cancer-Risk Populations. J. Clin. Microbiol. 2021, 59, e03203-20. [Google Scholar] [CrossRef] [PubMed]
- Gorlé, N.; Bauwens, E.; Haesebrouck, F.; Smet, A.; Vandenbroucke, R.E. Helicobacter and the Potential Role in Neurological Disorders: There Is More Than Helicobacter pylori. Front. Immunol. 2020, 11, 584165. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.G.; Zagari, R.M.; De Musis, C.; Romano, L.; Loguercio, C.; Romano, M. Helicobacter pylori and extragastric diseases: A review. World J. Gastroenterol. 2018, 24, 3204–3221. [Google Scholar] [CrossRef] [PubMed]
- Haesebrouck, F.; Pasmans, F.; Flahou, B.; Chiers, K.; Baele, M.; Meyns, T.; Decostere, A.; Ducatelle, R. Gastric helicobacters in domestic animals and nonhuman primates and their significance for human health. Clin. Microbiol. Rev. 2009, 22, 202–223. [Google Scholar] [CrossRef] [PubMed]
- Ménard, A.; Smet, A. Review: Other Helicobacter species. Helicobacter 2019, 24 (Suppl. 1), e12645. [Google Scholar] [CrossRef]
- Nakamura, M.; Øverby, A.; Michimae, H.; Matsui, H.; Takahashi, S.; Mabe, K.; Shimoyama, T.; Sasaki, M.; Terao, S.; Kamada, T. PCR analysis and specific immunohistochemistry revealing a high prevalence of non-Helicobacter pylori Helicobacters in Helicobacter pylori-negative gastric disease patients in Japan: High susceptibility to an Hp eradication regimen. Helicobacter 2020, 25, e12700. [Google Scholar] [CrossRef]
- Taillieu, E.; De Witte, C.; De Schepper, H.; Van Moerkercke, W.; Rutten, S.; Michiels, S.; Arnst, Y.; De Bruyckere, S.; Francque, S.; van Aert, F.; et al. Clinical significance and impact of gastric non-Helicobacter pylori Helicobacter species in gastric disease. Aliment. Pharmacol. Ther. 2023. [Google Scholar] [CrossRef]
- Zhang, G.; Ducatelle, R.; De Bruyne, E.; Joosten, M.; Bosschem, I.; Smet, A.; Haesebrouck, F.; Flahou, B. Role of γ-glutamyltranspeptidase in the pathogenesis of Helicobacter suis and Helicobacter pylori infections. Vet. Res. 2015, 46, 31. [Google Scholar] [CrossRef]
- Youssef, A.I.; Afifi, A.; Abbadi, S.; Hamed, A.; Enany, M. PCR-based detection of Helicobacter pylori and non-Helicobacter pylori species among humans and animals with potential for zoonotic infections. Pol. J. Vet. Sci. 2021, 24, 445–450. [Google Scholar] [CrossRef]
- Kubota-Aizawa, S.; Matsubara, Y.; Kanemoto, H.; Mimuro, H.; Uchida, K.; Chambers, J.; Tsuboi, M.; Ohno, K.; Fukushima, K.; Kato, N.; et al. Transmission of Helicobacter pylori between a human and two dogs: A case report. Helicobacter 2021, 26, e12798. [Google Scholar] [CrossRef]
- Suárez-Esquivel, M.; Alfaro-Alarcón, A.; Guzmán-Verri, C.; Barquero-Calvo, E. Analysis of the association between density of Helicobacter spp and gastric lesions in dogs. Am. J. Vet. Res. 2017, 78, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Husnik, R.; Klimes, J.; Kovarikova, S.; Kolorz, M. Helicobacter Species and Their Association with Gastric Pathology in a Cohort of Dogs with Chronic Gastrointestinal Signs. Animals 2022, 12, 1254. [Google Scholar] [CrossRef]
- Ellis, J.A.; Waldner, C.L.; McIntosh, K.A.; Rhodes, C.; Harding, J.C.; Ringler, S.S.; Krakowka, S. Age-dependent seroprevalence of antibodies against a Helicobacter pylori-like organism and Helicobacter pylori in commercially reared swine. Am. J. Vet. Res. 2006, 67, 1890–1894. [Google Scholar] [CrossRef]
- Krakowka, S.; Ringler, S.S.; Flores, J.; Kearns, R.J.; Eaton, K.A.; Ellis, J.A. Isolation and preliminary characterization of a novel Helicobacter species from swine. Am. J. Vet. Res. 2005, 66, 938–944. [Google Scholar] [CrossRef]
- Krakowka, S.; Rings, D.M.; Ellis, J.A. Experimental induction of bacterial gastritis and gastric ulcer disease in gnotobiotic swine inoculated with porcine Helicobacter-like species. Am. J. Vet. Res. 2005, 66, 945–952. [Google Scholar] [CrossRef]
- Cortez Nunes, F.; Letra Mateus, T.; Teixeira, S.; Barradas, P.; de Witte, C.; Haesebrouck, F.; Amorim, I.; Gärtner, F. Presence of Helicobacter pylori and H. suis DNA in Free-Range Wild Boars. Animals 2021, 11, 1269. [Google Scholar] [CrossRef] [PubMed]
- Cortez Nunes, F.; Letra Mateus, T.; Teixeira, S.; Barradas, P.F.; Gärtner, F.; Haesebrouck, F.; Amorim, I. Molecular Detection of Human Pathogenic Gastric Helicobacter Species in Wild Rabbits (Oryctolagus cuniculus) and Wild Quails (Coturnix coturnix). Zoonotic Dis. 2021, 1, 42–50. [Google Scholar] [CrossRef]
- Cortez Nunes, F.; Letra Mateus, T.; Taillieu, E.; Teixeira, S.; Carolino, N.; Rema, A.; De Bruyckere, S.; Gärtner, F.; Haesebrouck, F.; Amorim, I. Molecular detection of Helicobacter spp. and Fusobacterium gastrosuis in pigs and wild boars and its association with gastric histopathological alterations. Vet. Res. 2022, 53, 78. [Google Scholar] [CrossRef]
- Megraud, F.; Bruyndonckx, R.; Coenen, S.; Wittkop, L.; Huang, T.D.; Hoebeke, M.; Bénéjat, L.; Lehours, P.; Goossens, H.; Glupczynski, Y. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 2021, 70, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Marques, B.; Donato, M.M.; Cardoso, O.; Luxo, C.; Martinho, A.; Almeida, N. Study of rdxA and frxA genes mutations in metronidazole-resistant and -susceptible Helicobacter pylori clinical isolates from the central region of Portugal. J. Glob. Antimicrob. Resist. 2019, 17, 300–304. [Google Scholar] [CrossRef]
- Alba, C.; Blanco, A.; Alarcón, T. Antibiotic resistance in Helicobacter pylori. Curr. Opin. Infect. Dis. 2017, 30, 489–497. [Google Scholar] [CrossRef]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Off. J. Am. Coll. Gastroenterol. 2017, 112, 212–239. [Google Scholar] [CrossRef]
- Jung, H.K.; Kang, S.J.; Lee, Y.C.; Yang, H.J.; Park, S.Y.; Shin, C.M.; Kim, S.E.; Lim, H.C.; Kim, J.H.; Nam, S.Y.; et al. Evidence-Based Guidelines for the Treatment of Helicobacter pylori Infection in Korea 2020. Gut Liver 2021, 15, 168–195. [Google Scholar] [CrossRef]
- Katelaris, P.; Hunt, R.; Bazzoli, F.; Cohen, H.; Fock, K.M.; Gemilyan, M.; Malfertheiner, P.; Mégraud, F.; Piscoya, A.; Quach, D.; et al. World Gastroenterology Organisation Global Guidelines, Helicobacter pylori. Available online: https://www.worldgastroenterology.org/guidelines/helicobacter-pylori/helicobacter-pylori-english (accessed on 16 May 2022).
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- WHO. W.H.O. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infection, Including Tuberculosis. Available online: https://www.who.int/medicines/areas/rational_use/PPLreport_2017_09_19.pdf (accessed on 12 October 2022).
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [PubMed]
- WHO. W.H.O. Criticaly Important Antimicrobials for Human Medicine. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 12 October 2022).
- OIE. World Organisation for Animal Health OIE List of Antimicrobial Agents of Veterinary Importance. Available online: https://www.oie.int/app/uploads/2021/03/a-oie-list-antimicrobials-may2018.pdf (accessed on 13 October 2022).
- Zeineldin, M.; Aldridge, B.; Lowe, J. Antimicrobial Effects on Swine Gastrointestinal Microbiota and Their Accompanying Antibiotic Resistome. Front. Microbiol. 2019, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, Y.; Xiao, Q.; Zheng, W.; Long, G.; Chen, B.; Shu, X.; Jiang, M. Mutations in the Antibiotic Target Genes Related to Clarithromycin, Metronidazole and Levofloxacin Resistance in Helicobacter pylori Strains from Children in China. Infect. Drug Resist. 2020, 13, 311–322. [Google Scholar] [CrossRef]
- Fischer, W.; Tegtmeyer, N.; Stingl, K.; Backert, S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front. Microbiol. 2020, 11, 1592. [Google Scholar] [CrossRef] [PubMed]
- Bujanda, L.; Nyssen, O.P.; Vaira, D.; Saracino, I.M.; Fiorini, G.; Lerang, F.; Georgopoulos, S.; Tepes, B.; Heluwaert, F.; Gasbarrini, A.; et al. Antibiotic Resistance Prevalence and Trends in Patients Infected with Helicobacter pylori in the Period 2013-2020: Results of the European Registry on H. pylori Management (Hp-EuReg). Antibiotics 2021, 10, 1058. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Rapp, B.A.; Wheeler, D.L. GenBank. Nucleic Acids Res. 2002, 30, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Diab, M.; El-Shenawy, A.; El-Ghannam, M.; Salem, D.; Abdelnasser, M.; Shaheen, M.; Abdel-Hady, M.; El-Sherbini, E.; Saber, M. Detection of antimicrobial resistance genes of Helicobacter pylori strains to clarithromycin, metronidazole, amoxicillin and tetracycline among Egyptian patients. Egypt. J. Med. Hum. Genet. 2018, 19, 417–423. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, N.; Kwon, Y.H.; Nam, R.H.; Kim, J.M.; Park, J.Y.; Lee, Y.S.; Lee, D.H. rdxA, frxA, and efflux pump in metronidazole-resistant Helicobacter pylori: Their relation to clinical outcomes. J. Gastroenterol. Hepatol. 2018, 33, 681–688. [Google Scholar] [CrossRef]
- Berlamont, H.; Smet, A.; De Bruykere, S.; Boyen, F.; Ducatelle, R.; Haesebrouck, F.; De Witte, C. Antimicrobial susceptibility pattern of Helicobacter suis isolates from pigs and macaques. Vet. Microbiol. 2019, 239, 108459. [Google Scholar] [CrossRef]
- Hamada, M.; Elbehiry, A.; Marzouk, E.; Moussa, I.M.; Hessain, A.M.; Alhaji, J.H.; Heme, H.A.; Zahran, R.; Abdeen, E. Helicobacter pylori in a poultry slaughterhouse: Prevalence, genotyping and antibiotic resistance pattern. Saudi J. Biol. Sci. 2018, 25, 1072–1078. [Google Scholar] [CrossRef]
- Liu, Z.; Klümper, U.; Shi, L.; Ye, L.; Li, M. From Pig Breeding Environment to Subsequently Produced Pork: Comparative Analysis of Antibiotic Resistance Genes and Bacterial Community Composition. Front. Microbiol. 2019, 10, 43. [Google Scholar] [CrossRef]
- Ghotaslou, R.; Leylabadlo, H.E.; Asl, Y.M. Prevalence of antibiotic resistance in Helicobacter pylori: A recent literature review. World J. Methodol. 2015, 5, 164–174. [Google Scholar] [CrossRef]
- Muurinen, J.; Richert, J.; Wickware, C.L.; Richert, B.; Johnson, T.A. Swine growth promotion with antibiotics or alternatives can increase antibiotic resistance gene mobility potential. Sci. Rep. 2021, 11, 5485. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [PubMed]
- Monger, X.C.; Gilbert, A.-A.; Saucier, L.; Vincent, A.T. Antibiotic Resistance: From Pig to Meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef] [PubMed]
- Ricker, N.; Trachsel, J.; Colgan, P.; Jones, J.; Choi, J.; Lee, J.; Coetzee, J.F.; Howe, A.; Brockmeier, S.L.; Loving, C.L.; et al. Toward Antibiotic Stewardship: Route of Antibiotic Administration Impacts the Microbiota and Resistance Gene Diversity in Swine Feces. Front. Vet. Sci. 2020, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Driessen, B.; Freson, L.; Buyse, J. Fasting Finisher Pigs before Slaughter Influences Pork Safety, Pork Quality and Animal Welfare. Animals 2020, 10, 2206. [Google Scholar] [CrossRef] [PubMed]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
H. pylori-like Positive Samples | frxA Gene PCR Positive (n/N) (%) | rdxA Gene PCR Positive (n/N) (%) | 16S rRNA Mutation Gene PCR Positive (n/N) (%) | 23S rRNA Gene PCR Positive (n/N) (%) | Pbp1A Gene PCR Positive (n/N) (%) |
---|---|---|---|---|---|
Pars oesophagea (N = 29) | 1/29 (3.4%) | 0/29 (0.0%) | 2/29 (6.9%) | 0/29 (0.0%) | 0/29 (0.0%) |
Oxyntic mucosa (N = 7) | 0/7 (0.0%) | 0/7 (0.0%) | 0/7 (0.0%) | 0/7 (0.0%) | 0/7 (0.0%) |
Antimicrobials | Sequence | Target Gene | Thermo Cycle Conditions | Reference | |||
---|---|---|---|---|---|---|---|
Temp. (°C) | Time | Nr. Cycles | |||||
Amoxicillin | Forward | GCG ACA ATA AGA GTG GCA | Pbp1A | 95 95 56 72 72 | 3′ 1′ 1′ 5′ 10′ | 35 | [38,39] |
Reverse | TGC GAA CAC CCT TTT AAA T | ||||||
Metronidazole | Forward | AAT TTG AGC ATG GGG CAG A | rdxA | 95 94 60 72 72 | 5′ 30" 30" 1′ 10′ | 35 | [38,39] |
Reverse | GAA ACG CTT GAA AAC ACC CCT | ||||||
Forward | TGG ATA TGG CAG CCG TTT A | frxA | 95 95 58 72 72 | 5′ 30" 30" 1′ 10′ | 35 | [38,39] | |
Reverse | GGT TAT CAA AAA GCT AAC AGC G | ||||||
Tetracycline | Forward | CGG TCG CAA GAT TAA AAC | 16S rRNA mutation | 95 95 55 72 72 | 10′ 5" 2" 30" 10′ | 45 | [38] |
Reverse | GCG GAT TCT CTC AAT GTC | ||||||
Clarithromycin | Forward | TCA GTG AAA TTG TAG TGG AGG TGA AAA | 23S rRNA | 95 92 60 72 72 | 10′ 15" 1′ 1′ 10′ | 40 | [38] |
Reverse | CAG TGC TAA GTT GTA GTA AAG GTC CA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez Nunes, F.; Taillieu, E.; Letra Mateus, T.; Teixeira, S.; Haesebrouck, F.; Amorim, I. Molecular Detection of Metronidazole and Tetracycline Resistance Genes in Helicobacter pylori-Like Positive Gastric Samples from Pigs. Antibiotics 2023, 12, 906. https://doi.org/10.3390/antibiotics12050906
Cortez Nunes F, Taillieu E, Letra Mateus T, Teixeira S, Haesebrouck F, Amorim I. Molecular Detection of Metronidazole and Tetracycline Resistance Genes in Helicobacter pylori-Like Positive Gastric Samples from Pigs. Antibiotics. 2023; 12(5):906. https://doi.org/10.3390/antibiotics12050906
Chicago/Turabian StyleCortez Nunes, Francisco, Emily Taillieu, Teresa Letra Mateus, Sílvia Teixeira, Freddy Haesebrouck, and Irina Amorim. 2023. "Molecular Detection of Metronidazole and Tetracycline Resistance Genes in Helicobacter pylori-Like Positive Gastric Samples from Pigs" Antibiotics 12, no. 5: 906. https://doi.org/10.3390/antibiotics12050906
APA StyleCortez Nunes, F., Taillieu, E., Letra Mateus, T., Teixeira, S., Haesebrouck, F., & Amorim, I. (2023). Molecular Detection of Metronidazole and Tetracycline Resistance Genes in Helicobacter pylori-Like Positive Gastric Samples from Pigs. Antibiotics, 12(5), 906. https://doi.org/10.3390/antibiotics12050906