Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites
Abstract
:1. Introduction
2. Results
2.1. PNCs Surface Evaluation
2.2. PNC Effect on Cell Viability and Cytotoxicity
2.3. PNC Effect on Nitric Oxide Release as a Cellular Response
2.4. Biofilm Formation on PNC Surfaces
3. Discussion
4. Materials and Methods
4.1. Polypropylene Nanocomposite (PNC) Samples’ Production
4.2. Cell Viability Measurement Using MTT
4.3. Nitric Oxide
4.4. Growth Curve Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leonardi de Oliveira Rigotti, R.; Dias Corpa Tardelli, J.; Cândido Dos Reis, A. Influence of antibacterial surface treatment on dental implants on cell viability: A systematic review. Heliyon 2023, 9, e13693. [Google Scholar] [CrossRef] [PubMed]
- Scalise, A.; Bianchi, A.; Tartaglione, C.; Bolletta, E.; Pierangeli, M.; Torresetti, M.; Marazzi, M.; Di Benedetto, G. Microenvi-ronment and microbiology of skin wounds: The role of bacterial biofilms and related factors. Semin. Vasc. Surg. 2015, 28, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, G.; Ivanova, K.; Ivanov, I.; Tzanov, T. Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics 2023, 12, 310. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Gupta, A.; Upadhye, V.; Singh, S.C.; Sinha, R.P.; Häder, D.P. Therapeutic Strategies against Biofilm Infections. Life 2023, 13, 172. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Mishra, M.P.; Bhattacharyay, D. Targeting Microbial Bio-film: An Update on MDR Gram-Negative Bio-film Producers Causing Catheter-Associated Urinary Tract Infections. Appl. Biochem. Biotechnol. 2022, 194, 2796–2830. [Google Scholar] [CrossRef]
- Narayana, P.S.V.V.S.; Srihari, P.S.V.V. Biofilm Resistant Surfaces and Coatings on Implants: A Review. Mater. Today Proc. 2019, 18, 4847–4853. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Agrawal, P.; Kulkarni, N. Studies on bacterial synthesis of silver nanoparticles and its synergistic antibacterial effect with antibiotics against selected MDR enteric bacteria. IJLSSR 2018, 4, 1897–1904. [Google Scholar] [CrossRef]
- Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 1999, 96, 13611–13614. [Google Scholar] [CrossRef]
- Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588. [Google Scholar] [CrossRef]
- Travan, A.; Marsich, E.; Donati, I.; Paoletti, S. Silver nanocomposites and their biomedical applications. In Nanocomposites; Kumar CSSR; Wiley-VCH: New York, NY, USA, 2010; pp. 81–127. [Google Scholar]
- Kaithal, P.; Jain, P.A.; Verma, A.P. Comparative analysis of synthesized silver nanoparticles using Madhuca longifolia and Pimenta dioica, for their antibiofilm activities. Mater. Today Proc. 2023, 76, 437–448, ISSN 2214-7853. [Google Scholar] [CrossRef]
- Zaheer, Z.; Rafiuddin. Silver nanoparticles to self-assembled films: Green synthesis and characterization. Colloids Surf. B BioInterfaces 2012, 90, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Saifuddin, N.; Wong, C.W.; Yasumira, A.A.N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. e-J. Chem. 2009, 6, 61–70. [Google Scholar] [CrossRef]
- Bhattacharjee, R.R.; Dasgupta, U. Seed-mediated synthesis of silver nanoparticles: Tunable surface Plasmon and their facile fabrication. Mater. Today Proc. 2021, 43, 1342–1347. [Google Scholar] [CrossRef]
- Mostafa, H.Y.; El-Sayyad, G.S.; Nada, H.G.; Ellethy, R.A.; Zaki, E.G. Promising antimicrobial and antibiofilm activities of Or-obanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: Effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Arch. Biochem. Biophys. 2023, 736, 109539, ISSN 0003-9861. [Google Scholar] [CrossRef]
- Bradley, J.S.; Schmid, G.; Talapin, D.V.; Shevchenko, E.V.; Weller, H. Syntheses and Characterizations: 3.2 Synthesis of Metal Nanoparticles. In Nanoparticles: From Theory to Application; Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, Germany, 2010; pp. 185–238. [Google Scholar]
- Bai, R.; Zhu, Z.; Zhong, Q. Preparation of Soft Magnetic FeNip/PP Nanocomposites by Multi-Step Dispersion Process. Polym. Plast. Technol. Eng. 2018, 57, 1726–1732. [Google Scholar] [CrossRef]
- Idumah, C.I.; Hassan, A.; Ihuoma, D.E. Recently emerging trends in polymer nanocomposites packaging materials. Polym.-Plast. Technol. Mater. 2019, 58, 1054–1109. [Google Scholar] [CrossRef]
- Pavlidou, S.; Papaspyrides, C.D. A review on polymer-layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Yuan, D.; Pedrazzoli, D.; Pircheraghi, G.; Manas-Zloczower, I. Melt Compounding of Thermoplastic Polyurethanes Incorpo-rating 1D and 2D Carbon Nanofillers. Polym. Plast. Technol. Eng. 2017, 56, 732–743. [Google Scholar] [CrossRef]
- Cho, J.W.; Paul, D.R. Nylon6 nanocomposites by melt compounding. Polymer 2001, 42, 1083–1094. [Google Scholar] [CrossRef]
- Dennis, H.R.; Hunter, D.L.; Chang, D.; Kim, S.; White, J.L.; Cho, J.W.; Paul, D.R. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 2001, 42, 9513–9522. [Google Scholar] [CrossRef]
- Pelto, J.; Heino, V.; Karttunen, M.; Rytöluoto, I.; Ronkainen, H. Tribological performance of high density polyethylene (HDPE) composites with low nanofiller loading. Wear 2020, 460–461, 203451. [Google Scholar] [CrossRef]
- Walter, C.; Brüser, V.; Quade, A.; Weltmann, K.-D. Structural Investigations of Composites Produced from Copper and Polypyrrole with a Dual PVD/PE CVD Process. Plasma Process. Polym. 2009, 6, 803–812. [Google Scholar] [CrossRef]
- Sardella, E.; Favia, P.; Gristina, R.; Nardulli, M.; d’Agostino, R. Plasma-Aided Micro- and Nanopatterning Processes for Biomedical Applications. Plasma Process. Polym. 2006, 3, 456. [Google Scholar] [CrossRef]
- Despax, B.; Raynaud, P. Deposition of “polysiloxane” thin films containing silver particles by an RF asymmetrical discharge. Plasma Process. Polym. 2007, 4, 127–134. [Google Scholar] [CrossRef]
- Vengatesan, M.R.; Vikas, M. Surface Modification of Nanomaterials for Application in Polymer Nanocomposites: An Overview. In Surface Modification of Nanoparticle and Natural Fiber Fillers; Mittal, V., Ed.; John Wiley & Sons, Wiley-VCH Verlag GmbH & Co. KGaA: Weinhein, Germany, 2015. [Google Scholar]
- Quadrini, F.; Bellisario, D.; Santo, L.; Tedde, G.M. Anti-Bacterial Nanocomposites by Silver Nano-Coating Fragmentation. Mater. Sci. Forum 2017, 879, 1540–1545. [Google Scholar] [CrossRef]
- Bellisario, D.; Quadrini, F.; Santo, L.; Montinaro, N.; Fustaino, M.; Pantano, A. Hybrid nanocomposites with ultra-low filling content by nano-coating fragmentation. Polym.-Plast. Technol. Mater. 2022, 61, 41–55. [Google Scholar] [CrossRef]
- Montinaro, N.; Fustaino, M.; Bellisario, D.; Quadrini, F.; Santo, L.; Pantano, A. Testing the Dispersion of Nanoparticles in a Nanocomposite with an Ultra-Low Fill Content Using a Novel Non-Destructive Evaluation Technique. Materials 2022, 15, 1208. [Google Scholar] [CrossRef]
- Bula, K.; Szymańska, J.; Sterzyński, T.; Piasecki, A.; Wróblewski, R. Visualization of particles arrangement during filling stage of polyamide 6—Metal insert injection molding. Polym. Eng. Sci. 2019, 59, 271–278. [Google Scholar] [CrossRef]
- Park, S.H.; Lyu, M.Y. Observation of two-dimensional shaped aluminum flake orientation during injection molding and its orientation mechanism. Macromol. Res. 2019, 27, 481–489. [Google Scholar] [CrossRef]
- Sasayama, T.; Okamoto, H.; Sato, N.; Kawada, J. Numerical simulation of plate-like particle orientation in injection molding. Powder Technol. 2022, 404, 117481. [Google Scholar] [CrossRef]
- Algazlan, A.S.; Almuraikhi, N.; Muthurangan, M.; Balto, H.; Alsalleeh, F. Silver Nanoparticles Alone or in Combination with Calcium Hydroxide Modulate the Viability, Attachment, Migration, and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Int. J. Mol. Sci. 2022, 24, 702. [Google Scholar] [CrossRef] [PubMed]
- Velnar, T.; Bunc, G.; Klobucar, R.; Gradisnik, L. Biomaterials and host versus graft response: A short review. Bosn. J. Basic Med. Sci. 2016, 16, 82–90. [Google Scholar] [CrossRef]
- Major, M.R.; Wong, V.W.; Nelson, E.R.; Longaker, M.T.; Gurtner, G.C. The foreign body response: At the interface of surgery and bioengineering. Plast. Reconstr. Surg. 2015, 135, 1489–1498. [Google Scholar] [CrossRef]
- Goto, T.; Ohi, Y. Urinary tract infection: Bacterial adhesin and biofilm formation. Nihon Hinyokika Gakkai Zasshi 1998, 89, 389–398. (In Japanese) [Google Scholar] [PubMed]
- Fiore, M.; Sambri, A.; Zucchini, R.; Giannini, C.; Donati, D.M.; De Paolis, M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: A systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 201–220. [Google Scholar] [CrossRef]
- Zughaier, S.M.; Stauffer, B.B.; McCarty, N.A. Inflammation and ER stress downregulate BDH2 expression and dysregulate intracellular iron in macrophages. J. Immunol. Res. 2014, 2014, 140728. [Google Scholar] [CrossRef]
- Al-Awad, D.; Al-Emadi, N.; Abu-Madi, M.; Al-Thani, A.A.; Zughaier, S.M. The Role of Soluble Uric Acid in Modulating Autophagy Flux and Inflammasome Activation during Bacterial Infection in Macrophages. Biomedicines 2020, 8, 598. [Google Scholar] [CrossRef]
- Corte, L.; Casagrande Pierantoni, D.; Tascini, C.; Roscini, L.; Cardinali, G. Biofilm Specific Activity: A Measure to Quantify Microbial Biofilm. Microorganisms 2019, 7, 73. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellisario, D.; Santo, L.; Quadrini, F.; Hassiba, M.; Bader, N.; Chowdhury, S.H.; Hassan, M.K.; Zughaier, S.M. Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites. Antibiotics 2023, 12, 924. https://doi.org/10.3390/antibiotics12050924
Bellisario D, Santo L, Quadrini F, Hassiba M, Bader N, Chowdhury SH, Hassan MK, Zughaier SM. Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites. Antibiotics. 2023; 12(5):924. https://doi.org/10.3390/antibiotics12050924
Chicago/Turabian StyleBellisario, Denise, Loredana Santo, Fabrizio Quadrini, Maryam Hassiba, Nour Bader, Shazeda H. Chowdhury, Mohammad K. Hassan, and Susu M. Zughaier. 2023. "Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites" Antibiotics 12, no. 5: 924. https://doi.org/10.3390/antibiotics12050924
APA StyleBellisario, D., Santo, L., Quadrini, F., Hassiba, M., Bader, N., Chowdhury, S. H., Hassan, M. K., & Zughaier, S. M. (2023). Cytotoxicity and Antibiofilm Activity of Silver-Polypropylene Nanocomposites. Antibiotics, 12(5), 924. https://doi.org/10.3390/antibiotics12050924