Deficiencies of Rule-Based Technology-Generated Antibiograms for Specialized Care Units
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics and Injury Characteristics
2.2. Pathogens
2.2.1. Gram-Positive Pathogens
2.2.2. Gram-Negative Pathogens
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Population
4.2. Data Collection
4.3. Sample and Statistical Analysis
4.3.1. Sample Size Determination
4.3.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Razzaque, M.S. Implementation of antimicrobial stewardship to reduce antimicrobial drug resistance. Expert Rev. Anti-Infect. Ther. 2020, 19, 559–562. [Google Scholar] [CrossRef]
- Hindler, J.F.; Stelling, J. Analysis and Presentation of Cumulative Antibiograms: A New Consensus Guideline from the Clinical and Laboratory Standards Institute. Clin. Infect. Dis. 2007, 44, 867–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simner, P.J.; Hindler, J.A.; Bhowmick, T.; Das, S.; Johnson, J.K.; Lubers, B.V.; Redell, M.A.; Stelling, J.; Erdman, S.M. What’s New in Antibiograms? Updating CLSI M39 Guidance with Current Trends. J. Clin. Microbiol. 2022, 60, e02210-21. [Google Scholar] [CrossRef] [PubMed]
- Kuster, S.P.; Ruef, C.; Bollinger, A.K.; Ledergerber, B.; Hintermann, A.; Deplazes, C.; Neuber, L.; Weber, R. Correlation between case mix index and antibiotic use in hospitals. J. Antimicrob. Chemother. 2008, 62, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Kuster, S.P.; Ruef, C.; Ledergerber, B.; Hintermann, A.; Deplazes, C.; Neuber, L.; Weber, R. Quantitative antibiotic use in hospitals: Comparison of measurements, literature review, and recommendations for a standard of reporting. Infection 2008, 36, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Kuster, S.P.; Ruef, C.; Zbinden, R.; Gottschalk, J.; Ledergerber, B.; Neuber, L.; Weber, R. Stratification of cumulative antibiograms in hospitals for hospital unit, specimen type, isolate sequence and duration of hospital stay. J. Antimicrob. Chemother. 2008, 62, 1451–1461. [Google Scholar] [CrossRef] [Green Version]
- Kohlmann, R.; Gatermann, S.G. Analysis and Presentation of Cumulative Antimicrobial Susceptibility Test Data—The Influence of Different Parameters in a Routine Clinical Microbiology Laboratory. PLoS ONE 2016, 11, e0147965. [Google Scholar] [CrossRef]
- Campigotto, A.; Muller, M.P.; Taggart, L.R.; Haj, R.; Leung, E.; Nadarajah, J.; Matukas, L.M. Cumulative Antimicrobial Susceptibility Data from Intensive Care Units at One Institution: Should Data Be Combined? J. Clin. Microbiol. 2016, 54, 956–959. [Google Scholar] [CrossRef] [Green Version]
- Truong, W.R.; Hidayat, L.; A Bolaris, M.; Nguyen, L.; Yamaki, J. The antibiogram: Key considerations for its development and utilization. JAC-Antimicrob. Resist. 2021, 3, dlab060. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Kapila, K.; Kumar, S. WHONET Software for the Surveillance of Antimicrobial Susceptibility. Med. J. Armed Forces India 2009, 65, 264–266. [Google Scholar] [CrossRef] [Green Version]
- Simpao, A.F.; Ahumada, L.M.; Martinez, B.L.; Cardenas, A.M.; Metjian, T.A.; Sullivan, K.V.; Gálvez, J.A.; Desai, B.R.; Rehman, M.A.; Gerber, J.S. Design, and Implementation of a Visual Analytics Electronic Antibiogram within an Electronic Health Record System at a Tertiary Pediatric Hospital. Appl. Clin. Inform. 2018, 09, 037–045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, G.; Badarudeen, S.; Godwin, A. Real-time validation, and presentation of the cumulative antibiogram and implications of presenting a standard format using a novel in-house software: ABSOFT. Am. J. Infect. Control. 2010, 38, e25–e30. [Google Scholar] [CrossRef] [PubMed]
- Berwick, D.M. A primer on leading the improvement of systems. BMJ 1996, 312, 619–622. [Google Scholar] [CrossRef] [Green Version]
- Classen, D.C.; Pestotnik, S.L.; Evans, R.S.; Burke, J.P. Description of a computerized adverse drug event monitor using a hospital information system. Hosp. Pharm. 1992, 27, 776–779. [Google Scholar]
- Jha, A.K.; Kuperman, G.; Teich, J.M.; Leape, L.; Shea, B.; Rittenberg, M.E.; Burdick, E.; Seger, R.D.L.; Vliet, R.M.V.; Bates, D.W. Identifying Adverse Drug Events: Development of a Computer-based Monitor and Comparison with Chart Review and Stimulated Voluntary Report. J. Am. Med. Inform. Assoc. 1998, 5, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Centers for Medicare & Medicaid Services (CMS); HHS. Medicaid Services, Medicare and Medicaid programs; electronic health record incentive program. Final rule. Fed. Regist. 2010, 75, 44313–44588. [Google Scholar]
- Tsapepas, D.S.; McKeen, J.T.; Martin, S.T.; Walker-McDermott, J.K.; Yang, A.; Hirsch, J.; Mohan, S.; Tiwari, R. Risk evaluation and mitigation strategy programs in solid organ transplantation: The promises of information technology. J. Am. Med. Inform. Assoc. 2014, 21, e358–e362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laguio-Vila, M.; Staicu, M.L.; Brundige, M.L.; Alcantara, J.; Yang, H.; Lautenbach, E.; Dumyati, G. Urinary tract infection stewardship: A urinary antibiogram and electronic medical record alert nudging narrower-spectrum antibiotics for urinary tract infections. Antimicrob. Steward. Health Epidemiol. 2021, 1, e8. [Google Scholar] [CrossRef]
- Corbin, C.K.; Sung, L.; Chattopadhyay, A.; Noshad, M.; Chang, A.; Deresinksi, S.; Baiocchi, M.; Chen, J.H. Personalized antibiograms for machine learning-driven antibiotic selection. Commun. Med. 2022, 2, 38. [Google Scholar] [CrossRef]
- Leeman, H.M.; Chan, B.P.; Zimmermann, C.R.; Talbot, E.A.; Calderwood, M.S.; Dave, A.R.; Santos, P.; Hansen, K.E. Creation of State Antibiogram and Subsequent Launch of Public Health–Coordinated Antibiotic Stewardship in New Hampshire: Small State, Big Collaboration. Public Health Rep. 2021, 137, 72–80. [Google Scholar] [CrossRef]
- Liang, B.; Wheeler, J.S.; Blanchette, L.M. Impact of Combination Antibiogram and Related Education on Inpatient Fluoroquinolone Prescribing Patterns for Patients With Health Care–Associated Pneumonia. Ann. Pharmacother. 2016, 50, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Green, D.L. Selection of an Empiric Antibiotic Regimen for Hospital-Acquired Pneumonia Using a Unit and Culture-Type Specific Antibiogram. J. Intensiv. Care Med. 2005, 20, 296–301. [Google Scholar] [CrossRef]
- Smith, Z.R.; Tajchman, S.K.; Dee, B.M.; Bruno, J.J.; Qiao, W.; Tverdek, F.P. Development of a combination antibiogram for Pseudomonas aeruginosa bacteremia in an oncology population. J. Oncol. Pharm. Pract. 2015, 22, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.M.; Sinclair, S.E.; Hickerson, W.L. Rational Selection and Use of Antimicrobials in Patients with Burn Injuries. Clin. Plast. Surg. 2017, 44, 521–534. [Google Scholar] [CrossRef]
- Thomas, R.E.; Thomas, B.C. Reducing Biofilm Infections in Burn Patients’ Wounds and Biofilms on Surfaces in Hospitals, Medical Facilities and Medical Equipment to Improve Burn Care: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 13195. [Google Scholar] [CrossRef] [PubMed]
- Cleland, H.; Tracy, L.M.; Padiglione, A.; Stewardson, A.J. Patterns of multidrug-resistant organism acquisition in an adult specialist burns service: A retrospective review. Antimicrob. Resist. Infect. Control 2022, 11, 82. [Google Scholar] [CrossRef]
- Escandón-Vargas, K.; Tangua, A.R.; Medina, P.; Zorrilla-Vaca, A.; Briceño, E.; Clavijo-Martínez, T.; Tróchez, J.P. Healthcare-associated infections in burn patients: Timeline and risk factors. Burns 2020, 46, 1775–1786. [Google Scholar] [CrossRef]
- Hermsen, E.D.; Vanschooneveld, T.C.; Sayles, H.; Rupp, M.E. Implementation of a Clinical Decision Support System for Antimicrobial Stewardship. Infect. Control Hosp. Epidemiol. 2012, 33, 412–415. [Google Scholar] [CrossRef]
- Bremmer, D.N.; Trienski, T.L.; Walsh, T.L.; Moffa, M.A. Role of Technology in Antimicrobial Stewardship. Med. Clin. N. Am. 2018, 102, 955–963. [Google Scholar] [CrossRef]
- Forrest, G.N.; Van Schooneveld, T.C.; Kullar, R.; Schulz, L.T.; Duong, P.; Postelnick, M. Use of Electronic Health Records and Clinical Decision Support Systems for Antimicrobial Stewardship. Clin. Infect. Dis. 2014, 59, S122–S133. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S. Hospital antibiogram: A necessity. Indian J. Med. Microbiol. 2010, 28, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Pakyz, A.L. The Utility of Hospital Antibiograms as Tools for Guiding Empiric Therapy and Tracking Resistance. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2007, 27, 1306–1312. [Google Scholar] [CrossRef]
- E Carter, J.; Amani, H.; Carter, D.; Foster, K.N.; Griswold, J.A.; Hickerson, W.L.; Holmes, J.H.; Jones, S.; Khandelwal, A.; Kopari, N.; et al. Evaluating Real-World National and Regional Trends in Definitive Closure in U.S. Burn Care: A Survey of U.S. Burn Centers. J. Burn. Care Res. 2021, 43, 141–148. [Google Scholar] [CrossRef]
- Kowal, S.; Kruger, E.; Bilir, P.; Holmes, J.H.; Hickerson, W.; Foster, K.; Nystrom, S.; Sparks, J.; Iyer, N.; Bush, K.; et al. Cost-Effectiveness of the Use of Autologous li Harvesting Device Compared to Standard of Care for Treatment of Severe Burns in the United States. Adv. Ther. 2019, 36, 1715–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.M.; Percy, M.D.; Velamuri, S.R.; Lanfranco, J.; Legro, I.R.; E Sinclair, S.; Hickerson, W.L. Predictors for Identifying Burn Sepsis and Performance vs Existing Criteria. J. Burn. Care Res. 2018, 39, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.B.; Gobara, S.; Costa, S.E.; Sauaia, N.; Mamizuka, E.M.; van der Heijden, I.M.; Soares, R.E.; Almeida, G.D.; Fontana, C.; Levin, A.S. Emergence of resistance in Pseudomonas aeruginosa and Acinetobacter species after the use of antimicrobials for burned patients. Infect. Control Hosp. Epidemiol. 2004, 25, 868–872. [Google Scholar] [CrossRef]
- Bahemia, I.; Muganza, A.; Moore, R.; Sahid, F.; Menezes, C. Microbiology and antibiotic resistance in severe burns patients: A 5-year review in an adult burns unit. Burns 2015, 41, 1536–1542. [Google Scholar] [CrossRef]
- Jian, J.; Yu, P.; Zheng-Li, C.; Hao, L.; Ze-Jing, W.; Shao-Shuo, Y.; Yu, S.; Guang-Yi, W.; Shi-Hui, Z.; Bing, M.; et al. An epidemiological retrospective analysis in major burn patients: Single centre medical records from 2009 to 2019. Updat. Surg. 2022, 74, 1453–1459. [Google Scholar] [CrossRef]
- Branski, L.K.; Al-Mousawi, A.; Rivero, H.; Jeschke, M.G.; Sanford, A.P.; Herndon, D.N. Emerging Infections in Burns. Surg. Infect. 2009, 10, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Parikh, M.P.; Octaria, R.; Kainer, M.A. Methicillin-Resistant Staphylococcus aureus Bloodstream Infections and Injection Drug Use, Tennessee, USA, 2015-2017. Emerg. Infect. Dis. 2020, 26, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Bantar, C.; Alcazar, G.; Franco, D.; Salamone, F.; Vesco, E.; Stieben, T.; Obaid, F.; Fiorillo, A.; Izaguirre, M.; Oliva, M.E. Are laboratory-based antibiograms reliable to guide the selection of empirical antimicrobial treatment in patients with hospital-acquired infections? J. Antimicrob. Chemother. 2007, 59, 140–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosso, J.A.; Sieg, A.; Mauldin, P.D. Comparison of Hospitalwide and Custom Antibiograms for Clinical Isolates of Pseudomonas aeruginosa. Hosp. Pharm. 2013, 48, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.R.; Gómez, B.I.; McIntyre, M.K.; Dubick, M.A.; Christy, R.J.; Nicholson, S.E.; Burmeister, D.M. The Cutaneous Microbiome and Wounds: New Molecular Targets to Promote Wound Healing. Int. J. Mol. Sci. 2018, 19, 2699. [Google Scholar] [CrossRef] [Green Version]
- Lima, K.M.; Davis, R.R.; Liu, S.Y.; Greenhalgh, D.G.; Tran, N.K. Longitudinal profiling of the burn patient cutaneous and gastrointestinal microbiota: A pilot study. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Tran, C.; Hargy, J.; Hess, B.; Pettengill, M.A. Estimated Impact of Low Isolate Numbers on the Reliability of Cumulative Antibiogram Data. Microbiol. Spectr. 2023, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
OX | VAN | AMP | TCN | S/T | CLN | ||||||||
E. faecalis (n = 95) | . | 87 | 99 | . | . | . | |||||||
E. faecium (n = 17) | . | . | . | . | . | . | |||||||
MSSA (n = 73) | 100 | 100 | . | 97 | 100 | 81 | |||||||
MRSA (n = 89) | . | 100 | . | 51 | 100 | . | |||||||
A/S | P/T | C1 | C3 | CTZ | C4 | IMI | AZ | S/T | CIP | GEN | TOB | AMI | |
A. baumannii (n = 46) | 96 | . | . | . | . | 73 | 93 | . | |||||
E. coli (n = 32) | 47 | 91 | 97 | 97 | 97 | 97 | 100 | 100 | 56 | 81 | 91 | 91 | 100 |
Enterobacter spp. (n = 86) | . | 79 | . | 80 | 78 | 83 | 82 | 80 | 83 | 84 | 83 | 81 | 91 |
K. pneumoniae (n = 44) | 73 | 79 | 74 | 78 | 77 | 80 | 91 | 83 | 75 | 89 | 86 | 77 | 93 |
P. aeruginosa (n = 70) | . | 86 | . | . | 79 | 72 | 72 | 77 | . | 86 | 73 | 80 | 92 |
P. mirabilis (n = 23) | 86 | 100 | 78 | 83 | 87 | 87 | 96 | 96 | 95 | 87 | 100 | 100 | 100 |
S. maltophilia (n = 40) | . | . | . | . | . | . | . | . | 100 | . | . | . | . |
Variable | Population (n = 204) |
---|---|
Age, years a | 50.6 ± 16.5 |
Male b | 135 (66) |
Race b | |
Caucasian | 100 (49) |
African American | 96 (47) |
Other | 8 (4) |
BMI, kg/m2 c | 28 (23, 33) |
Acute burn injury b | 147 (72) |
Flame b | 79 (39) |
% TBSA c | 10 (3, 21) |
% Full thickness c | 2 (0, 10) |
Inhalation injury b | 20 (10) |
HAI risk factor(s) d | 121 (59) |
Recent hospitalization b, e | 72 (35) |
Positive social history b, f | 71 (35) |
IV access/dialysis b | 16 (8) |
NH/LTACH b | 4 (2) |
Chemotherapy b | 2 (1) |
OX | VAN | AMP | TCN | S/T | CLN | ||||||||
E. faecalis (n = 22) | . | 91 | 91 | . | . | . | |||||||
E. faecium (n = 4) | . | . | . | . | . | . | |||||||
MSSA (n = 46) | 100 | 100 | . | 91 | 100 | 74 | |||||||
MRSA (n=47) | . | 100 | . | 55 | 100 | . | |||||||
A/S | P/T | C1 | C3 | CTZ | C4 | IMI | AZ | S/T | CIP | GEN | TOB | AMI | |
A. baumannii (n = 9) | 89 | . | . | . | . | 78 | 78 | . | 75 | 78 | 88 | 89 | 100 |
E. coli (n = 19) | 50 | 94 | 81 | 81 | 81 | 81 | 100 | 87 | . | . | 81 | 88 | 100 |
Enterobacter spp. (n = 22) | . | 91 | . | 91 | 96 | 96 | 96 | 96 | 91 | 91 | 96 | 96 | 96 |
K. pneumoniae (n = 14) | 79 | 92 | 86 | 93 | 86 | 93 | 93 | 93 | 86 | 100 | 100 | 100 | 100 |
P. aeruginosa (n = 19) | . | 95 | . | . | 79 | 84 | 63 | 68 | . | 90 | 79 | 74 | 95 |
P. mirabilis (n = 12) | 83 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 75 | 67 | 92 | 92 | 100 |
S. maltophilia (n = 40) | . | . | . | . | . | . | . | . | 100 | . | . | . | . |
OX | VAN | AMP | TCN | S/T | CLN | ||||||||
E. faecalis (n = 8) | . | 86 | 91 | . | . | . | |||||||
E. faecium (n = 2) | . | 50 | . | . | . | . | |||||||
MSSA (n = 17) | 100 | 100 | . | 91 | 100 | 74 | |||||||
MRSA (n = 18) | . | 100 | . | 55 | 100 | . | |||||||
A/S | P/T | C1 | C3 | CTZ | C4 | IMI | AZ | S/T | CIP | GEN | TOB | AMI | |
A. baumannii (n = 4) | 100 | 75 | . | . | 100 | 100 | 75 | . | 67 | 100 | 100 | 100 | 100 |
E. coli (n = 6) | 67 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 50 | 83 | 100 | 100 | 100 |
Enterobacter spp. (n = 10) | . | 89 | . | 90 | 100 | 100 | 100 | 100 | 89 | 90 | 100 | 100 | 100 |
K. pneumoniae (n = 9) | 89 | 100 | 89 | 89 | 89 | 89 | 100 | 89 | 89 | 100 | 100 | 100 | 100 |
P. aeruginosa (n = 11) | . | 100 | . | . | 73 | 91 | 73 | 82 | . | 91 | 91 | 82 | 91 |
P. mirabilis (n = 7) | 86 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 71 | 71 | 86 | 86 | 100 |
S. maltophilia (n = 2) | . | . | . | . | . | . | . | . | 100 | . | . | . | . |
OX | VAN | AMP | TCN | S/T | CLN | ||||||||
E. faecalis (n = 30) | . | 90 | 100 | . | . | . | |||||||
E. faecium (n = 5) | . | . | . | . | . | . | |||||||
MSSA (n = 48) | 100 | 100 | . | 92 | 100 | 75 | |||||||
MRSA (n = 58) | . | 100 | . | 57 | 98 | . | |||||||
A/S | P/T | C1 | C3 | CTZ | C4 | IMI | AZ | S/T | CIP | GEN | TOB | AMI | |
A. baumannii (n = 11) | 91 | 55 | . | . | 45 | 82 | 82 | . | 70 | 82 | 90 | 82 | 91 |
E. coli (n = 18) | 50 | 94 | 83 | 83 | 83 | 83 | 100 | 88 | . | 50 | 78 | 89 | 100 |
Enterobacter spp. (n = 29) | 100 | 90 | . | 86 | 89 | 93 | 93 | 90 | 89 | 90 | 93 | 93 | 97 |
K. pneumoniae (n = 15) | 80 | 93 | 87 | 93 | 87 | 93 | 93 | 93 | 87 | 100 | 100 | 100 | 100 |
P. aeruginosa (n = 23) | . | 96 | . | . | 83 | 87 | 70 | 74 | . | 91 | 83 | 78 | 96 |
P. mirabilis (n = 14) | 86 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 79 | 71 | 93 | 93 | 100 |
S. maltophilia (n = 4) | . | . | . | . | . | . | . | . | 100 | . | . | . | . |
OX | VAN | AMP | TCN | S/T | CLN | ||||||||
E. faecalis (n = 7) | . | 100 | 100 | 50 | . | . | |||||||
E. faecium (n = 9) | . | . | . | . | . | . | |||||||
MSSA (n = 2) | 100 | 100 | . | 100 | 100 | 100 | |||||||
MRSA (n = 18) | . | 100 | . | . | 100 | . | |||||||
A/S | P/T | C1 | C3 | CTZ | C4 | IMI | AZ | S/T | CIP | GEN | TOB | AMI | |
A. baumannii (n = 15) | 93 | 80 | . | . | 47 | 53 | 93 | . | 71 | 67 | 67 | 80 | 87 |
E. coli (n = 4) | 50 | 100 | 50 | 50 | 50 | 50 | 100 | 75 | . | 75 | 100 | 100 | 100 |
Enterobacter spp. (n = 27) | . | . | . | . | . | . | . | . | 56 | 63 | 59 | 56 | 93 |
K. pneumoniae (n = 12) | . | . | . | . | . | . | 67 | 73 | . | 75 | . | . | 92 |
P. aeruginosa (n = 34) | . | 82 | . | . | 74 | 73 | 68 | 72 | . | 76 | 52 | 68 | 88 |
P. mirabilis (n = 4) | 75 | 100 | 75 | 75 | 75 | 75 | . | 100 | 100 | 100 | 100 | 100 | 100 |
S. maltophilia (n = 16) | . | . | . | . | . | . | . | . | 88 | . | . | . | . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, D.M.; Todor, L.A. Deficiencies of Rule-Based Technology-Generated Antibiograms for Specialized Care Units. Antibiotics 2023, 12, 1002. https://doi.org/10.3390/antibiotics12061002
Hill DM, Todor LA. Deficiencies of Rule-Based Technology-Generated Antibiograms for Specialized Care Units. Antibiotics. 2023; 12(6):1002. https://doi.org/10.3390/antibiotics12061002
Chicago/Turabian StyleHill, David M., and Lorraine A. Todor. 2023. "Deficiencies of Rule-Based Technology-Generated Antibiograms for Specialized Care Units" Antibiotics 12, no. 6: 1002. https://doi.org/10.3390/antibiotics12061002
APA StyleHill, D. M., & Todor, L. A. (2023). Deficiencies of Rule-Based Technology-Generated Antibiograms for Specialized Care Units. Antibiotics, 12(6), 1002. https://doi.org/10.3390/antibiotics12061002