Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review
Abstract
:1. Introduction
2. New Generation of Proton Pump Inhibitors (PPIs)
Ref. | Year | Country | Study Treatment (mg/Day) | Control Treatment (mg/Day) | Duration (Days) | No. of Patients | Eradication (PP) | Conclusion |
---|---|---|---|---|---|---|---|---|
[14] | 2022 | China | IL 2 × 5 + A 2 × 1000 + F 2 × 100, BiG 2 × 220 mg | (a) IL 2 × 5 + A 2 × 1000, F 2 × 100, BiG 2 × 220 mg (b) Il 2 × 5 + A 4 × 750 | 14/10/14 | 133/136/142 | 94.7/87.5/93.0% | The efficacy of 14-day double therapy with IL+A is similar to that of quadruple therapies for 10 and 14 days, with better compliance and lower cost. |
[15] | 2022 | China | IL 2 × 5 + D 2 × 100 + F 2 × 100 + Bi 2 × 220 mg | IL 2 × 5 + A 2 × 1000 + F 2 × 100 + Bi 2 × 220 | 14/14 | 92/92 | 92.9/91.8% | A- and D-based quadruple regimens given for 14 days are of the same efficacy, D being a useful alternative in the case of penicillin allergy. |
[18] | 2016 | China | DL 1 × 60 mg+A 2 × 1000 mg + C 2 × 500 mg | R 2 × 20 mg + A 2 × 1000 mg + C 2 × 500 mg | 7/7 | 90/87 | 85.1/81.2% | Both regimens achieved suboptimal results. DL has a lower cost than R. |
[19] | 2015 | Thailand | DL 2 × 60 + LEV 500 + C 1000, BiS 2 × 1048 | DL 2 × 60, LEV 500, C 1000, BiS 2 × 1048 | 14/7 | 48/42 | 98%/85.7% | The 14-day DL-containing quadruple regimen provided a higher eradication rate than the same regimen given for 7 days. |
[20] | 2019 | Taiwan | DL 1 × 60 + A 2 × 1000 mg + C 2 × 500 mg | (a) ESO 2 × 40 mg + A 2 × 1000 mg + C 2 × 500 mg (b) ESO 4 × 40 mg + A 2 × 1000 mg + C 2 × 500 mg | 7/7/7 | 63/75/77 | 93.7/94.7/89.6% | High-dose DL triple therapy was non-inferior to ESO-based 7-day therapies, achieving acceptable results. |
[21] | 2019 | Taiwan | DL-MR 4 × 60 mg, A 2 × 1000, C 2 × 500 + M 2 × 500 mg | L 2 × 30 mg + A 2 × 1000 mg + C 2 × 500 mg + M 2 × 500 mg | 7/7 | 96/98 | 90.6/90.1% | DL-MR-based 7-day quadruple therapy was equivalent to L-based concomitant therapy. |
3. Potassium-Competitive Acid Blockers (P-CAB)
4. New Antibiotics
4.1. Penicillin Derivatives
4.2. Macrolides
4.3. Fluoroquinolones
4.4. Tetracyclines
4.5. Nitazoxanide and Nitroimidazoles
4.6. Nitrofurans: Furazolidone and Nitrofurantoin
5. Carbonic Anhydrase Inhibitors
6. Capsule Therapy
7. Probiotics
- (a)
- The inhibition of bacterial adhesion to the surface epithelial cells;
- (b)
- The inhibition of bacterial enzymes (urease, catalase, and carbonic anhydrase);
- (c)
- The secretion of antibacterial substances (bacteriocins such as reuterin, lacticin, bulgaricin, etc.);
- (d)
- The inhibition of biofilm formation;
- (e)
- Host cell immune modulation (monitoring the balance of pro- and anti-inflammatory cytokines) [96].
8. Eradication of the Infection in Regions with a High H. pylori Prevalence
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Viota, N.A.; Anderson, S.M.; LaFleur, M.D.; Lee, R.E. Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Curr. Opin. Microbiol. 2022, 70, 1022303. [Google Scholar] [CrossRef]
- Roczczenko-Jasiňska, P.; Wojtys, M.I.; Jagusztyn-Krynicka, E.K. Helicobacter pylori treatment in the post-antibiotics era—Searching for new drug targets. Appl. Microbiol. Biotechnol. 2020, 104, 9891–9905. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Liou, J.-M. Primer for development of guidelines for Helicobacter pylori therapy using antimicrobial stewardship. Clin. Gastroenterol. Hepatol. 2022, 20, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P.; et al. The Toronto Consensus for the treatment of Helicobacter pylori in adults. Gastroenterology 2016, 151, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Guideline: Treatment of Helicobacter pylori infection. Am. J. Gastroenterol. 2016, 112, 212–238. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Mégraud, F.; O’Morain, C.M. Management of Helicobacter pylori infection: The Maastricht V/Florence consensus report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [PubMed]
- Fallone, C.A.; Moss, S.F.; Malfertheiner, P. Reconciliation of recent Helicobacter pylori treatment guidelines in a time of increasing resistance to antibiotics. Gastroenterology 2019, 157, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Mégraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.-M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef] [PubMed]
- Rokkas, T.; Gibert, J.P.; Malfertheiner, P.; Niv, Y.; Gasbarrini, A.; Leja, M.; Mégraud, F.; O’Morain, C.; Graham, D.Y. Comparative effectiveness of multiple different first-line treatment regimens for Helicobacter pylori infection: A network meta-analysis. Gastroenterology 2021, 181, 495–507.e4. [Google Scholar] [CrossRef]
- Graham, D.Y.; Hernandez, R.; Rokkas, T. Cross-roads for meta-analysis and network meta-analysis of H. pylori therapy. Gut 2022, 71, 643–650. [Google Scholar] [CrossRef]
- Nyssen, O.P.; Bordin, D.; Tepes, B.; Pérez-Aisa, Á.; Vaira, D.; Caldas, M.; Bujanda, L.; Castro-Fernandez, M.; Lerang, F.; Leja, M.; et al. European Registry on Helicobacter pylori management (Hp-EuReg): Patterns and trends in first-line empirical eradication prescription and outcomes of 5 years and 21 533 patients. Gut 2021, 70, 401–454. [Google Scholar] [CrossRef] [PubMed]
- Nyssen, O.P.; Vaira, D.; Tepes, B.; Kupcinskas, L.; Bordin, D.; Pérez-Aidas, Á.; Gasbarrini, A.; Castro-Fernandez, M.; Bujanda, L.; Garre, A.; et al. Room for improvement in the treatment of Helicobacter pylori infection: Lessons from the European Registry on H. pylori management (Hp-EuReg). J. Clin. Gastroenterol. 2022, 56, e98–e108. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shao, F.; Liu, X.; Xu, W.; Ou, N.; Qin, X.; Liu, F.; Hou, X.; Hu, H.; Jiang, J. Efficacy, safety and pharmacokinetics of ilaprazole infusion in healthy subjects and patients with esomeprazole as positive control. Br. J. Clin. Pharmacol. 2019, 85, 2547–2558. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Zhou, Y.; Xie, Y.; Tian, Y.; Yao, L.; Li, X.; Gao, H.; Bai, F. Comparison of the dual therapy of ilaprazole-amoxicillin and the bismuth quadruple therapy of ilaprazole-amoxicillin-furazolidone-bismuth glycyrrhizinate for eradication of Helicobacter pylori. Front. Pharmacol. 2022, 13, 771876. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Xu, C.; Liu, X.; Wu, H.; Xie, X.; Liu, P.; Li, H.; Zhang, G.; Xu, M.; Li, C.; et al. A comparison of doxycyclin and amoxicillin containing quadruple eradication therapy for treating Helicobacter pylori-infected duodenal ulcers: A multicenter, opened, randomized controlled trial in China. Pathogens 2022, 11, 1549. [Google Scholar] [CrossRef]
- Metz, D.C.; Vakily, M.; Dixit, T.; Mulford, D. Review article: Dual delayed release formulation of dexlansoprazole MR, a novel approach to overcome the limitations of conventional single release proton pump inhibitory therapy. Aliment. Pharmacol. Ther. 2009, 29, 928–937. [Google Scholar] [CrossRef]
- Atumi, T.A.; Graham, D.Y. High-dose extended-release lansoprazole (dexlansoprazole) and amoxicillin dual therapy for Helicobacter pylori infection. Helicobacter 2014, 19, 319–322.9. [Google Scholar] [CrossRef]
- Wu, D.C.; Kuo, C.H.; Tsay, F.W. A pilot randomized controlled study of dexlansoprazole MR-based triple therapy for Helicobacter pylori infection. Medicine 2016, 954, e2696. [Google Scholar] [CrossRef]
- Prapitpaiboon, H.; Machahai, V.; Vilaichone, R.K. High efficacy of levofloxacin-based quadruple therapy as a first line treatment for Helicobacter pylori eradication in Thailand. Asian Pac. J. Cancer Prev. 2015, 16, 4353–4356. [Google Scholar] [CrossRef]
- Kuo, C.-J.; Chen, C.-W.; Le, P.-H.; Hau, J.-T.; Lin, C.-Y.; Cheng, H.-T.; Su, M.-Y.; Lin, C.-J.; Chiu, C.-T. Efficacy of dexlansoprazole-based triple therapy for Helicobacter pylori infections. Therap. Adv. Gastroenterol. 2019, 12, 1756284819870960. [Google Scholar] [CrossRef]
- Tai, W.-C.; Liang, C.H.; Bi, K.-W.; Kuo, C.M.; Lu, L.-S.; Wu, Y.-H.; Yang, S.-C.; Kuo, Y.-H.; Lu, L.-S.; Kuo, Y.-H.; et al. A comparison between dexlansoprazole modified release-based and lansoprazole-based nonbismuth quadruple (concomitant) therapy for first-line Helicobacter pylori eradication: A prospective randomized trial. Infect. Drug Resist. 2019, 12, 2923–2931. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.H.; Armstrong, D.; Yaghobi, M.; James, B.C. The pharmacodynamics and pharmacokinetics of S-tenatoprazole-Na 30 mg, 60 mg and 90 mg vs. esomeprazole 40 mg in healthy male subjects. Aliment. Pharmacol. Ther. 2010, 31, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Rawla, O.; Sunkara, T.; Ofosu, A.; Gadaputi, V. Potassium-competitive acid blockers—Are they the next generation of proton pump inhibitors. World J. Gastrointest. Pharmacol. Ther. 2018, 9, 63–69. [Google Scholar] [CrossRef]
- Oshima, T.; Hiroto, M. Potent potassium-competitive acid blockers: A new era for the treatment of acid-related diseases. J. Neurogastroenterol. Motil. 2018, 24, 334. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, M.; Imamura, L.; Park, J.B.; Kobashi, K. Helicobacter pylori urease inhibition by rabeprazole, a proton pump inhibitor. Biol. Pharm. Bull. 1995, 18, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, M.; Tomita, T.; Yamasaki, T.; Fukui, S.; Taki, M.; Okugawa, T.; Kondo, T.; Kono, T.; Tozawa, K.; Arai, E.; et al. Effect of vonoprazan, a potassium-competitive acid blocker, on the 13C-urea breath test in Helicobacter pylori-positive patients. Dig. Di. Sci. 2017, 62, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.Q.; Singh, T.P.; Wei, X.; Yaop, H.; Wang, H.L. Review: A Japanese population-based meta-analysis of vonoprazan versus PPI for Helicobacter pylori eradication therapy: Is superiority an illusion? Helicobacter 2017, 22, e12438. [Google Scholar] [CrossRef]
- Jung, I.S.; Kim, E.G.; Park, C.H. Systematic review with meta-analysis: The efficacy of vonoprazan triple therapy on Helicobacter pylori eradication. Aliment. Pharmacol. Ther. 2017, 46, 106–114. [Google Scholar] [CrossRef]
- Li, M.; Oshima, T.; Horikawa, T.; Tozawa, K.; Tomita, T.; Fukui, H. Systematic review with meta-analysis: Vonoprazan, a potent acid blocker, is superior to proton pump inhibitors for eradication of clarithromycin-resistant strains of Helicobacter pylori. Helicobacter 2018, 23, e12495. [Google Scholar] [CrossRef]
- Zhang, M.; Pang, M.; Zhang, M. Efficacy and safety of potassium-compatitive acid blockers versus proton pump inhibitors as Helicobacter pylori eradication therapy: A meta-analysis of randomized clinical trials. Clinics 2022, 77, 100058. [Google Scholar] [CrossRef]
- Shinozaki, S.; Kobayashi, Y.; Osawa, H.; Sakamoto, H.; Hayashi, Y.; Lefor, A.K. Effectiveness and safety of vonoprazan versus proton pump inhibitors for second-line Helicobacter pylori eradication therapy: Systematic review and meta-analysis. Digestion 2021, 102, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Chey, W.D.; Mégraud, F.; Laine, L.; López, L.J.; Hunt, B.J.; Howden, C.W. Vonoprazan triple and dual therapy for Helicobacter pylori infection in the United States and Europe: Randomized clinical trial. Gastroenterology 2022, 163, 6018–6619. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Lu, H.; Yamaoka, Y. A report card to grade Helicobacter pylori therapy. Helicobacter 2007, 12, 275–278. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Lee, Y.C.; Kim, J.M.; Kim, J.I.; Moon, J.S.; LI, Y.J.; Baik, G.H.; San, B.S.; Lee, H.L.; Kim, K.Y.; et al. Triple therapy-based on tegoprazan, a new potassium-competitive acid blocker, for first-line treatment of Helicobacter pylori infection: A randomized, double- blind, phase III clinical trial. Gut Liver 2022, 16, 535–546. [Google Scholar] [CrossRef]
- Park, C.H.; Song, M.J.; Jung, B.W.; Park, J.H.; Jung, Y.S. Comparative efficacy of 14- days tegoprazan-based triple vs. 10-days tegoprazan-based concomitant therapy for Helicobacter pylori eradication. J. Pers. Med. 2022, 12, 1918. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Hadzhisky, P.; Gergova, R.; Markovska, R. Evolution of Helicobacter pylori resistance to antibiotics: A topics of increasing concern. Antibiotics 2023, 12, 332. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics are Urgently Needed; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Nyssen, O.P.; Pérez-Aisa, Á.; Tepes, B.; Rodrigo-Sáez, L.; Romero, P.M.; Lucendo, A.; Castro-Fernández, M.; Phull, P.; Barrio, J.; Bujanda, L.; et al. Helicobacter pylori first-line and rescue treatments in patients allergic to penicillin: Experience from the European Registry on H pylori management (Hp-EuReg). Helicobacter 2020, 25, e12686. [Google Scholar] [CrossRef]
- Horii, T.; Kimura, T.; Sato-Kawamura, K.; Nada, T.; Shibayama, K.; Ohta, M. Beta-lactamase inhibitors have antibacterial activities against Helicobacter pylori. J. Infect. Chemother. 1999, 4, 206–207. [Google Scholar] [CrossRef]
- Ojetti, V.; Migneco, A.; Zocco, M.A.; Nista, E.C.; Gasbarrini, G.; Gasbarrini, A. Beta-lactamase inhibitor enhances Helicobacter pylori eradication rate. J. Intern. Med. 2004, 255, 125–1239. [Google Scholar] [CrossRef]
- Song, Z.; Fu, W.; Zhou, L. Cefuroxime, levofloxacin, esomeprazole, and bismuth as first-line therapy for eradicating Helicobacter pylori in patients allergic to penicillin. BMC Gastroenterol. 2019, 19, 132. [Google Scholar] [CrossRef]
- Dinos, G.P. The macrolide antibiotic resistance. Brit. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef] [PubMed]
- Pendland, S.L.; Prause, J.L.; Neuhauser, M.M.; Boyea, N.; Hackleman, J.M.; Danziger, L.H. In vitro activities of a new ketolide, ABT-773, alone and in combination with amoxicillin, metronidazole, or tetracycline against Helicobacter pylori. Antimicrob. Agents Chemother. 2000, 44, 2518–2520. [Google Scholar] [CrossRef] [PubMed]
- Putnam, S.D.; Castanheira, M.; Moet, G.J.; Farrell, D.J.; Jones, R.N. CEM-101, a novel fluoroketolide: Antimicrobial activity against diverse collection of Gram-positive and Gram-negative bacteria. Diagn Microbiol. Infect. Dis. 2010, 66, 393–401. [Google Scholar] [CrossRef]
- Bayerdörffer, F.; Kasper, G.; Pirlet, T.; Sommer, A.; Ottenjann, R. Ofloxacin in the therapy of Campylobacter pylori positive duodenal ulcer. A prospective randomized trial. Dtsch. Med. Wochenschr. 1987, 112, 1407–1411. [Google Scholar] [CrossRef]
- Suzuki, H.; Nishizawa Huraoka, H.; Hibi, T. Sitafloxacin and garenoxacin may overcome the antibiotics resistance of Helicobacter pylori with gyr A mutation. Antimicrob. Agents Chemother. 2009, 53, 1720–1721. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, T.; Munkjargal, M.; Ebinuma, H.; Toyoshima, O.; Suzuki, H. Sitafloxacin for third-line Helicobacter pylori eradication: A systematic reviews. J. Clin. Med. 2021, 10, 2722. [Google Scholar] [CrossRef]
- Nishizawa, T.; Suzuki, H.; Hibi, T. Quinolone-based third-line therapy for Helicobacter pylori. J. Clin. Biochem. Nutr. 2009, 44, 119–124. [Google Scholar] [CrossRef]
- Graham, D.Y.; Abudayyeh, S.; El-Zimaity, H.M.; Hoffman, J.; Reddy, B.A.; Opekun, A.R. Sequential therapy using high-dose esomeprazole-amoxicillin followed by gatifloxacin for Helicobacter pylori infection. Aliment. Pharmacol. Ther. 2006, 24, 845–850. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, N.; Nam, R.H.; Kim, M.G.; Paerk, N.Y.; Lee, S.M.; Kim, J.S.; Lee, D.H.; Jung, H.C. High efficacy of finafloxacin on Helicobacter pylori isolates at pH 5.0 compared with that of other fluoroquinolones. Antimicrob. Agents Chemother. 2015, 59, 7629–7636. [Google Scholar] [CrossRef]
- Boyanova, L.; Markovska, R.; Medeiros, J.; Gergova, G.; Mitov, I. Delafloxacin against Helicobacter pylori, a potential option for improving eradication success? Diagn. Microbiol. Infect. Dis. 2020, 96, 114890. [Google Scholar] [CrossRef]
- Lai, C.-C.; Chen, K.-H.; Chemn, C.H.; Wang, C.-Y. The association between the risk of aortic aneurysm/aortic dissection and the use of fluoroquinolones: A systematic review and meta-analysis. Antibiotics 2021, 10, 697. [Google Scholar] [CrossRef] [PubMed]
- Ziver, T.; Yuksel, P.; Ipek, G.; Yekeler, I.; Bayramoglu, Z.; Tireli, E.; Saribas, A.; Aslan, M.; Yalvac, S.D.; Ozdomanic, I.; et al. Aneurysm and Helicobacter pylori relationship: The seropositivity of CagA, VacA and other antigens of Helicobacter pylori in abdominal and ascending aortic aneurysm. New Microbiol. 2010, 33, 233–242. [Google Scholar] [PubMed]
- Tytgat, G.N.J. Helicobacter pylori—Causal Agent in Peptic Ulcer Disease; Working Party of the World Congress of Gastroenterology: Sydney, Australia; Blackwell Scientific: Melbourne, Australia, 1990; pp. 36–38. [Google Scholar]
- The European Helicobacter Pylori Study Group. Current European concepts in the management of Helicobacter pylori infection, The Maastricht Consensus Report. Gut 1997, 41, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, M.; Yue, L.; Hu, W. Multiple bismuth quadruple therapy containing tetracylines combined with other antibiotics and Helicobacter pylori eradication therapy. J. Clin. Med. 2022, 11, 7040. [Google Scholar] [CrossRef] [PubMed]
- Gunaratne, A.W.; Hamblin, H.; Clancy, A.; Magat, A.J.J.M.; Dawson, V.C.M.; Tu, J.; Borody, T.J. Combinations of antibiotics and vonoprazan for the treatment of Helicobacter pylori infections—Exploratory study. Helicobacter 2021, 16, e12830. [Google Scholar] [CrossRef]
- Niv, Y. Doxycycline in eradication therapy of Helicobacter pylori—A systematic review and meta-analysis. Digestion 2016, 93, 167–173. [Google Scholar] [CrossRef]
- Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: Far beyond an antibiotic. Brit. J. Pharmacol. 2013, 169, 3237–3352. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, Y.; Li, K.; Huang, X.; Niu, C.; Wang, Z.; Zhao, S.; Zhang, Y.; Song, C.; Yie, Y. Doxycycline and minocycline in Helicobacter pylori treatment: A systematic review and meta-analysis. Helicobacter 2021, 26, e12839. [Google Scholar] [CrossRef]
- Burgos-Santamaria, D.; Nyssen, O.P.; Gasbarrini, A.; Vaira, D.; Pérez-Aisa, Á.; Rodrigo, L.; Pellicano, R.; Keco-Huerga, A.; Paón-Carasco, M.; Castro-Fernandez, M.; et al. Empirical rescue treatment of Helicobacter pylori infection in third and subsequent lines: 8 year experience in 2144 patients from the European Registry on H. pylori management (Hp-EuReg). Gut 2022, 72, 1054–1072. [Google Scholar] [CrossRef]
- Rusu, A.; Buta, E.L. The development of third-generation tetracycline antibiotics and new perspectives. Pharmaceutics 2021, 13, 2085. [Google Scholar] [CrossRef]
- Heidrich, C.; Mitova, S.; Schedlbauer, A.; Connell, S.R.; Fucini, P.; Steenbeergen, J.N.; Berens, C. The novel aminomethylcycline omadacycline has high specificity for the primary tetracycline bindigs site on the bacterial ribosome. Antibiotics 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Mégraud, F.; Occhialini, A.; Rossignool, F. Nitazoxanide, a potential drug for eradication of Helicobacter pylori with no cross-resistance to metronidazole. Antimicrob. Agents Chemother. 1998, 42, 2836–2840. [Google Scholar] [CrossRef]
- Iqbal, U.; Khara, H.S.; Akhtar, D.; Hu, Y.; Anwar, H.; Haq, K.F.; Siddiqui, H.U.; Bergenstock, M.K.; Shellenberger, M.J. Safety and efficacy of nitazoxanide-based regimen for the eradication of Helicobacter-pylori infection: A systematic review and meta-analysis. Gastroenterol. Res. 2020, 13, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.-Y.; Qin, C.; Huang, G.-R.; Qin, Y.-C.; Huang, Y.-Y.; Huanb, Y.-Q.; Zhao, L.-J. Linolenic acid-metronidazole: A compound relieving drug resistance and inhibiting Helicobacter pylori. Antimicrob. Agents Chemother. 2022, 56, e00073-22. [Google Scholar] [CrossRef]
- Ma, Z.; He, S.; Yuang, Y.; Zhuang, Z.; Liu, Y.; Wang, H.; Chen, J.; Xu, Y.; Ding, C.; Molodstov, V.; et al. Design, synthesis and characterization of TNP-21098, a dual targeted rifamycin-nitroimidazole conjugate with potent activity against microaerophilic and anaerobic bacterial pathogens. J. Med. Chem. 2022, 65, 4481–4495. [Google Scholar] [CrossRef]
- Glupczynski, Y.M.; Delmee, C.; Brück, M.; Labbé, V.; Avesami, V.; Burette, A. Susceptibility of clinical isolates of Campylobacter pylori to 24 antimicrobial and anti-ulcer agents. Eur. J. Epidemiol. 1988, 4, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.T.; Wang, Z.Y.; Chu, Y.X.; Li, N.; Li, Q.F.; Liu, S.R.; Mu, Z.M. Double-blind short-term trial of furazolidone in peptic ulcer. Lancet 1985, 1, 1048–1049. [Google Scholar]
- Buzás, G.M.; Józan, J. Nitrofuran-based regimens for the eradication of Helicobacter pylori infection. J. Gastroenterol. Hepatol. 2007, 22, 1571–1581. [Google Scholar] [CrossRef]
- Zullo, A.; Ierardi, E.; Hassan, C.; De Francesco, V. Furazolidone-based therapies for Helicobacter pylori infection: A pooled-data analysis. Saud. J. Gastroenterol. 2012, 18, 11–17. [Google Scholar]
- Zhuge, L.; Wang, Y.; Wu, S.; Zhao, R.-L.; Li, Z.; Xie, Y. Furazolidone treatment for Helicobacter pylori infection: A systematic review and meta-analysis. Helicobacter 2018, 23, e12468. [Google Scholar] [CrossRef]
- Ji, C.R.; Liu, J.; Li, Y.Y.; Guo, C.G.; Qu, J.Y.; Zhang, Y.; Zuo, X. Safety of furazolidon-containing regimen in Helicobacter pylori infection: A systematic review and meta-analysis. BMJ Open 2020, 10, e03735. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.H. Pharmacological, therapeutic and toxicological properties of furazolidone. Some recent research. Vet. Res. Commun. 1999, 23, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Attaran, B.; Malekzadeh, R.; Graham, D.Y. Furazolidone, an underutilized drug for H. pylori eradication: Lessons from Iran. Dig. Dis. Sci. 2017, 62, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Safeed, M.A.; Hoffman, J. El-Zimaity HMT, Kwon DH, Osato MS. Nitrofurantoin quadruple therapy for Helicobacter pylori infection: Effect of metronidazole resistance. Aliment Pharmacol. Ther. 2001, 15, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Buzás, G.M.; Győrffy, H.; Széles, I.; Szentmihályi, A.S. Second-line and third-line trial for Helicobacter pylori infection in patients with duodenal ulcers: A prospective, crossover, controlled study. Curr. Ther. Res. 2004, 65, 12–26. [Google Scholar] [CrossRef]
- Doorakkers, E.; Lagergren, J.; Gajulapuri, V.K.; Callens, S.; Engstrand, L.; Brusselaers, N. Helicobacter pylori eradication in the Swedish population. Scand. J. Gastroenterol. 2017, 52, 678–685. [Google Scholar] [CrossRef]
- Puşcaş, I. Treatment of gastroduodenal ulcers with carbonic anhydrase inhibitors. Ann. N. Y. Acad. Sci. 1984, 429, 587–591. [Google Scholar] [CrossRef]
- Puşcaş, I.; Buzás, G. Treatment of duodenal ulcers with ethoxzolamide, an inhibitor of gastric carbonic anhydrase. Int. J. Clin. Pharmacol. Ther. Toxicol. 1986, 24, 97–99. [Google Scholar]
- Buzás, G.M.; Supuran, C.T. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memorian Ioan Puşcaş (1932–2015). J. Enzym. Inhib. Med. Chem. 2016, 31, 527–533. [Google Scholar] [CrossRef]
- Rahman, M.M.; Tikhomirova, A.; Kodak, J.K.; Hutton, M.L.; Supuran, C.T.; Roujeinijkova, A. Antibacterial activity of ethoxzolamide against Helicobacter pylori strains SS and 26695. Gut Pathog. 2020, 12, 20. [Google Scholar] [CrossRef]
- Modak, J.K.; Tikhomirova, A.; Gorrell, R.J.; Rahman, M.M.; Kotsanas, D.; Korman, T.M.; Garcia-Bustos, J.; Kwok, T.; Ferrero, R.L.; Supuran, C.T.; et al. Anti-Helicobacter pylori activity of ethoxzolamide. J. Enzym Inhib. Med. Chem. 2019, 34, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Campestre, C.; De Luca, V.; Carradori, S.; Grande, R.; Carginale, V.; Scaloni, A.; Supuran, C.T.; Capasso, C. Carbonic anhydrases: New perspectives on protein functional role and inhibition in Helicobacter pylori. Front. Microbiol. 2021, 12, 629163. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T.; Capasso, C. Antibacterial carbonic anhydrase inhibitors: An update on the recent literature. Expert Opin. Ther. Pat. 2020, 30, 963–982. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, J.; Zhang, L.; Wang, L.; Wang, J.; Qi, Y.; Lv, H.; Liu, J.; Huo, L.; Wei, X.; et al. The efficacy and safety of different bismuth agents in Helicobacter pylori first-line eradication. A multicenter, randomized, controlled clinical trial. Medicine 2021, 100, 50. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Bazzolli, F.; Delchier, J.C.; Celiñski, K.; Giguère, M.; Rivière, M.; Mégraud, F. Pylera Study Group: Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole and tetracycline given with omeprazole versus clarithromycin-based triple therapy: A randomised, open-label, non-inferiority phase 3 trial. Lancet 2011, 377, 905–913. [Google Scholar]
- Nyssen, O.P.; McNicholl, A.G.; Gisbert, J.P. Meta-analysis of three-in-one single capsule bismuth-containing quadruple therapy for the eradication of Helicobacter pylori. Helicobacter 2019, 24, e12570. [Google Scholar] [CrossRef]
- Venerito, M.; Krieger, T.; Ecker, T.; Leandro, M.; Malfertheiner, P. Meta-analysis of bismuth quadruple therapy versus clarithromycin triple therapy for empiric primary treatment of Helicobacter pylori infection. Digestion 2013, 88, 33–45. [Google Scholar] [CrossRef]
- Birinyi, P. The optimum location of bismuth in the treatment of Helicobacter pylori infection. Central Eur. J. Gastroent. Hepatol. 2016, 5, 27–29. [Google Scholar]
- Birinyi, P.; Szamosi, T.; Juhász, M.; Buzás, G.M.; Hagymási, K.; Fricz, P.; Gelley, A.; Vizer, G.; Altorjay, I.; Ratiu, P. The efficacy of bismuth-based quadruple therapy in the second-line treatment of Helicobacter pylori infection. Central Eur. J. Gastroenterol. Hepatol. 2018, 4, 144–148. [Google Scholar]
- Dore, M.P.; Saba, F.; Zanni, L.; Rocca, A.; Piroddu, J.; Gutierrez, G.; Pes, G.M. A simplified low-dose 10 day quadruple therapy with galenic formulation of bismuth salicylate is highly effective for Helicobacter pylori eradication. J. Clin. Med. 2023, 12, 681. [Google Scholar] [CrossRef]
- El-Zahaby, S.A.; Kassem, A.A.; El-Kamel, A.H. Design and evaluation of gastroretentive levofloxacin floating mini-tablets-in-capsule system for eradication of Helicobacter pylori. Saud. Pharmaceutical. J. 2014, 22, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Huang, Q.; Lin, M.; Chu, Y.; Shi, Z.; Zhang, X.; Ye, H. Revealing the novel effect of Jinghua Weikang capsule against the antibiotics resistance of Helicobacter pylori. Front. Microbiol. 2022, 13, 962354. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ren, B.; Tan, H.; Liu, S.; Wang, W.; Pang, Y.; Lin, J.; Zeng, C. Capsule designs for blue light therapy against Helicobacter pylori. PLoS ONE 2016, 11, e0147531. [Google Scholar] [CrossRef]
- Kau, B.; Kaur, G. Amelioration of Helicobacter pylori-induced PUD by probiotic lactic acid bacteria. In Probiotics, Prebiotics and Synbiotics; Watson, R.R., Preedy, V.R., Eds.; Academic Press-Elsevier: Amsterdam, The Neatherlands, 2016; pp. 865–895. [Google Scholar]
- Losurdo, G.; Cubvisino, R.; Varone, M.; Principi, M.; Leandro, G.; Ierardi, E.; Di Leo, A. Probiotics monotherapy and Helicobacter pylori eradication: A systematic review with pooled-data analysis. World J. Gastroentrerol. 2018, 24, 139–149. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Mopher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised and non-randomised studies of healthcare interventions or both. BMJ 2017, 358, J4008. [Google Scholar] [CrossRef] [PubMed]
- Buzás, G.M.; Józan, J. Quality assessment of meta-analyses: Probiotics and eradication of Helicobacter pylori infection. Helicobacter 2020, 30 (Suppl. S1), 6. [Google Scholar]
- Shi, X.; Zhang, J.; Mo, L.; Shi, J.; Qin, M.; Huang, X. Efficacy and safety of probiotics in eradicating Helicobacter pylori. A network meta-analysis. Medicine 2019, 98, e15180. [Google Scholar] [CrossRef] [PubMed]
- Viazis, N.; Argyriou, K.; Kotzampassi, K.; Christodoulu, D.K.; Apostolopoulos, P.; Georgopoulos, S.D.; Liatsos, C.X.; Giouleme, O.; Koustenis, K.; Veretanos, C.; et al. A four- probiotics regimen combined with standard Helicobacter pylori-eradication treatment reduces side effects and increases eradication rates. Nutrients 2022, 14, 6532. [Google Scholar] [CrossRef]
- Liang, B.; Yuan, Y.; Peng, X.-J.; Liu, X.-L.; Hu, X.-K.; Xing, D.-M. Current and future perspectives for Helicobacter pylori treatment and management: From antibiotics to probiotics. Front. Cell. Infect. Microbiol. 2022, 12, 1042070. [Google Scholar] [CrossRef]
- Ding, S.-Z.; Du, Y.-Q.; Lu, H.; Wang, W.-H.; Cheng, H.; Chen, S.-Y.; Chen, M.-H.; Chen, W.-C.; Chen, Y.; Fang, J.-Y.; et al. Chinese consensus report on family-based Helicobacter pylori infection control and maganement (2021 edition). Gut 2022, 71, 238–253. [Google Scholar] [CrossRef]
- Song, Z.; Chen, Y.; Lu, H.; Zeng, Z.; Wang, W.; Liu, X.; Zhang, G.; Du, Q.; Xia, X.; Li, C.; et al. Diagnosis and treatment of Helicobacter pylori infection by physicians in China: A nationwide cross-sectional study. Helicobacter 2022, 27, e12889. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-K.; Kang, S.J.; Lee, Y.C.; Yang, H.-N.; Park, S.-Y.; Shin, C.M.; Kim, S.E.; Lim, H.C.; Kim, J.-H.; Nam, S.U.; et al. Evidence-based guidelines for the treatment of Helicobacter pylori infection in Korea 2020. Gut Liver 2021, 15, 168–195. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Ota, H.; Okuda, M.; Kikuchi, S.; Satoh, K.; Shimomaya, T.; Suzuki, H.; Handa, O.; Furata, T.; Mabe, K.; et al. Guidelines for the management of Helicobacter pylori infection in Japan. 2016 revised edition. Helicobacter 2019, 24, e12597. [Google Scholar] [CrossRef]
- Cho, J.-H.; Jin, S.-Y. Current guidelines for Helicobacter pylori treatment in East Asia 2022: Differences among China, Japan and South Korea. World J. Clin. Cases 2022, 101, 6349–6359. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Ahuja, V.; Ghoshal, U.C.; Makharias, D.; Dutta, U.; Zargar, S.A.; Venkataranman, J.; Dutta, A.K.; Mukhopadhyay, A.K.; Singh, A.; et al. Management of Helicobacter pylori infection: The Bhubaneswar Consensus Reeport of the Indian Society of Gastroenterology. Indian J. Gastroenterol. 2021, 40, 4201–4444. [Google Scholar] [CrossRef]
- Coelho, L.G.V.; Marinho, J.R.; Genta, R.; Ribeiro, L.T.; Passos, M.C.F.; Zaterka, S.; Assumpcao, P.P.; Barbosa, A.J.; Barbuti, R.; Brfaga, L.L.; et al. IVth Brazilian consensus conference on Helicobacter pylori infection. Arq. Gastroenterol. 2018, 55, 97–123. [Google Scholar] [CrossRef]
- Valladeles-Restrepo, L.F.; Correa-Sánchez, Y.; Aristizábal-Carmona, B.S.; Machado-Alba, J.E. Treatment regimens used in the management of Helicobacter pylori in Colombia. Braz. J. Infect. Dis. 2022, 26, 102331. [Google Scholar] [CrossRef]
Pharmacologic Feature | PPI | P-CAB x |
---|---|---|
Chemical structure | Substituted benzimidazoles | Revaprazan Vonoprazan Tegoprazan |
Steady state after oral dosing | 3–5 days | 1 day |
Plasma half-life | 2 h | 8–17 h |
CYP2C19 polymorphism | Differential influence | No influence |
Proton pump activation | Necessary | Not necessary |
24 h intragastric pH > 4 | 46–58% | 82.9–85.9% |
Acid suppression at night % (pH > 4 HTR) | 12.9 ± 10.9 (ESO), 15.3–13.3 (R) | 67.9 ± 28.3. |
Effect on H. pylori | Urease inhibition | Urease inhibition |
Effect on urea breath test | Reduction of DOB‰, may result in a false negative test | Reduction of DOB‰, may result in a false negative test |
Influence of meal | Reduced effect after meal | No influence |
Short-term side effects | Headache, rush, dizziness, constipation, diarrhoea, flatulence, abdominal pain | Diarrhoea, constipation, eczema, upper respiratory tract inflammation in <5% of cases |
Long-term side effects xx | Fundic polyps, B12 vitamin and micronutrient deficiency, liver disease, hypomagnesemia, kidney disease | Under investigation |
Ref. No. | Year | Country | No. of Studies | No. of Patients | Regimens Used | Eradication Rates (ITT/PP), PPI-Based Regimens | Eradication Rates (ITT/PP), P-CAB-Based Regimens | Difference in Eradication Rates (ITT/PP) |
---|---|---|---|---|---|---|---|---|
[27] | 2017 | China | 14 | 14,636 | 7 days of PPI- or VPZ-based triple regimens | 68.0/74.2% | 85.1/89.0% | +17.1/14.8% |
[28] | 2017 | South Korea | 10 | 10,644 | PPI- or VPZ-based triple regimens | 73.3/76.3% | 88.1%/89.2% | +14.8/12.9% |
[29] | 2018 | Japan | 5 | 1599 | PPI- or VPZ -based 7-day triple therapy in C-sens and C-res cases | C-sens: 92.8% C-res: 41.8% | C-sens: 95.8% C-res: 60.8% | C-sens: +3% C-res: +19% |
[30] | 2022 | China | 7 | 1168 | PPI- or VPZ-based triple therapy | 75.5/77.8% | 90.2/93.0% | +14.6/14.2% |
Ref. No. | Year | Guideline/Consensus | Recommendation | Evidence Level/Agreement | Grade |
---|---|---|---|---|---|
[4] | 2016 | Toronto | Not recommended | Low | C |
[5] | 2017 | American College of Gastroenterology | Although probiotics are useful, the timing and optimal dosing (before/during/after treatment) are not decided | Not given | Not given |
[6] | 2016 | Maastricht V/Florence | Certain probiotics may have beneficial effect on H. pylori eradication | Very low | Weak |
[7] | 2019 | Reconciliation guideline | Despite current uncertainties, probiotics may still offer significant potential, and their influence on H. pylori eradication is worthy of further study | Not given | Not given |
[8] | 2022 | Maastricht VI/Florence | Certain probiotics may have beneficial effects on H. pylori eradication therapy through reduction of antibiotic side effects | 80% | B2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzás, G.M.; Birinyi, P. Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review. Antibiotics 2023, 12, 946. https://doi.org/10.3390/antibiotics12060946
Buzás GM, Birinyi P. Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review. Antibiotics. 2023; 12(6):946. https://doi.org/10.3390/antibiotics12060946
Chicago/Turabian StyleBuzás, György Miklós, and Péter Birinyi. 2023. "Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review" Antibiotics 12, no. 6: 946. https://doi.org/10.3390/antibiotics12060946
APA StyleBuzás, G. M., & Birinyi, P. (2023). Newer, Older, and Alternative Agents for the Eradication of Helicobacter pylori Infection: A Narrative Review. Antibiotics, 12(6), 946. https://doi.org/10.3390/antibiotics12060946