Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48
Abstract
:1. Introduction
2. Results
2.1. General Susceptibility Pattern
2.2. Analysis of Colistin Heteroresistance in K. Pneumoniae Producing OXA-48
2.3. Genetic Analysis of Genes Involved in Colistin Resistance
3. Discussion
4. Materials and Methods
4.1. General Susceptibility Pattern
4.2. Antimicrobial Susceptibility Testing
4.3. Determination of Heteroresistance to Colistin
4.4. Extraction of Genomic DNA for Whole Genome Sequencing
4.5. Sequencing and Bioinformatic Analysis
4.6. Molecular Characterization of mgrB
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.-R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [Green Version]
- Cannatelli, A.; Giani, T.; D’Andrea, M.M.; Di Pilato, V.; Arena, F.; Conte, V.; Tryfinopoulou, K.; Vatopoulos, A.; Rossolini, G.M.; COLGRIT Study Group. MgrB Inactivation Is a Common Mechanism of Colistin Resistance in KPC-Producing Klebsiella pneumoniae of Clinical Origin. Antimicrob. Agents Chemother. 2014, 58, 5696–5703. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; Warner, M.; Mushtaq, S.; Doumith, M.; Zhang, J.; Woodford, N. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 2011, 37, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Potter, R.F.; D’souza, A.W.; Dantas, G. The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist. Updat. 2016, 29, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.B.; Velkov, T.; Nation, R.L.; Forrest, A.; Tsuji, B.T.; Bergen, P.J.; Li, J. Pharmacokinetics/pharmacodynamics of colistin and polymyxin B: Are we there yet? Int. J. Antimicrob. Agents 2016, 48, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Peghin, M. How to manage KPC infections. Ther. Adv. Infect. Dis. 2020, 7, 2049936120912049. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Aguilar, A.C.; Caicedo, A. Carbapenem-Resistant Klebsiella pneumoniae: Microbiology Key Points for Clinical Practice. Int. J. Gen. Med. 2019, 12, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.S.; Kim, S.Y.; Wi, Y.M.; Peck, K.R.; Ko, K.S. Colistin Heteroresistance in Klebsiella Pneumoniae Isolates and Diverse Mutations of PmrAB and PhoPQ in Resistant Subpopulations. J. Clin. Med. 2019, 8, 1444. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed Ahmed, M.A.E.G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and its role in the Era of antibiotic resistance: An extended review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, S.J.; Huang, R.; Squire, C.J.; Leung, I.K. MCR-1: A promising target for structure-based design of inhibitors to tackle polymyxin resistance. Drug Discov. Today 2018, 24, 206–216. [Google Scholar] [CrossRef]
- Hinchliffe, P.; Yang, Q.E.; Portal, E.; Young, T.; Li, H.; Tooke, C.L.; Carvalho, M.J.; Paterson, N.G.; Brem, J.; Niumsup, P.R.; et al. Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1. Sci. Rep. 2017, 7, 39392. [Google Scholar] [CrossRef] [Green Version]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Rafailidis, P.I.; Matthaiou, D.K. Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resist. Updat. 2010, 13, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Çağlan, E.; Nigiz, S.; Sancak, B.; Gür, D. Resistance and heteroresistance to colistin among clinical isolates of Acinetobacter baumannii. Acta Microbiol. Immunol. Hung. 2020, 67, 107–111. [Google Scholar] [CrossRef]
- Hamel, M.; Rolain, J.-M.; Baron, S.A. The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 2021, 9, 442. [Google Scholar] [CrossRef]
- Pitt, M.E.; Elliott, A.G.; Cao, M.D.; Ganesamoorthy, D.; Karaiskos, I.; Giamarellou, H.; Abboud, C.S.; Blaskovich, M.A.T.; Cooper, M.A.; Coin, L.J.M. Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant Klebsiella pneumoniae. Microb. Genom. 2018, 4, e000158. [Google Scholar] [CrossRef]
- Andersson, D.I.; Nicoloff, H.; Hjort, K. Mechanisms and clinical relevance of bacterial heteroresistance. Nat. Rev. Genet. 2019, 17, 479–496. [Google Scholar] [CrossRef]
- Gefen, O.; Balaban, N. The importance of being persistent: Heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol. Rev. 2009, 33, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Genet. 2019, 17, 441–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, S.; Jiang, S.; Wei, X.; Sun, L.; Wang, H.; Zhao, F.; Chen, Y.; Yu, Y. In-Host Evolution of Daptomycin Resistance and Heteroresistance in Methicillin-Resistant Staphylococcus aureus Strains from Three Endocarditis Patients. J. Infect. Dis. 2020, 221 (Suppl. S2), S243–S252. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, X.; Zeng, W.; Chen, T.; Liao, W.; Qian, J.; Lin, J.; Zhou, C.; Tian, X.; Cao, J.; et al. Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Hammerschlag, M.R. Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Children: A Reappraisal of Vancomycin. Curr. Infect. Dis. Rep. 2019, 21, 37. [Google Scholar] [CrossRef]
- Bauer, D.; Wieland, K.; Qiu, L.; Neumann-Cip, A.-C.; Magistro, G.; Stief, C.G.; Wieser, A.; Haisch, C. Heteroresistant Bacteria Detected by an Extended Raman-Based Antibiotic Susceptibility Test. Anal. Chem. 2020, 92, 8722–8731. [Google Scholar] [CrossRef]
- Halaby, T.; Kucukkose, E.; Janssen, A.B.; Rogers, M.R.C.; Doorduijn, D.J.; van der Zanden, A.G.M.; al Naiemi, N.; Vandenbroucke-Grauls, C.M.J.E.; van Schaik, W. Genomic Characterization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. Antimicrob. Agents Chemother. 2016, 60, 6837–6843. [Google Scholar] [CrossRef] [Green Version]
- Band, V.I.; Satola, S.W.; Burd, E.M.; Farley, M.M.; Jacob, J.T.; Weiss, D.S. Carbapenem-Resistant Klebsiella pneumoniae Exhibiting Clinically Undetected Colistin Heteroresistance Leads to Treatment Failure in a Murine Model of Infection. mBio 2018, 9, e02448-17. [Google Scholar] [CrossRef] [Green Version]
- Macesic, N.; Nelson, B.; Mcconville, T.H.; Giddins, M.J.; A Green, D.; Stump, S.; Gomez-Simmonds, A.; Annavajhala, M.K.; Uhlemann, A.-C. Emergence of Polymyxin Resistance in Clinical Klebsiella pneumoniae Through Diverse Genetic Adaptations: A Genomic, Retrospective Cohort Study. Clin. Infect. Dis. 2020, 70, 2084–2091. [Google Scholar] [CrossRef]
- Morales-León, F.; Lima, C.A.; González-Rocha, G.; Opazo-Capurro, A.; Bello-Toledo, H. Colistin Heteroresistance among Extended Spectrum β-lactamases-Producing Klebsiella pneumoniae. Microorganisms 2020, 8, 1279. [Google Scholar] [CrossRef]
- Bardet, L.; Baron, S.; Leangapichart, T.; Okdah, L.; Diene, S.M.; Rolain, J.-M. Deciphering Heteroresistance to Colistin in a Klebsiella pneumoniae Isolate from Marseille, France. Antimicrob. Agents Chemother. 2017, 61, e00356-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ah, Y.-M.; Kim, A.-J.; Lee, J.-Y. Colistin resistance in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2014, 44, 8–15. [Google Scholar] [CrossRef]
- Wozniak, J.E.; Band, V.I.; Conley, A.B.; Rishishwar, L.; Burd, E.M.; Satola, S.W.; Hardy, D.J.; Tsay, R.; Farley, M.M.; Jacob, J.T.; et al. A Nationwide Screen of Carbapenem-Resistant Klebsiella pneumoniae Reveals an Isolate with Enhanced Virulence and Clinically Undetected Colistin Heteroresistance. Antimicrob. Agents Chemother. 2019, 63, e00107-19. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, L.M.N.; Vargas, K.Q.; Diaz, G. Whole Genome Sequencing for the Analysis of Drug Resistant Strains of Mycobacterium tuberculosis: A Systematic Review for Bedaquiline and Delamanid. Antibiotics 2020, 9, 133. [Google Scholar] [CrossRef] [Green Version]
- Band, V.I.; Hufnagel, D.A.; Jaggavarapu, S.; Sherman, E.X.; Wozniak, J.E.; Satola, S.W.; Farley, M.M.; Jacob, J.T.; Burd, E.M.; Weiss, D.S. Antibiotic combinations that exploit heteroresistance to multiple drugs effectively control infection. Nat. Microbiol. 2019, 4, 1627–1635. [Google Scholar] [CrossRef]
- Sınırtaş, M.; Akalın, H.; Gedikoğlu, S. Investigation of colistin sensitivity via three different methods in Acinetobacter baumannii isolates with multiple antibiotic resistance. Int. J. Infect. Dis. 2009, 13, e217–e220. [Google Scholar] [CrossRef] [Green Version]
- Lo-Ten-Foe, J.R.; de Smet, A.M.G.A.; Diederen, B.M.W.; Kluytmans, J.A.J.W.; van Keulen, P.H.J. Comparative Evaluation of the VITEK 2, Disk Diffusion, Etest, Broth Microdilution, and Agar Dilution Susceptibility Testing Methods for Colistin in Clinical Isolates, Including Heteroresistant Enterobacter cloacae and Acinetobacter baumannii Strains. Antimicrob. Agents Chemother. 2007, 51, 3726–3730. [Google Scholar] [CrossRef] [Green Version]
- Prasetyoputri, A.; Jarrad, A.M.; Cooper, M.A.; Blaskovich, M.A. The Eagle Effect and Antibiotic-Induced Persistence: Two Sides of the Same Coin? Trends Microbiol. 2019, 27, 339–354. [Google Scholar] [CrossRef]
- Nishino, T.; Nakazawa, S. Bacteriological Study on Effects of Beta-Lactam Group Antibiotics in High Concentrations. Antimicrob. Agents Chemother. 1976, 9, 1033–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Halfawy, O.M.; Valvano, M.A. Antimicrobial Heteroresistance: An Emerging Field in Need of Clarity. Clin. Microbiol. Rev. 2015, 28, 191–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poudyal, A.; Howden, B.; Bell, J.M.; Gao, W.; Owen, R.J.; Turnidge, J.D.; Nation, R.L.; Li, J. In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. J. Antimicrob. Chemother. 2008, 62, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Hjort, K.; Nicoloff, H.; I Andersson, D. Unstable tandem gene amplification generates heteroresistance (variation in resistance within a population) to colistin in Salmonella enterica. Mol. Microbiol. 2016, 102, 274–289. [Google Scholar] [CrossRef] [PubMed]
- Hermes, D.M.; Pitt, C.P.; Lutz, L.; Teixeira, A.B.; Ribeiro, V.B.; Netto, B.; Martins, A.F.; Zavascki, A.P.; Barth, A.L. Evaluation of heteroresistance to polymyxin B among carbapenem-susceptible and -resistant Pseudomonas aeruginosa. J. Med. Microbiol. 2013, 62, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Olaitan, A.O.; Diene, S.M.; Kempf, M.; Berrazeg, M.; Bakour, S.; Gupta, S.K.; Thongmalayvong, B.; Akkhavong, K.; Somphavong, S.; Paboriboune, P.; et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: An epidemiological and molecular study. Int. J. Antimicrob. Agents 2014, 44, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Berglund, B.; Hoang, N.T.B.; Tärnberg, M.; Le, N.K.; Svartström, O.; Khu, D.T.K.; Nilsson, M.; Le, H.T.; Welander, J.; Olson, L.; et al. Insertion sequence transpositions and point mutations in mgrB causing colistin resistance in a clinical strain of carbapenem-resistant Klebsiella pneumoniae from Vietnam. Int. J. Antimicrob. Agents 2018, 51, 789–793. [Google Scholar] [CrossRef]
- Kong, Y.; Li, C.; Chen, H.; Zheng, W.; Sun, Q.; Xie, X.; Zhang, J.; Ruan, Z. In vivo Emergence of Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae Mediated by Premature Termination of the mgrB Gene Regulator. Front. Microbiol. 2021, 12, 656610. [Google Scholar] [CrossRef]
- Haeili, M.; Javani, A.; Moradi, J.; Jafari, Z.; Feizabadi, M.M.; Babaei, E. MgrB Alterations Mediate Colistin Resistance in Klebsiella pneumoniae Isolates from Iran. Front. Microbiol. 2017, 8, 2470. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Jayol, A.; Bontron, S.; Villegas, M.-V.; Ozdamar, M.; Türkoglu, S.; Nordmann, P. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2015, 70, 75–80. [Google Scholar] [CrossRef]
- Shamina, O.; Kryzhanovskaya, O.; Lazareva, A.; Alyabieva, N.; Polikarpova, S.; Karaseva, O.; Mayanskiy, N. Emergence of a ST307 clone carrying a novel insertion element MITEKpn1 in the mgrB gene among carbapenem-resistant Klebsiella pneumoniae from Moscow, Russia. Int. J. Antimicrob. Agents 2020, 55, 105850. [Google Scholar] [CrossRef]
- Kumar, A.; Biswas, L.; Omgy, N.; Mohan, K.; Vinod, V.; Sajeev, A.; Nair, P.; Singh, S.; Biswas, R. Colistin resistance due to insertional inactivation of the mgrB in Klebsiella pneumoniae of clinical origin: First report from India. Rev. Española De Quimioter. 2018, 31, 406–410. [Google Scholar]
- Fordham, S.M.E.; Mantzouratou, A.; Sheridan, E. Prevalence of insertion sequence elements in plasmids relating to mgrB gene disruption causing colistin resistance in Klebsiella pneumoniae. Microbiologyopen 2022, 11, e1262. [Google Scholar] [CrossRef] [PubMed]
- Hamel, M.; Chatzipanagiotou, S.; Hadjadj, L.; Petinaki, E.; Papagianni, S.; Charalampaki, N.; Tsiplakou, S.; Papaioannou, V.; Skarmoutsou, N.; Spiliopoulou, I.; et al. Inactivation of mgrB gene regulator and resistance to colistin is becoming endemic in carbapenem-resistant Klebsiella pneumoniae in Greece: A nationwide study from 2014 to 2017. Int. J. Antimicrob. Agents 2020, 55, 105930. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.S.; Suzuki, Y.; Jones, M.B.; Marshall, S.H.; Rudin, S.D.; van Duin, D.; Kaye, K.; Jacobs, M.R.; Bonomo, R.A.; Adams, M.D. Genomic and Transcriptomic Analyses of Colistin-Resistant Clinical Isolates of Klebsiella pneumoniae Reveal Multiple Pathways of Resistance. Antimicrob. Agents Chemother. 2014, 59, 536–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, C.; Mathur, P.; Venkatesan, M.; Pragasam, A.K.; Anandan, S.; Khurana, S.; Veeraraghavan, B. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: Multiple and varied mobile genetic elements. BMC Microbiol. 2019, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-Y.; Wang, S.-F.; Lin, J.-E.; Griffith, B.T.S.; Lian, S.-H.; Hong, Z.-D.; Lin, L.; Lu, P.-L.; Tseng, S.-P. Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2020, 55, 105894. [Google Scholar] [CrossRef]
- Jayol, A.; Nordmann, P.; Brink, A.; Poirel, L. Heteroresistance to Colistin in Klebsiella pneumoniae Associated with Alterations in the PhoPQ Regulatory System. Antimicrob. Agents Chemother. 2015, 59, 2780–2784. [Google Scholar] [CrossRef] [Green Version]
- Binsker, U.; Käsbohrer, A.; A Hammerl, J. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol. Rev. 2022, 46, fuab049. [Google Scholar] [CrossRef]
- Bir, R.; Gautam, H.; Arif, N.; Chakravarti, P.; Verma, J.; Banerjee, S.; Tyagi, S.; Mohapatra, S.; Sood, S.; Dhawan, B.; et al. Analysis of colistin resistance in carbapenem-resistant Enterobacterales and XDR Klebsiella pneumoniae. Ther. Adv. Infect. Dis. 2022, 9, 20499361221080650. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Y.; Zhu, Y.; Jia, P.; Li, X.; Jia, X.; Yu, W.; Cui, Y.; Yang, R.; Xia, W.; et al. Emergence of colistin-resistant hypervirulent Klebsiella pneumoniae (CoR-HvKp) in China. Emerg. Microbes Infect. 2022, 11, 648–661. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lin, T.-L.; Lin, Y.-T.; Wang, J.-T. Amino Acid Substitutions of CrrB Responsible for Resistance to Colistin through CrrC in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2016, 60, 3709–3716. [Google Scholar] [CrossRef] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute. Recommendations for MIC Determination of Colistin (Polymyxin E) as Recommended by the Joint CLSI-EUCAST Polymyxin Breakpoints Working Group; EUCAST: Växjö, Sweden, 2016. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 12.0; EUCAST: Växjö, Sweden, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guide-line-Tenth Edition: Document M26-A; CLSI: Wayne, PA, USA, 1999. [Google Scholar]
- Charretier, Y.; Diene, S.M.; Baud, D.; Chatellier, S.; Santiago-Allexant, E.; van Belkum, A.; Guigon, G.; Schrenzel, J. Colistin Heteroresistance and Involvement of the PmrAB Regulatory System in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2018, 62, e00788-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontéen, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Feil, E.J.; Li, B.C.; Aanensen, D.M.; Hanage, W.P.; Spratt, B.G. eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data. J. Bacteriol. 2004, 186, 1518–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, V.F.D.; Barbosa, M.S.; Leal, H.F.; Silva, G.E.O.; Sales, N.M.M.D.; Monteiro, A.D.S.S.; Azevedo, J.; Malheiros, A.R.X.; Ataide, L.A.; Moreira, B.M.; et al. Prolonged Outbreak of Carbapenem and Colistin-Resistant Klebsiella pneumoniae at a Large Tertiary Hospital in Brazil. Front. Microbiol. 2022, 13, 831770. [Google Scholar] [CrossRef] [PubMed]
Isolate | ST a | MIC (BMD) | MCB | MIC (Gradient Strips) | |||
---|---|---|---|---|---|---|---|
105 CFU/mL | 107 CFU/mL | 105 CFU/mL | 107 CFU/mL | 108 CFU/mL | 1010 CFU/mL | ||
HURS-0269 | 323 | 0.125 | 4 | 0.125 * | 4 * | 0.094 | 1 |
HURS-0272 | 405 | 0.25 | 8 | 2 | 16 | 0.064 | 0.125 |
HURS-0285 | 147 | 0.25 | 1 | 0.25 | 2 * | 0.064 | 0.5 |
HURS-0286 | 45 | 0.5 | 64 | 0.5 | 64 | 0.094 | 0.125 |
HURS-0288 | 11 | 0.06 | 32 | 0.06 | 32 | 0.094 | 1 |
HURS-0337 | 11 | 1 | 32 | 1 | 32 | 0.38 | 1 |
HURS-0958 | 15 | 0.125 | 4 | 0.125 * | 4 * | 0.064 | 0.125 |
HURS-181073 | 15 | 0.5 | 16 | 4 | 16 * | 0.094 | 0.25 |
HURS-183019 | 153 | 0.5 | 64 | 0.5 * | 128 | 0.094 | 0.25 |
HURS-0269 | HURS-0272 | HURS-0285 | HURS-0286 | HURS-0288 | HURS-0337 | HURS-0958 | HURS-181073 | HURS-183019 | ||
---|---|---|---|---|---|---|---|---|---|---|
MIC (mg/L) | 0.125 | 0.25 | 0.25 | 0.5 | 0.06 | 1 | 0.125 | 0.5 | 0.5 | |
Colistin concentrations | Colony | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) | MIC (mg/L) |
4×MIC | 1 | >128 | 4 | 16 | 16 | 32 | 32 | 2 | 32 | >128 |
2 | >128 | 16 | 32 | 0.5 | 16 | 64 | 0.25 | 32 | 64 | |
3 | 16 | 8 | 32 | 2 | 16 | 64 | 8 | 32 | 128 | |
4 | 16 | 16 | 8 | 2 | 32 | 32 | 2 | 32 | 64 | |
5 | >128 | 16 | 16 | 1 | 32 | 64 | 8 | 32 | 64 | |
6 | 16 | 32 | 16 | 0.5 | 16 | 64 | 0.5 | 32 | 64 | |
7 | 32 | 16 | 64 | 32 | 32 | 32 | 8 | 32 | 64 | |
8 | 16 | 16 | 16 | 32 | 32 | >128 | 8 | 32 | 64 | |
16×MIC | 1 | 16 | 8 | 32 | 64 | 32 | 32 | 8 | 32 | 128 |
2 | >128 | 16 | 32 | 64 | 32 | 64 | 8 | 32 | 64 | |
3 | 32 | 16 | 32 | 64 | 32 | 64 | 16 | 32 | 64 | |
4 | 16 | 16 | 32 | 64 | 32 | 32 | 8 | 32 | 64 | |
5 | >128 | 32 | 16 | 64 | 64 | 32 | 8 | 32 | 128 | |
6 | 16 | 4 | 32 | 64 | 32 | 32 | 4 | 16 | 64 | |
7 | 16 | 16 | 8 | 64 | 16 | 64 | 8 | 32 | 128 | |
8 | 16 | 8 | 16 | 64 | 32 | 32 | 16 | 32 | 128 | |
[MAX] | 1 | >128 | 16 | 128 | 64 | 64 | 64 | 64 | 32 | 128 |
2 | >128 | 16 | 128 | 64 | 128 | 64 | 8 | 32 | 64 | |
3 | >128 | 32 | 64 | 64 | 64 | 64 | 64 | 32 | 128 | |
4 | >128 | 64 | 32 | 64 | 64 | 64 | 32 | 32 | 64 | |
5 | >128 | 8 | 32 | 64 | - | 64 | - | 32 | - | |
6 | >128 | 8 | 32 | 64 | - | 64 | - | 32 | - | |
7 | >128 | 8 | - | 64 | 64 | - | 32 | - | ||
8 | >128 | 8 | - | 64 | 64 | - | 32 | - |
Isolates | MIC (mg/L) | mgrB | MgrB | PhoP | PhoQ | PmrB | PmrC | CrrA | CrrB | |
---|---|---|---|---|---|---|---|---|---|---|
PARENTAL ISOLATES | ATCC_13883 | 1 | Ref | Ref | Ref | Ref | Ref | Ref | Ref | Ref |
HURS-0269 | 0.125 | - | - | - | L211W | G256R | F27C, T224M, R319Q | NOT FOUND | NOT FOUND | |
HURS-0271 | 0.25 | - | - | M112I | L211W | G256R | F27C, D75E, Y176F, R319Q | NOT FOUND | NOT FOUND | |
HURS-0285 | 0.25 | - | - | - | L211W | - | V50L, A135P, R319Q | - | L296Q, Y308C | |
HURS-0286 | 0.5 | - | - | - | L211W | - | G353D | NOT FOUND | NOT FOUND | |
HURS-0288 | 0.06 | - | - | - | L211W | - | - | - | L296Q | |
HURS-0337 | 1 | - | - | - | L211W | - | - | - | Y31H, L296Q | |
HURS-0958 | 0.125 | - | - | - | L211W | A246T, G256R | F27C, S257L, R319Q | NOT FOUND | NOT FOUND | |
HURS-181073 | 0.5 | - | - | - | L211W | A246T, G256R | F27C, S257L, R319Q | NOT FOUND | NOT FOUND | |
HURS-183019 | 0.5 | - | - | - | L211W | A246T, G256R | F27C, S257L, R319Q | NOT FOUND | NOT FOUND | |
HURS-0269_ MUTANTS | 3-4CMI | 16 | - | - | - | V24G | - | - | NOT FOUND | NOT FOUND |
7-4CMI | 32 | - | - | - | G385V | - | - | NOT FOUND | NOT FOUND | |
2-16CMI | >128 | IS1_ISKpn14 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
3-16CMI | 32 | IS1_ISKpn14 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
1-MAX | >128 | - | - | - | G385V | - | - | NOT FOUND | NOT FOUND | |
HURS-0271_ MUTANTS | 1-4CMI | 4 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND |
3-4CMI | 8 | IS1_ISKpn14 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
3-16CMI | 16 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND | |
5-16CMI | 32 | IS1_ISKpn14 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
4-MAX | 64 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND | |
HURS-0285_ MUTANTS | 4-4CMI | 8 | - | W6del | - | - | - | - | - | - |
5-16CMI | 16 | - | - | - | - | - | - | D96E | - | |
6-16CMI | 32 | ISL3_ISKpn25 * | I45_W47del | - | - | - | - | - | - | |
2-MAX | 128 | - | - | - | - | - | - | - | - | |
3-MAX | 64 | - | - | - | - | - | - | D96E | - | |
HURS-0286_ MUTANTS | 1-4CMI | 16 | - | - | - | - | - | - | NOT FOUND | NOT FOUND |
7-4CMI | 32 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND | |
2-16CMI | 64 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND | |
4-16CMI | 64 | IS1_ISKpn14 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
2-MAX | 64 | - | W6del | - | - | - | - | NOT FOUND | NOT FOUND | |
HURS-0288_ MUTANS | 3-4CMI | 16 | IS1_ISKpn14 | - | - | - | - | - | - | - |
4-4CMI | 32 | IS110_ISKpn42 | - | - | - | - | - | - | - | |
4-16CMI | 32 | IS1_ISKpn14 * | - | - | - | - | - | - | - | |
1-MAX | 64 | IS1_ISKpn14 * | - | - | - | - | - | - | - | |
2-MAX | 128 | IS1_ISKpn14 * | - | - | - | - | - | - | - | |
HURS-0337_ MUTANTS | 5-4CMI | 64 | IS1_ISKpn14 * | - | - | - | - | - | - | - |
8-4CMI | >128 | - | - | - | - | - | - | D96N | - | |
1-16CMI | 32 | No gene | - | - | - | - | - | - | - | |
3-16CMI | 64 | - | - | - | A284V | - | F27C, S257L, R319Q | - | - | |
2-MAX | 64 | IS1_ISKpn14 | - | - | - | - | - | - | - | |
HURS-0958_ MUTANTS | 7-4CMI | 8 | - | - | - | A284V | - | - | NOT FOUND | NOT FOUND |
3-16CMI | 16 | - | - | - | A284V | - | - | NOT FOUND | NOT FOUND | |
6-16CMI | 4 | - | - | - | - | Q202K | - | NOT FOUND | NOT FOUND | |
1-MAX | 64 | - | - | Y98C, V134Y | - | - | - | NOT FOUND | NOT FOUND | |
4-MAX | 32 | - | S36K / G37_W47del | - | - | - | - | NOT FOUND | NOT FOUND | |
HURS-181073_ MUTANTS | 2-4CMI | 32 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND |
4-4CMI | 32 | ∆nt120 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
4-16CMI | 32 | IS1_ISKpn14 * | - | - | - | - | - | NOT FOUND | NOT FOUND | |
6-16CMI | 16 | - | - | - | - | - | - | NOT FOUND | NOT FOUND | |
1-MAX | 32 | IS1_ISKpn14 | - | - | - | - | - | NOT FOUND | NOT FOUND | |
HURS-183019_ MUTANTS | 1-4CMI | 8 | - | - | - | G385C | - | - | NOT FOUND | NOT FOUND |
3-4CMI | 16 | - | - | Y98C, S128P | - | - | - | NOT FOUND | NOT FOUND | |
8-4CMI | 32 | - | - | Y98C, S128P | - | - | - | NOT FOUND | NOT FOUND | |
1-16CMI | 128 | - | - | Y98C, V126A | - | - | - | NOT FOUND | NOT FOUND | |
4-16CMI | 64 | - | - | Y98C, G166D | - | - | - | NOT FOUND | NOT FOUND |
Protein | Variant | PROVEAN Score | Prediction (Cutoff = −2.5) |
---|---|---|---|
PhoQ | V24G | −4.762 | Deleterious |
L211W | 7.887 | Neutral | |
A284V | −3.441 | Deleterious | |
G385C | −8.059 | Deleterious | |
G385V | −8.059 | Deleterious | |
PhoP | Y98C | −8.772 | Deleterious |
M112I | 0.189 | Neutral | |
V126A | −0.969 | Neutral | |
S128P | −1.893 | Neutral | |
V134Y | −2.944 | Deleterious | |
G166D | −3.496 | Deleterious | |
MgrB | W6del | −9.406 | Deleterious |
S36K | −2.429 | Neutral | |
G37_W47del | −54.358 | Deleterious | |
I45_W47del | −20.628 | Deleterious | |
PmrB | Q202K | −2.825 | Deleterious |
A246T | −1.132 | Neutral | |
G256R | 5.484 | Neutral | |
PmrC | F27C | −2.411 | Neutral |
V50L | 0.087 | Neutral | |
D75E | 0.098 | Neutral | |
A135P | 5.069 | Neutral | |
Y176F | −3.239 | Deleterious | |
T224M | −0.468 | Neutral | |
S257L | −3.221 | Deleterious | |
R319Q | 1.253 | Neutral | |
G353D | −4.515 | Deleterious | |
CrrB | Y31H | −4.831 | Deleterious |
L296Q | 0.114 | Neutral | |
Y308C | −0.142 | Neutral | |
CrrA | D96E | −3.649 | Deleterious |
D96N | −4.319 | Deleterious |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-León, I.; García-Martínez, T.; Diene, S.M.; Pérez-Nadales, E.; Martínez-Martínez, L.; Rolain, J.-M. Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics 2023, 12, 1111. https://doi.org/10.3390/antibiotics12071111
Sánchez-León I, García-Martínez T, Diene SM, Pérez-Nadales E, Martínez-Martínez L, Rolain J-M. Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics. 2023; 12(7):1111. https://doi.org/10.3390/antibiotics12071111
Chicago/Turabian StyleSánchez-León, Irene, Teresa García-Martínez, Seydina M. Diene, Elena Pérez-Nadales, Luis Martínez-Martínez, and Jean-Marc Rolain. 2023. "Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48" Antibiotics 12, no. 7: 1111. https://doi.org/10.3390/antibiotics12071111
APA StyleSánchez-León, I., García-Martínez, T., Diene, S. M., Pérez-Nadales, E., Martínez-Martínez, L., & Rolain, J. -M. (2023). Heteroresistance to Colistin in Clinical Isolates of Klebsiella pneumoniae Producing OXA-48. Antibiotics, 12(7), 1111. https://doi.org/10.3390/antibiotics12071111