Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece
Abstract
:1. Introduction
2. Results
2.1. Serogroup Distribution
2.2. Clonal Complex Distribution
2.3. Susceptibility to Antibiotics
2.3.1. Susceptibility to Penicillin
Susceptibility to Penicillin in Relation to Serogroups
Susceptibility to Penicillin in Relation to Clonal Complexes
2.3.2. The Distribution of penA Alleles
2.3.3. Distribution of penA Alleles in Relation to Serogroups and Clonal Complexes
2.3.4. Susceptibility to Ciprofloxacin
2.3.5. Susceptibility to Rifampicin
3. Discussion
4. Materials and Methods
4.1. Source of Specimens
4.2. Identification
4.3. Antibiotic Susceptibility Testing
4.4. Multilocus Sequence Typing (MLST)
4.5. Molecular Identification of penA, gyrA and rpoB Genes
4.6. Amplification Protocol
4.7. PCR Product Purification and Sequencing
4.8. Sequencing Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nadel, S.; Ninis, N. Invasive Meningococcal Disease in the Vaccine Era. Front. Pediatr. 2018, 6, 321. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Santoreneos, R.; Giles, L.; Haji Ali Afzali, H.; Marshall, H. Case Fatality Rates of Invasive Meningococcal Disease by Serogroup and Age: A Systematic Review and Meta-Analysis. Vaccine 2019, 37, 2768–2782. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Invasive Meningococcal Disease. In ECDC. Annual Epidemiological Report for 2018; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Acevedo, R.; Bai, X.; Borrow, R.; Caugant, D.A.; Carlos, J.; Ceyhan, M. The Global Meningococcal Initiative Meeting on Prevention of Meningococcal Disease Worldwide: Epidemiology, Surveillance, Hypervirulent Strains, Antibiotic Resistance and High-Risk Populations. Expert Rev. Vaccines 2019, 18, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R. Multilocus Sequence Typing: A Portable Approach to the Identification of Clones within Populations of Pathogenic Microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef] [Green Version]
- Nadel, S. Treatment of Meningococcal Disease. J. Adolesc. Health 2016, 59, S21–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacca, P.; Fazio, C.; Neri, A.; Ambrosio, L.; Palmieri, A.; Stefanelli, P. Neisseria meningitidis Antimicrobial Resistance in Italy, 2006 to 2016. Antimicrob. Agents Chemother. 2018, 62, e00207-18. [Google Scholar] [CrossRef] [Green Version]
- Willerton, L.; Lucidarme, J.; Walker, A.; Lekshmi, A.; Clark, S.A.; Walsh, L.; Bai, X.; Lee-Jones, L.; Borrow, R. Antibiotic Resistance among Invasive Neisseria meningitidis Isolates in England, Wales and Northern Ireland (2010/11 to 2018/19). PLoS ONE 2021, 16, e0260677. [Google Scholar] [CrossRef]
- Potts, C.C.; Rodriguez-Rivera, L.D.; Retchless, A.C.; Hu, F.; Marjuki, H.; Blain, A.E.; McNamara, L.A.; Wang, X. Antimicrobial Susceptibility Survey of Invasive Neisseria meningitidis, United States 2012–2016. J. Infect. Dis. 2022, 225, 1871–1875. [Google Scholar] [CrossRef]
- Bertrand, S.; Carion, F.; Wintjens, R.; Mathys, V.; Vanhoof, R. Evolutionary Changes in Antimicrobial Resistance of Invasive Neisseria meningitidis Isolates in Belgium from 2000 to 2010: Increasing Prevalence of Penicillin Nonsusceptibility. Antimicrob. Agents Chemother. 2012, 56, 2268–2272. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, M.W.; Bekker, V.; Brouwer, M.C.; Spanjaard, L.; van de Beek, D.; van der Ende, A. Epidemiology of Invasive Meningococcal Disease in the Netherlands, 1960–2012: An Analysis of National Surveillance Data. Lancet Infect. Dis. 2014, 14, 805–812. [Google Scholar] [CrossRef]
- Saito, R.; Nakajima, J.; Prah, I.; Morita, M.; Mahazu, S.; Ota, Y.; Kobayashi, A.; Tohda, S.; Kamiya, H.; Takahashi, H.; et al. Penicillin- and Ciprofloxacin-Resistant Invasive Neisseria meningitidis Isolates from Japan. Microbiol. Spectr. 2022, 10, e0062722. [Google Scholar] [CrossRef] [PubMed]
- Lahra, M.M.; George, C.R.; Hogan, T.R. Australian Meningococcal Surveillance Programme Annual Report, 2021. Commun. Dis. Intell. 2022, 46, 1–14. [Google Scholar] [CrossRef]
- Phillips, C.; Haldane, D.J. Susceptibilities of Invasive Neisseria meningitidis Strains to Agents Used for Prophylaxis and to Penicillin G. J. Assoc. Med. Microbiol. Infect. Dis. Can. 2021, 6, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Taha, M.-K.; Vázquez, J.A.; Hong, E.; Bennett, D.E.; Bertrand, S.; Bukovski, S.; Cafferkey, M.T.; Carion, F.; Christensen, J.J.; Diggle, M.; et al. Target Gene Sequencing to Characterize the Penicillin G Susceptibility of Neisseria meningitidis. Antimicrob. Agents Chemother. 2007, 51, 2784–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorla, M.C.; Cassiolato, A.P.; Pinhata, J.M.W.; de Moraes, C.; Corso, A.; Gagetti, P.; Lemos, A.P. Emergence of Resistance to Ciprofloxacin in Neisseria meningitidis in Brazil. J. Med. Microbiol. 2018, 67, 286–288. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhang, C.; Zhang, X.; Chen, M. Meningococcal Quinolone Resistance Originated from Several Commensal Neisseria Species. Antimicrob. Agents Chemother. 2020, 64, e01494-19. [Google Scholar] [CrossRef]
- McNamara, L.A.; Potts, C.; Blain, A.E.; Retchless, A.C.; Reese, N.; Swint, S.; Lonsway, D.; Karlsson, M.; Lunquest, K.; Sweitzer, J.J.; et al. Detection of Ciprofloxacin-Resistant, β-Lactamase-Producing Neisseria meningitidis Serogroup Y Isolates—United States, 2019–2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Willerton, L.; Lucidarme, J.; Campbell, H.; Caugant, D.A.; Claus, H.; Jacobsson, S.; Ladhani, S.N.; Mölling, P.; Neri, A.; Stefanelli, P.; et al. Geographically Widespread Invasive Meningococcal Disease Caused by a Ciprofloxacin Resistant Non-Groupable Strain of the ST-175 Clonal Complex. J. Infect. 2020, 81, 575–584. [Google Scholar] [CrossRef]
- Tzanakaki, G.; Georgakopoulou, T.; Xirogianni, A.; Papandreou, A.; Deghmane, A.-E.; Magaziotou, I.; Taha, M.-K. First Report of Meningococcal Ciprofloxacin Resistance in Greece Due to Invasive Isolates of the Sequence Type ST-3129. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2467–2470. [Google Scholar] [CrossRef]
- Stefanelli, P.; Fazio, C.; La Rosa, G.; Marianelli, C.; Muscillo, M.; Mastrantonio, P. Rifampicin-Resistant Meningococci Causing Invasive Disease: Detection of Point Mutations in the RpoB Gene and Molecular Characterization of the Strains. J. Antimicrob. Chemother. 2001, 47, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Rainbow, J.; Cebelinski, E.; Bartkus, J.; Glennen, A.; Boxrud, D.; Lynfield, R. Rifampin-Resistant Meningococcal Disease. Emerg. Infect. Dis. 2005, 11, 977–979. [Google Scholar] [CrossRef]
- Taha, M.-K.; Zarantonelli, M.L.; Ruckly, C.; Giorgini, D.; Alonso, J.-M. Rifampin-Resistant Neisseria meningitidis. Emerg. Infect. Dis. 2006, 12, 859–860. [Google Scholar] [CrossRef]
- Tzanakaki, G.; Blackwell, C.C.; Kremastinou, J.; Kallergi, C.; Kouppari, G.; Weir, D.M. Antibiotic Sensitivities of Neisseria meningitidis Isolates from Patients and Carriers in Greece. Epidemiol. Infect. 1992, 108, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Flountzi, A.; Georgakopoulou, T.; Balasegaram, S.; Kesanopoulos, K.; Xirogianni, A.; Papandreou, A.; Tzanakaki, G. Members of the Hellenic network for Invasive meningococcal disease Epidemiology of Invasive Meningococcal Disease in Greece, 2006–2016. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2197–2203. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.E.; Meyler, K.L.; Cafferkey, M.T.; Cunney, R.J. Antibiotic Susceptibility and Molecular Analysis of Invasive Neisseria meningitidis Recovered in the Republic of Ireland, 1996 to 2016. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1127–1136. [Google Scholar] [CrossRef]
- McNamara, L.A.; Topaz, N.; Wang, X.; Hariri, S.; Fox, L.; MacNeil, J.R. High Risk for Invasive Meningococcal Disease Among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 734–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.A.; Coronato, B.; Schlackman, J.; Marsh, J.W.; Ezeonwuka, C.; Fernandes, A.C.L.; Souza, V.C.; da Silva, L.S.; de Amorim, E.F.Q.; Naveca, F.G.; et al. Neisseria meningitidis Disease-Associated Clones in Amazonas State, Brazil. Infect. Dis. Lond. Engl. 2018, 50, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.; Alarcon, Z.; Parra, E.; Duarte, C.; Sanabria, O.; Prada, D.; Gabastou, J.M. Molecular Characterization of Neisseria meningitidis Isolates Recovered from Patients with Invasive Meningococcal Disease in Colombia from 2013 to 2016. PLoS ONE 2020, 15, e0234475. [Google Scholar] [CrossRef]
- Bukovski, S.; Vacca, P.; Anselmo, A.; Knezovic, I.; Fazio, C.; Neri, A.; Ciammaruconi, A.; Fortunato, A.; Palozzi, A.M.; Fillo, S.; et al. Molecular Characterization of a Collection of Neisseria meningitidis Isolates from Croatia, June 2009 to January 2014. J. Med. Microbiol. 2016, 65, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Bröker, M.; Emonet, S.; Fazio, C.; Jacobsson, S.; Koliou, M.; Kuusi, M.; Pace, D.; Paragi, M.; Pysik, A.; Simões, M.J.; et al. Meningococcal Serogroup Y Disease in Europe: Continuation of High Importance in Some European Regions in 2013. Hum. Vaccines Immunother. 2015, 11, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibarz-Pavón, A.B.; Lemos, A.P.; Gorla, M.C.; Regueira, M.; Gabastou, J.-M.; SIREVA Working Group II. Laboratory-Based Surveillance of Neisseria meningitidis Isolates from Disease Cases in Latin American and Caribbean Countries, SIREVA II 2006-2010. PLoS ONE 2012, 7, e44102. [Google Scholar] [CrossRef] [PubMed]
- Willerton, L.; Lucidarme, J.; Walker, A.; Lekshmi, A.; Clark, S.A.; Gray, S.J.; Borrow, R. Increase in Penicillin-Resistant Invasive Meningococcal Serogroup W ST-11 Complex Isolates in England. Vaccine 2021, 39, 2719–2729. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Han, F.Y.; Wu, D.; Zhu, B.Q.; Gao, W.Y.; Gao, Y.; Li, Y.X.; Shao, Z.J. Analysis on antimicrobial sensitivity of Neisseria meningitidis in China from 2005 to 2019. Chin. J. Prev. Med. 2021, 55, 207–211. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, Y.; Xu, Z.; Xu, L.; Du, P.; Gao, Y.; Shao, Z. Genetic Diversity and Clonal Characteristics of Ciprofloxacin-Resistant Meningococcal Strains in China. J. Med. Microbiol. 2014, 63, 1411–1418. [Google Scholar] [CrossRef] [Green Version]
- Ktena, D.; Kourkouni, E.; Kontopidou, F.; Gkolfinopoulou, K.; Papadima, K.; Georgakopoulou, T.; Magaziotou, I.; Andreopoulou, A.; Tzanakaki, G.; Zaoutis, T.; et al. Population-Based Study of Influenza and Invasive Meningococcal Disease among Greek Children during the COVID-19 Pandemic. BMJ Paediatr. Open 2022, 6, e001391. [Google Scholar] [CrossRef]
- Alderson, M.R.; Arkwright, P.D.; Bai, X.; Black, S.; Borrow, R.; Caugant, D.A.; Dinleyici, E.C.; Harrison, L.H.; Lucidarme, J.; McNamara, L.A.; et al. Surveillance and Control of Meningococcal Disease in the COVID-19 Era: A Global Meningococcal Initiative Review. J. Infect. 2022, 84, 289–296. [Google Scholar] [CrossRef]
- Tzanakaki, G.; Tsopanomichalou, M.; Kesanopoulos, K.; Matzourani, R.; Sioumala, M.; Tabaki, A.; Kremastinou, J. Simultaneous Single-Tube PCR Assay for the Detection of Neisseria meningitidis, Haemophilus Influenzae Type b and Streptococcus pneumoniae. Clin. Microbiol. Infect. 2005, 11, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Eucast: New S, I and R Definitions. Available online: https://www.eucast.org/newsiandr (accessed on 2 January 2023).
- Clarke, S.C.; Diggle, M.A.; Edwards, G.F. Semiautomation of Multilocus Sequence Typing for the Characterization of Clinical Isolates of Neisseria meningitidis. J. Clin. Microbiol. 2001, 39, 3066–3071. [Google Scholar] [CrossRef] [Green Version]
- Hong, E.; Thulin Hedberg, S.; Abad, R.; Fazio, C.; Enríquez, R.; Deghmane, A.-E.; Jolley, K.A.; Stefanelli, P.; Unemo, M.; Vazquez, J.A.; et al. Target Gene Sequencing to Define the Susceptibility of Neisseria meningitidis to Ciprofloxacin. Antimicrob. Agents Chemother. 2013, 57, 1961–1964. [Google Scholar] [CrossRef] [Green Version]
- Taha, M.-K.; Hedberg, S.T.; Szatanik, M.; Hong, E.; Ruckly, C.; Abad, R.; Bertrand, S.; Carion, F.; Claus, H.; Corso, A.; et al. Multicenter Study for Defining the Breakpoint for Rifampin Resistance in Neisseria meningitidis by RpoB Sequencing. Antimicrob. Agents Chemother. 2010, 54, 3651–3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of Isolates by Year (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC Values by Antibiotic | 2010 (n = 22) | 2011 (n = 16) | 2012 (n = 17) | 2013 (n = 18) | 2014 (n = 21) | 2015 (n = 18) | 2016 (n = 26) | 2017 (n = 17) | 2018 (n = 14) | 2019 (n = 15) | 2020 (n = 6) | 2021 (n = 2) | Total (n = 192) |
Penicillin | |||||||||||||
PenS ≤ 0.064 mg/L | 16 (73%) | 10 (63%) | 13 (75%) | 12 (67%) | 10 (48%) | 8 (45%) | 12 (46%) | 9 (53%) | 2 (14%) | 4 (27%) | 2 (33%) | 1 (50%) | 99 |
PenI 0.094–0.25 mg/L | 6 (27%) | 6 (37%) | 3 (19%) | 5 (28%) | 10 (48%) | 6 (33%) | 11 (42%) | 6 (35%) | 8 (57%) | 9 (60%) | 2 (33%) | 0 (0%) | 72 |
PenR > 0.25 mg/L | 0 (0%) | 0 (0%) | 1 (6%) | 1 (5%) | 1 (4%) | 4 (22%) | 3 (12%) | 2 (12%) | 4 (29%) | 2 (13%) | 2 (33%) | 1 (50%) | 21 |
Ciprofloxacin | |||||||||||||
CipS ≤ 0.016 mg/L | 22 | 16 | 17 | 18 | 21 | 18 | 26 | 17 | 14 | 15 | 4 | 2 | 190 |
CipR > 0.016 mg/L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 |
Rifampicin | |||||||||||||
RifS ≤ 0.25 mg/L | 22 | 16 | 17 | 18 | 21 | 17 | 26 | 17 | 14 | 15 | 6 | 2 | 191 |
RifR > 0.25 mg/L | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiliopoulou, I.; Xirogianni, A.; Simantirakis, S.; Tzanakaki, G. Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece. Antibiotics 2023, 12, 1136. https://doi.org/10.3390/antibiotics12071136
Spiliopoulou I, Xirogianni A, Simantirakis S, Tzanakaki G. Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece. Antibiotics. 2023; 12(7):1136. https://doi.org/10.3390/antibiotics12071136
Chicago/Turabian StyleSpiliopoulou, Ioanna, Athanasia Xirogianni, Stelmos Simantirakis, and Georgina Tzanakaki. 2023. "Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece" Antibiotics 12, no. 7: 1136. https://doi.org/10.3390/antibiotics12071136
APA StyleSpiliopoulou, I., Xirogianni, A., Simantirakis, S., & Tzanakaki, G. (2023). Meningococcal Antibiotic Resistance: Molecular Characterization of Isolates from Patients with Invasive Meningococcal Disease (IMD) in Greece. Antibiotics, 12(7), 1136. https://doi.org/10.3390/antibiotics12071136