The Prevalence and Risk Factors of Acute Kidney Injury during Colistin Therapy: A Retrospective Cohort Study from Lebanon
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Prevalence of CMS-Induced AKI, Disease Severity, Renal Recovery, and Degree of Reversibility
2.3. Predictors of CMS-Induced AKI
2.4. Predictors of Severe CMS-Induced AKI (Stage 2 or 3)
2.5. Association between AKI Severity and Renal Recovery by CMS DOT
2.6. Prevalence and Predictors of All-Cause Mortality during CMS Treatment
2.7. Survival Analysis in Patients Undergoing CMS Treatment
3. Discussion
3.1. AKI Prevalence and Risk Factors
3.2. Risk Factors for Severe AKI
3.3. Prevalence of and Risk Factors for All-Cause Mortality
3.4. Importance of Applying Infection Control/Antibiotic Stewardship and Ensuring Antibiotic Equity
4. Methods
4.1. Study Setting, Design, and Participants
4.2. Data Collection
- Baseline demographic characteristics (e.g., age, gender, and body weight).
- Presence of comorbidities and underlying conditions (e.g., cardiovascular disease; respiratory disease; liver disease; cerebrovascular disease; neurological disease; diabetes mellitus; and malignancy and hematopoietic cell transplantation). Chronic kidney disease was defined as a baseline glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 [37]. Patients on renal replacement therapy and those with a baseline eGFR < 20 mL/min/1.73 m2 were excluded from the analysis. The baseline CCI was calculated to assess disease severity and risk of mortality.
- CMS dosage (in MIU) and duration of treatment (in days). The colistin available in our facility at the time of the study was labeled COLISTIMETHATE SODIQUE PANPHARMA®, equivalent to 1,000,000 international units of CMS and equal to 80 mg of CMS or 34 mg of colistin base activity. CMS usage up to the development of nephrotoxicity was estimated in terms of cumulative MIU and DOT prior to AKI.
- Biochemical profile (e.g., hemoglobin, white blood cell, serum albumin, and serum creatinine levels (SCr)) at baseline, peak (if AKI occurred), and end of CMS treatment. Hypoalbuminemia was defined as a serum albumin level < 3.5 g/dL [38]. EGFR was calculated using SCr and The Chronic Kidney Disease–Epidemiology Collaboration (CKD-EPI) formula [39].
- Indication for CMS use, causative organism(s), location (e.g., regular ward or critical care unit) of the patient at the time of treatment initiation, and the need for mechanical ventilation and vasopressors during the course of therapy.
- Concomitant use of potentially nephrotoxic medications including antibiotics (e.g., aminoglycosides, vancomycin, and rifampin); systemic antifungals (e.g., amphotericin B formulations); systemic antivirals (e.g., acyclovir, valacyclovir, ganciclovir, and valganciclovir); non-steroidal anti-inflammatory drugs; angiotensin-converting enzyme inhibitors; angiotensin-II receptor blockers; contrast media; diuretics; calcineurin inhibitors; vasopressors; and cytotoxic chemotherapeutic agents [40]. Combination antibiotic therapy as a treatment strategy was considered the concomitant use of at least one antibiotic with activity against Gram-negative microorganisms.
- Total all-cause mortality occurring at any stage of hospitalization.
4.3. AKI Severity and Renal Recovery
- Stage 1 AKI: increase in SCr by ≥0.3 mg/dL in 48 h or between 1.5 and 1.9 times the baseline value within 7 days;
- Stage 2 AKI: 2.0 to 2.9 times the baseline SCr value;
- Stage 3 AKI: >3.0 times the baseline SCr value; increase in SCr ≥ 4.0 mg/dL; or commencement of renal replacement therapy regardless of previous KDIGO stage.
4.4. Statistical Analysis
5. Limitations and Strengths
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendelson, M.; Sharland, M.; Mpundu, M. Antibiotic resistance: Calling time on the ‘silent pandemic’. JAC-Antimicrob. Resist. 2022, 3, dlac016. [Google Scholar] [CrossRef] [PubMed]
- Nation, R.L.; Rigatto, M.H.P.; Falci, D.R.; Zavascki, A.P. Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics 2019, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ordooei Javan, A.; Shokouhi, S.; Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 2015, 3, 801–810. [Google Scholar] [CrossRef]
- Reina, R.; León-Moya, C.; Garnacho-Montero, J. Treatment of Acinetobacter baumannii severe infections. Med. Intensiv (Engl. Ed.) 2022, 3, 700–710. [Google Scholar] [CrossRef]
- World Health Organization. GLASS: The Detection and Reporting of Colistin Resistance, 2nd ed.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Moghnieh, R.; Araj, G.F.; Awad, L.; Daoud, Z.; Mokhbat, J.E.; Jisr, T.; Abdallah, D.; Azar, N.; Irani-Hakimeh, N.; Balkis, M.M.; et al. A compilation of antimicrobial susceptibility data from a network of 13 Lebanese hospitals reflecting the national situation during 2015–2016. Antimicrob. Resist. Infect. Control 2019, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. GLASS Dashboard. Global AMR Data. Available online: https://worldhealthorg.shinyapps.io/glass-dashboard/_w_da287acd/_w_2724ea81/_w_330195fb/#!/amr (accessed on 6 July 2023).
- World Health Organization. GLASS Dashboard. Country, Territory or Area Profiles. Available online: https://worldhealthorg.shinyapps.io/glass-dashboard/_w_da287acd/_w_2724ea81/#!/cta-profiles (accessed on 6 July 2023).
- Frost, I.; Craig, J.; Joshi, J.; Faure, K.; Laxminarayan, R. Access Barriers to Antibiotics; Center for Disease Dynamics, Economics & Policy: Washington, DC, USA, 2019. [Google Scholar]
- Moghnieh, R.; Awad, L.; Abdallah, D.; Jadayel, M.; Sinno, L.; Tamim, H.; Jisr, T.; El-Hassan, S.; Lakkis, R.; Dabbagh, R.; et al. Effect of a “handshake” stewardship program versus a formulary restriction policy on High-End antibiotic use, expenditure, antibiotic resistance, and patient outcome. J. Chemother. 2020, 3, 368–384. [Google Scholar] [CrossRef]
- Oliota, A.F.; Penteado, S.T.; Tonin, F.S.; Fernandez-Llimos, F.; Sanches, A.C. Nephrotoxicity prevalence in patients treated with polymyxins: A systematic review with meta-analysis of observational studies. Diagn. Microbiol. Infect. Dis. 2019, 2, 41–49. [Google Scholar] [CrossRef]
- Wagenlehner, F.; Lucenteforte, E.; Pea, F.; Soriano, A.; Tavoschi, L.; Steele, V.R.; Henriksen, A.S.; Longshaw, C.; Manissero, D.; Pecini, R.; et al. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin. Microbiol. Infect. 2021, 27, 671–686. [Google Scholar] [CrossRef]
- Eljaaly, K.; Bidell, M.R.; Gandhi, R.G.; Alshehri, S.; Enani, M.A.; Al-Jedai, A.; Lee, T.C. Colistin Nephrotoxicity: Meta-Analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2021, 3, ofab026. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International consensus guidelines for the optimal use of the polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 2, 10–39. [Google Scholar]
- Weinstein, J.R.; Anderson, S. The aging kidney: Physiological changes. Adv. Chronic. Kidney Dis. 2010, 3, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasannan, B.K.; Mukthar, F.C.; Unni, V.N.; Mohan, S.; Vinodkumar, K. Colistin Nephrotoxicity-Age and Baseline kidney Functions Hold the Key. Indian J. Nephrol. 2021, 3, 449–453. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Ordonez, J.D.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Go, A.S. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008, 3, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Gunay, E.; Kaya, S.; Baysal, B.; Yuksel, E.; Arac, E. Evaluation of prognosis and nephrotoxicity in patients treated with colistin in intensive care unit. Ren. Fail. 2020, 3, 704–709. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; di Masi, A.; Leboffe, L.; Del Bono, V.; Rossi, M.; Cappiello, D.; Coppo, E.; Marchese, A.; Casulli, A.; Signori, A.; et al. Hypoalbuminemia as a predictor of acute kidney injury during colistin treatment. Sci. Rep. 2018, 3, 11968. [Google Scholar] [CrossRef] [Green Version]
- Shields, R.K.; Anand, R.; Clarke, L.G.; Paronish, J.A.; Weirich, M.; Perone, H.; Kieserman, J.; Freedy, H.; Andrzejewski, C.; Bonilla, H. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS ONE 2017, 3, e0173286. [Google Scholar] [CrossRef] [Green Version]
- Min, K.L.; Son, E.S.; Kim, J.S.; Kim, S.H.; Jung, S.M.; Chang, M.J. Risk factors of colistin safety according to administration routes: Intravenous and aerosolized colistin. PLoS ONE 2018, 3, e0207588. [Google Scholar] [CrossRef]
- Tuon, F.; Rigatto, M.H.; Lopes, C.K.; Kamei, L.K.; Rocha, J.; Zavascki, A.P. Risk factors for acute kidney injury in patients treated with polymyxin B or colistin methanesulfonate sodium. Int. J. Antimicrob. Agents 2014, 3, 349–352. [Google Scholar] [CrossRef]
- Pogue, J.M.; Lee, J.; Marchaim, D.; Yee, V.; Zhao, J.J.; Chopra, T.; Lephart, P.; Kaye, K.S. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin. Infect. Dis. 2011, 3, 879–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baradaran, S.; Black, D.J.; Keyloun, K.R.; Hansen, R.N.; Gillard, P.J.; Devine, B. The Impact of Acute Kidney Injury on the Risk of Mortality and Health Care Utilization Among Patients Treated With Polymyxins for Severe Gram-Negative Infections. Open Forum Infect. Dis. 2018, 3, ofy191. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.F.P.; Silva, C.A.; Barbieri, C.D.; Oliveira, G.M.; Zanetta, D.M.T.; Burdmann, E.A. Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob. Agents Chemother. 2009, 3, 2887–2891. [Google Scholar] [CrossRef] [Green Version]
- Paquette, F.; Bernier-Jean, A.; Brunette, V.; Ammann, H.; Lavergne, V.; Pichette, V.; Troyanov, S.; Bouchard, J. Acute Kidney Injury and Renal Recovery with the Use of Aminoglycosides: A Large Retrospective Study. Nephron 2015, 2, 153–160. [Google Scholar] [CrossRef]
- Bellos, I.; Pergialiotis, V.; Frountzas, M.; Kontzoglou, K.; Daskalakis, G.; Perrea, D.N. Efficacy and safety of colistin loading dose: A meta-analysis. J. Antimicrob. Chemother. 2020, 3, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Abebe, A.; Kumela, K.; Belay, M.; Kebede, B.; Wobie, Y. Mortality and predictors of acute kidney injury in adults: A hospital-based prospective observational study. Sci. Rep. 2021, 3, 15672. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, A.; Izdes, S.; Altintas, N.D. Factors Determining Nephrotoxicity and Mortality in Critical Care Patients Receiving Colistin. J. Infect. Dev. Ctries. 2018, 3, 912–918. [Google Scholar] [CrossRef] [Green Version]
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef]
- Pogue, J.M.; Zhou, Y.; Kanakamedala, H.; Cai, B. Burden of illness in carbapenem-resistant Acinetobacter baumannii infections in US hospitals between 2014 and 2019. BMC Infect. Dis. 2022, 3, 36. [Google Scholar] [CrossRef] [PubMed]
- Heybeli, C.; Canaslan, K.; Oktan, M.A.; Yıldız, S.; Arda, H.Ü.; Çavdar, C.; Çelik, A.; Gökmen, N.; Cömert, B. Acute kidney injury following colistin treatment in critically-ill patients: May glucocorticoids protect? J. Chemother. 2021, 3, 85–94. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 3, 629–655. [Google Scholar]
- Harun, G.D.; Anwar, M.U.; Sumon, S.A.; Hassan, Z.; Mohona, T.M.; Rahman, A.; Abdullah, S.A.H.M.; Islam, S.; Kaydos-Daniels, S.C.; Styczynski, A.R. Rationale and guidance for strengthening infection prevention and control measures and antimicrobial stewardship programs in Bangladesh: A study protocol. BMC Health Serv. Res. 2022, 3, 1239. [Google Scholar] [CrossRef]
- The Lebanese Ministry of Public Health. Revised Hospital Accreditation Standards in Lebanon-December 2022. Available online: https://www.moph.gov.lb/en/Pages/3/599/hospital-accreditation-#/en/view/20553/revised-hospital-accreditation-standards-in-lebanon-december-2022 (accessed on 7 July 2023).
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 3, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.E.; Bilous, R.W.; Lamb, E.J.; Coresh, J.J.K.I. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Moramarco, S.; Morciano, L.; Morucci, L.; Messinese, M.; Gualtieri, P.; Carestia, M.; Ciccacci, F.; Orlando, S.; Buonomo, E.; Legramante, J.M.; et al. Epidemiology of Hypoalbuminemia in Hospitalized Patients: A Clinical Matter or an Emerging Public Health Problem? Nutrients 2020, 3, 3656. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 3, 604–612, Erratum in Ann. Intern. Med. 2011, 3, 408. [Google Scholar] [CrossRef] [PubMed]
- Gray, M.P.; Barreto, E.F.; Schreier, D.J.; Kellum, J.A.; Suh, K.; Kashani, K.B.; Rule, A.D.; Kane-Gill, S.L. Consensus Obtained for the Nephrotoxic Potential of 167 Drugs in Adult Critically Ill Patients Using a Modified Delphi Method. Drug Saf. 2022, 3, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 2, 204. [Google Scholar] [CrossRef] [Green Version]
- Balkan, I.I.; Dogan, M.; Durdu, B.; Batirel, A.; Hakyemez, I.N.; Cetin, B.; Karabay, O.; Gonen, I.; Ozkan, A.S.; Uzun, S.; et al. Colistin nephrotoxicity increases with age. Scand. J. Infect. Dis. 2014, 2, 678–685. [Google Scholar] [CrossRef]
- Kellum, J.A.; Chawla, L.S.; Keener, C.; Singbartl, K.; Palevsky, P.M.; Pike, F.L.; Yealy, D.M.; Huang, D.T.; Angus, D.C. The Effects of Alternative Resuscitation Strategies on Acute Kidney Injury in Patients with Septic Shock. Am. J. Respir. Crit. Care Med. 2016, 3, 281–287. [Google Scholar] [CrossRef] [Green Version]
Patient Characteristics | Total (N = 298 Patients) (%) |
---|---|
Age (years) (median, IQR) | 69 (51–80) |
<55 | 87 (29.2%) |
55 to <65 | 45 (15.1%) |
65 to <75 | 45 (15.1%) |
≥75 | 121 (40.6%) |
Male | 131 (44.0%) |
Comorbidities | |
Cardiovascular Disease | 122 (40.9%) |
Diabetes Mellitus | 94 (31.5%) |
Respiratory Disease | 51 (17.1%) |
Chronic Kidney Disease | 89 (29.9%) |
Liver Disease | 5 (1.7%) |
Malignancy | 95 (31.9%) |
Hematologic Malignancy | 53 (17.8%) |
Solid Tumor | 42 (14.1%) |
Cerebrovascular Disease | 102 (34.2%) |
Charlson comorbidity index (CCI) upon admission | 5 (2–7) |
0 to 2 | 83 (27.9%) |
3 to 4 | 43 (14.4%) |
≥5 | 172 (57.7%) |
Baseline serum albumin before CMS initiation (g/dL) (median, IQR) | 3.01 (2.50–3.70) |
<3.5 | 198 (66.4%) |
Treatment Parameters | Total (N = 298 Patients) (%) |
---|---|
Indication of CMS | |
Pneumonia | 118 (39.6%) |
Blood-stream infection | 33 (11.1%) |
Skin and soft tissue infection | 17 (5.7%) |
Sepsis | 99 (33.2%) |
Febrile Neutropenia | 33 (11.1%) |
Colonization | 23 (7.7%) |
Urinary Tract Infection | 1 (0.3%) |
Fever of unknown origin | 11 (3.7%) |
Any documented bacteria for which CMS was initiated | 183 (61.4%) |
Extensive drug-resistant/Carbapenem-resistant Gram-negative Bacteria | 164 (55.0%) |
Extensive drug-resistant/Carbapenem-resistant Acinetobacter baumannii | 132 (44.3%) |
Extensive drug-resistant/Carbapenem-resistant Pseudomonas aeruginosa | 28 (9.4%) |
Stenotrophomonas maltophilia | 16 (5.4%) |
Carbapenem-resistant Enterobacterales | 15 (5.0%) |
No reported organism | 115 (38.6%) |
Strategy of CMS use | |
Monotherapy | 42 (14.1%) |
Combination therapy | 256 (85.9%) |
Patient placement when CMS was initiated | |
Regular floor | 172 (57.7%) |
Critical care | 126 (42.3%) |
Development of hypotension during CMS therapy | 139 (46.6%) |
Need for mechanical ventilation during CMS therapy | 170 (57.0%) |
Cumulative CMS dose (median, IQR) (million international units) | 45 (26–90) |
CMS loading dose given | 231 (77.5%) |
CMS loading dose of 9 million international units given | 199 (66.8%) |
Concomitant nephrotoxic drugs | |
Antimicrobials | |
Amikacin | 17 (5.7%) |
Vancomycin | 36 (12.1%) |
Rifampin | 2 (0.7%) |
Valaciclovir | 34 (11.4%) |
Aciclovir | 12 (4.0%) |
Ganciclovir | 8 (2.7%) |
Valganciclovir | 5 (1.7%) |
Amphotericin B | 14 (4.7%) |
Other drugs | |
Non-steroidal anti-inflammatory drugs | 22 (7.4%) |
Angiotensin-converting enzyme inhibitors/Angiotensin receptor blockers | 19 (6.4%) |
Diuretics | 112 (37.6%) |
Vasopressors | 146 (49.0%) |
Calcineurin Inhibitors (ciclosporin, tacrolimus) | 5 (1.7%) |
Allopurinol | 7 (2.3%) |
Cytotoxic chemotherapy * | 11 (3.7%) |
Radio-contrast agents | 35 (11.7%) |
Number of concomitant nephrotoxic drugs (median, IQR) | 1 (1–2) |
None | 56 (18.8%) |
≥1 | 242 (81.2%) |
≥2 | 145 (48.7%) |
≥3 | 64 (21.5%) |
Independent Risk Factor | CMS-Induced AKI | |
---|---|---|
aOR (95% CI) | p-Value | |
Age ≥ 75 years | 1.854 (1.060–3.241) | 0.030 |
Baseline chronic kidney disease | 4.849 (2.618–9.264) | <0.0001 |
Concomitant use of vasopressors during CMS therapy | 4.305 (2.517–7.456) | <0.0001 |
Independent Risk Factor | Stage 2 or 3 CMS-Induced AKI | |
---|---|---|
aOR (95% CI) | p-Value | |
Baseline hypoalbuminemia before CMS initiation (<3.5 g/dL) | 2.542 (1.000–6.564) | 0.049 |
Concomitant use of vasopressors during CMS therapy | 5.472 (2.280–13.132) | <0.0001 |
Duration of CMS therapy prior to AKI ≥ 7 days | 4.488 (1.789–11.262) | 0.001 |
Total CMS-Induced AKI (N = 138 Cases) (%) | AKI Occurring 2 Days after CMS Therapy Initiation (%) | AKI Occurring between 3 Days and <7 Days after CMS Therapy Initiation (%) | AKI Occurring at ≥7 Days of CMS Therapy Initiation (%) | p-Value | |
---|---|---|---|---|---|
Total AKI | 138 | 46 (33.3%) | 32 (23.2%) | 60 (43.5%) | |
Severity of CMS-induced AKI | |||||
Stage 1 | 52/138 (37.7%) | 28/46 (60.9%) | 13/32 (40.6%) | 11/60 (18.3%) | <0.0001 |
Stage 2 or 3 | 86/138 (62.3%) | 18/46 (39.1%) | 19/32 (59.4%) | 49/60 (81.7%) |
Independent Risk Factor | All-Cause Mortality | |
---|---|---|
aOR (95% CI) | p-Value | |
Charlson comorbidity index (CCI) upon admission ≥5 | 4.514 (2.443–8.530) | <0.0001 |
Concomitant use of vasopressors during CMS therapy | 7.76 (4.238–14.56) | <0.0001 |
CMS-induced AKI | 4.117 (2.231–7.695) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghnieh, R.; Husni, R.; Helou, M.; Abdallah, D.; Sinno, L.; Jadayel, M.; Diab, K.; Chami, C.; Al Rachid, M.; Awad, D.C.; et al. The Prevalence and Risk Factors of Acute Kidney Injury during Colistin Therapy: A Retrospective Cohort Study from Lebanon. Antibiotics 2023, 12, 1183. https://doi.org/10.3390/antibiotics12071183
Moghnieh R, Husni R, Helou M, Abdallah D, Sinno L, Jadayel M, Diab K, Chami C, Al Rachid M, Awad DC, et al. The Prevalence and Risk Factors of Acute Kidney Injury during Colistin Therapy: A Retrospective Cohort Study from Lebanon. Antibiotics. 2023; 12(7):1183. https://doi.org/10.3390/antibiotics12071183
Chicago/Turabian StyleMoghnieh, Rima, Rola Husni, Mariana Helou, Dania Abdallah, Loubna Sinno, Marwa Jadayel, Kawsar Diab, Carmen Chami, Marah Al Rachid, Diana Caroline Awad, and et al. 2023. "The Prevalence and Risk Factors of Acute Kidney Injury during Colistin Therapy: A Retrospective Cohort Study from Lebanon" Antibiotics 12, no. 7: 1183. https://doi.org/10.3390/antibiotics12071183
APA StyleMoghnieh, R., Husni, R., Helou, M., Abdallah, D., Sinno, L., Jadayel, M., Diab, K., Chami, C., Al Rachid, M., Awad, D. C., Zaiter, A., & Sayegh, M. H. (2023). The Prevalence and Risk Factors of Acute Kidney Injury during Colistin Therapy: A Retrospective Cohort Study from Lebanon. Antibiotics, 12(7), 1183. https://doi.org/10.3390/antibiotics12071183