Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils
Abstract
:1. Introduction
- Cosmetics—Products intended to clean the body (except for soap);
- Household items/Other—Fragrance products, like scented candles, household cleaners, and air fresheners;
- Herbal medicinal products (HMPs), both for human and veterinary use;
- Traditional herbal medicinal products (THMPs) for human use.
Essential Oil Name | Botanical Name | Therapeutic Area/ Applications | |
---|---|---|---|
1. | Origani aetheroleum (Oregano oil) | Origanum vulgare ssp. hirtum (Link) Ietsw. | Feed additive for specific animal species [47] |
2. | Eucalypti aetheroleum (Eucalyptus oil) | Eucalyptus globulus Labill. Eucalyptus polybractea R.T. Baker. Eucalyptus smithii R.T. Baker. | Pain and inflammation Cough and cold [52] |
3. | Rosmarini aetheroleum (Rosemary oil) | Rosmarinus officinalis L. | Circulatory disorders Gastrointestinal disorders [53] |
4. | Caryophylli floris aetheroleum (Clove oil) | Syzygium aromaticum (L.) Merr. et L.M. Perry, syn. Eugenia caryophyllus (Spreng.) Bullock et S.G. Harrison | Mouth and throat disorders [54] |
5. | Menthae piperitae aetheroleum (Peppermint oil) | Mentha piperita L. | Pain and inflammation Skin disorders and minor wounds Cough and cold Gastrointestinal disorders [55] |
2. Results
2.1. Antibacterial and Antibiofilm Activity on S. aureus
2.2. Antibacterial and Antibiofilm Activity on E. coli
2.3. Antibacterial and Antibiofilm Activity on P. aeruginosa
2.4. Data Analysis
2.5. Correlations between EOs Chemical Constituents and Their Antibacterial and Antibiofilm Effects
3. Discussion
- The scientific name of the raw plant.
- 100% Pure—It is not mixed with other essential oils, synthetic components, plant oils, or mineral oils and has no chemical solvents.
- 100% Natural—It is obtained by steam distillation.
- 100% Verified—It is biochemically and botanically defined.
4. Materials and Methods
4.1. Materials
- ○
- Origani aetheroleum 1, 2 (Oregano essential oil, OEO);
- ○
- Eucalypti aetheroleum 1, 2 (Eucalyptus essential oil, EEO);
- ○
- Rosmarini aetheroleum 1, 2 (Rosemary essential oil, REO);
- ○
- Caryophylli aetheroleum 1, 2, 3 (Clove essential oil, CEO);
- ○
- Menthae aetheroleum 1, 2, 3, 4 (Peppermint essential oil, PEO).
4.2. Antibacterial Activity
4.2.1. Inoculum Preparation
4.2.2. Sample Preparation
4.2.3. Standard Antibiotic Solutions Preparation
4.2.4. Microdilution Method
4.3. Antibiofilm Activity
4.4. Quantification and Interpreting of Antibacterial and Antibiofilm Activities
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- European Pharmacopoeia Aetherolea. Europeian Pharmacopoeia; Council of Europe: Strasbourg, France, 2008; Volume 7. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019, 11, 2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef]
- Xu, N.; Lei, H.; Li, X.; Wang, Q.; Liu, M.; Wang, M. Protective Effects of Ginger Essential Oil (Geo) against Chemically Induced Cutaneous Inflammation. Food Sci. Technol. 2019, 39, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Pandur, E.; Balatinácz, A.; Micalizzi, G.; Mondello, L.; Horváth, A.; Sipos, K.; Horváth, G. Anti-Inflammatory Effect of Lavender (Lavandula angustifolia Mill.) Essential Oil Prepared during Different Plant Phenophases on THP-1 Macrophages. BMC Complement. Med. Ther. 2021, 21, s12906. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, L.; Li, Y.; Soo Khoo, C.; Han, D.; Liu, Q.; Li, P.; Zhang, X. Antioxidant and Immunomodulatory Activities of Essential Oil Isolated from Anti-Upper Respiratory Tract Infection Formulation and Their Chemical Analysis. Evid. Based Complement. Altern. Med. 2022, 2022, 7297499. [Google Scholar] [CrossRef]
- Pelvan, E.; Karaoğlu, Ö.; Önder Fırat, E.; Betül Kalyon, K.; Ros, E.; Alasalvar, C. Immunomodulatory Effects of Selected Medicinal Herbs and Their Essential Oils: A Comprehensive Review. J. Funct. Foods 2022, 94, 105108. [Google Scholar] [CrossRef]
- González-Velasco, H.E.; Pérez-Gutiérrez, M.S.; Alonso-Castro, Á.J.; Zapata-Morales, J.R.; Niño-Moreno, P.D.C.; Campos-Xolalpa, N.; González-Chávez, M.M. Anti-Inflammatory and Antinociceptive Activities of the Essential Oil of Tagetes Parryi, A. Gray (Asteraceae) and Verbenone. Molecules 2022, 27, 2612. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Betancur, I.; Benjumea, D.; Gómez, J.E.; Mejía, N.; León, J.F. Antinociceptive Activity of Essential Oils from Wild Growing and Micropropagated Plants of Renealmia Alpinia (Rottb.) Maas. Rec. Nat. Prod. 2019, 13, 10–17. [Google Scholar] [CrossRef]
- Eftekhari, M.; Hoseinsalari, A.; Mansourian, M.; Farjadmand, F.; Shams Ardekani, M.R.; Sharifzadeh, M.; Hassanzadeh, G.; Khanavi, M.; Gholami, M. Trachyspermum ammi (L.) Sprague, Superb Essential Oil and Its Major Components on Peptic Ulcers: In Vivo Combined in Silico Studies. DARU J. Pharm. Sci. 2019, 27, 317–327. [Google Scholar] [CrossRef]
- Abu Bakar, N.A.; Hakim Abdullah, M.N.; Lim, V.; Yong, Y.K. Essential Oils Derived from Momordica Charantia Seeds Exhibited Antiulcer Activity against Hydrogen Chloride/Ethanol and Indomethacin. Evid. Based Complement. Altern. Med. 2021, 2021, 5525584. [Google Scholar] [CrossRef]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential Oils as Anticancer Agents: Potential Role in Malignancies, Drug Delivery Mechanisms, and Immune System Enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef] [PubMed]
- Osanloo, M.; Yousefpoor, Y.; Alipanah, H.; Ghanbariasad, A.; Jalilvand, M.; Amani, A. In-Vitro Assessment of Essential Oils as Anticancer Therapeutic Agents: A Systematic Literature Review. Jordan J. Pharm. Sci. 2022, 15, 173–203. [Google Scholar] [CrossRef]
- Zimmermann, R.C.; Aragão, C.E.d.C.; de Araújo, P.J.P.; Benatto, A.; Chaaban, A.; Martins, C.E.N.; do Amaral, W.; Cipriano, R.R.; Zawadneak, M.A.C. Insecticide Activity and Toxicity of Essential Oils against Two Stored-Product Insects. Crop Prot. 2021, 144, 105575. [Google Scholar] [CrossRef]
- Rants’o, T.A.; Koekemoer, L.L.; Panayides, J.L.; van Zyl, R.L. Potential of Essential Oil-Based Anticholinesterase Insecticides against Anopheles Vectors: A Review. Molecules 2022, 27, 7026. [Google Scholar] [CrossRef] [PubMed]
- Huong, L.T.T.; Huong, T.T.T.; Huong, N.T.T.; Hung, N.H.; Dat, P.T.T.; Luong, N.X.; Ogunwande, I.A. Mosquito Larvicidal Activity of the Essential Oil of Zingiber Collinsii against Aedes Albopictus and Culex Quinquefasciatus. J. Oleo Sci. 2020, 69, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budiman; Ishak, H.; Stang; Ibrahim, E.; Daud, A.; Amiruddin, R. Essential Oil as a New Tool for Larvicidal Aedes Aegypti: A Systematic Review. Gac. Sanit. 2021, 35, S459–S462. [Google Scholar] [CrossRef]
- Castro, L.M.; Pinto, N.B.; Moura, M.Q.; Villela, M.M.; Capella, G.A.; Freitag, R.A.; Berne, M.E.A. Antihelminthic Action of the Anethum Graveolens Essential Oil on Haemonchus Contortus Eggs and Larvae. Braz. J. Biol. 2021, 81, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R. Essential Oils: Anti-Microbial, Antihelminthic, Antiviral, Anticancer and Antiinsect Properties. J. Appl. Biosci. 2010, 36, 1–22. [Google Scholar]
- Mieres-Castro, D.; Ahmar, S.; Shabbir, R.; Mora-Poblete, F. Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses. Pharmaceuticals 2021, 14, 1210. [Google Scholar] [CrossRef]
- Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Al Zarzour, R. COVID-19 and Therapy with Essential Oils Having Antiviral, Anti-Inflammatory, and Immunomodulatory Properties. Inflammopharmacology 2020, 28, 1153–1161. [Google Scholar] [CrossRef]
- Brożyna, M.; Paleczny, J.; Kozłowska, W.; Chodaczek, G.; Dudek-Wicher, R.; Felińczak, A.; Gołębiewska, J.; Górniak, A.; Junka, A. The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus. Pathogens 2021, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
- Landeo-Villanueva, G.E.; Salazar-Salvatierra, M.E.; Ruiz-Quiroz, J.R.; Zuta-Arriola, N.; Jarama-Soto, B.; Herrera-Calderon, O.; Pari-Olarte, J.B.; Loyola-Gonzales, E. Inhibitory Activity of Essential Oils of Mentha Spicata and Eucalyptus Globulus on Biofilms of Streptococcus Mutans in an In Vitro Model. Antibiotics 2023, 12, 369. [Google Scholar] [CrossRef] [PubMed]
- Pinto, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zavala, J.F. Plant Antimicrobials for Food Quality and Safety: Recent Views and Future Challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening Essential Oils for Their Antimicrobial Activities against the Foodborne Pathogenic Bacteria Escherichia coli and Staphylococcus aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elangovan, S.; Mudgil, P. Antibacterial Properties of Eucalyptus Globulus Essential Oil against MRSA: A Systematic Review. Antibiotics 2023, 12, 474. [Google Scholar] [CrossRef]
- Manion, C.R.; Widder, R.M. Essentials of Essential Oils. Am. J. Health-Syst. Pharm. 2017, 74, e153–e162. [Google Scholar] [CrossRef]
- U.S. Essential Oil Market Size, Share, Industry Trends, Scope & Forecast. Available online: verifiedmarketresearch.com (accessed on 15 May 2023).
- Bollyky, T.J.; Kesselheim, A.S. Reputation and Authority: The FDA and the Fight over U.S. Prescription Drug Importation. Vanderbilt Law Rev. 2020, 73, 1331–1400. [Google Scholar]
- Darrow, J.J.; Avorn, J.; Kesselheim, A.S. FDA Approval and Regulation of Pharmaceuticals, 1983–2018. JAMA J. Am. Med. Assoc. 2020, 323, 164–176. [Google Scholar] [CrossRef]
- Farrar, A.J.; Farrar, F.C. Clinical Aromatherapy. Nurs. Clin. N. Am. 2020, 55, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Shop Products|dōTERRA Essential Oils. Available online: doterra.com (accessed on 10 April 2023).
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, Antifungal, Antibiofilm, and Cytotoxic Activities of Mentha Spp. Essential Oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Committee on Herbal Medicinal Products (HMPC) Reflection Paper on Quality of Essential Oils as Active Substances in Herbal Medicinal Products/Traditional Herbal Medicinal Products. EMA/HMPC/84789/2013 2014, Volume 44. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02008D0911-20180126&from=EN (accessed on 10 April 2023).
- Peschel, W. The Use of Community Herbal Monographs to Facilitate Registrations and Authorisations of Herbal Medicinal Products in the European Union 2004–2012. J. Ethnopharmacol. 2014, 158, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Petrović, S. Herbal and Traditional Herbal Medicinal Products, EU Herbal Monographs and EU List. ARH Farm. 2019, 69, 221–269. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency Guideline on Similar Biological Medicinal Products; European Medicines Agency: Amsterdam, The Netherlands, 2014; Volume 44, pp. 1–7. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2014/10/WC500176768.pdf (accessed on 10 April 2023).
- Wang, M.; Zhao, J.; Avula, B.; Wang, Y.-H.; Chittiboyina, A.G.; Parcher, J.F.; Khan, I.A. Quality Evaluation of Terpinen-4-Ol-Type Australian Tea Tree Oils and Commercial Products: An Integrated Approach Using Conventional and Chiral GC/MS Combined with Chemometrics. J. Agric. Food Chem. 2015, 63, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Iordache, A.M.; Nechita, C.; Voica, C.; Roba, C.; Botoran, O.R.; Ionete, R.E. Assessing the Health Risk and the Metal Content of Thirty-Four Plant Essential Oils Using the ICP-MS Technique. Nutrients 2022, 14, 2363. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Gualpa, F.; Ramos, L.A.; Ciobotă, V. Adulteration of Clove Essential Oil: Detection Using a Handheld Raman Spectrometer. Flavour Fragr. J. 2018, 33, 184–190. [Google Scholar] [CrossRef]
- Pierson, M.; Fernandez, X.; Antoniotti, S. Type and Magnitude of Non-Compliance and Adulteration in Neroli, Mandarin and Bergamot Essential Oils Purchased Online: Potential Consumer Vulnerability. Sci. Rep. 2021, 11, 11096. [Google Scholar] [CrossRef]
- Brun, P.; Bernabè, G.; Filippini, R.; Piovan, A. In Vitro Antimicrobial Activities of Commercially Available Tea Tree (Melaleuca Alternifolia) Essential Oils. Curr. Microbiol. 2019, 76, 108–116. [Google Scholar] [CrossRef]
- Steinhoff, B. Harmonised Assessment Criteria for Efficacy and Safety of Herbal Medicinal Products. Rev. Fitoter. 2002, 2, 47. [Google Scholar]
- Yevale, R.; Khan, N.; Kalamkar, P. Overview on “Regulations of Herbal Medicine”. J. Pharmacogn. Phytochem. 2018, 7, 61–63. [Google Scholar] [CrossRef]
- The European Commission. Commission Implementing Regulation (Eu) 2022/1248 of 19 July 2022 Concerning the Authorisation of Essential Oil from Origanum vulgare ssp. Hirtum (Link) Ietsw. as a Feed Additive for Certain Animal Species. Off. J. Eur. Union 2022, 1248, 18–20. [Google Scholar]
- Bejar, E. Adulteration of Oregano Herb and Essential Oil. Bot. Adulterants Prev. Bull. 2019, 10, 1–10. [Google Scholar]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in Poultry and Swine Nutrition—A Review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-García, I.; Escalera-Valente, F.; Martínez-González, S.; Carmona-Gasca, C.A.; Gutiérrez-Arenas, D.A.; Ramos, F. Effect of Oregano Oil Dietary Supplementation on Production Parameters, Height of Intestinal Villi and the Antioxidant Capacity in the Breast of Broiler. Austral J. Vet. Sci. 2017, 49, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Essential Oil Adulteration. Available online: https://www.aromaweb.com/articles/essential-oil-adulteration.php (accessed on 15 May 2023).
- EMA. Committee on Herbal Medicinal Products (HMPC) Community Herbal Monograph on Eucalyptus Globulus Labill., Eucalyptus Polybractea, R.T. Baker and/or Eucalyptus Smithii, R.T.; Baker, Aetheroleum; EMEA European Medicines Agency: Amsterdam, The Netherlands, 2014; Volume 44, pp. 2–11.
- European Medicines Agency. European Union Herbal Monograph on Rosmarinus officinalis, L., Aetheroleum; EMEA European Medicines Agency: Amsterdam, The Netherlands, 2022; Volume 31, pp. 1–6. [Google Scholar]
- Committee on Herbal Medicinal Products (HMPC). Assessment Report on Syzygium aromaticum (L.) Merill et L. M.; Perry, Flos and Syzygium aromaticum (L.) Merill Et; European Medicines Agency: Amsterdam, The Netherlands, 2011; Volume 44, p. 26.
- Capetti, F.; Marengo, A.; Cagliero, C.; Liberto, E.; Bicchi, C.; Rubiolo, P.; Sgorbini, B. Adulteration of Essential Oils: A Multitask Issue for Quality Control. Three Case Studies: Lavandula angustifolia Mill., Citrus limon (L.) Osbeck and Melaleuca alternifolia (Maiden & Betche) Cheel. Molecules 2021, 26, 5610. [Google Scholar]
- Giray, F.H. An Analysis of World Lavender Oil Markets and Lessons for Turkey. J. Essent. Oil-Bear. Plants 2018, 21, 1612–1623. [Google Scholar] [CrossRef]
- Vargas Jentzsch, P.; Sandoval Pauker, C.; Zárate Pozo, P.; Sinche Serra, M.; Jácome Camacho, G.; Rueda-Ayala, V.; Garrido, P.; Ramos Guerrero, L.; Ciobotă, V. Raman Spectroscopy in the Detection of Adulterated Essential Oils: The Case of Nonvolatile Adulterants. J. Raman Spectrosc. 2021, 52, 1055–1063. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Poudel, A.; Satyal, P. Authentication and Market Survey of Sweet Birch (Betula lenta, L.) Essential Oil. Plants 2022, 11, 2132. [Google Scholar] [CrossRef]
- Johnson, S.; DeCarlo, A.; Satyal, P.; Dosoky, N.; Sorensen, A.; Setzer, W. Organic Certification Is Not Enough: The Case of the Methoxydecane Frankincense. Plants 2019, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Dubnicka, M.; Cromwell, B.; Levine, M. Investigation of the Adulteration of Essential Oils by GC-MS. Curr. Anal. Chem. 2019, 16, 965–969. [Google Scholar] [CrossRef]
- Truzzi, E.; Marchetti, L.; Benvenuti, S.; Ferroni, A.; Rossi, M.C.; Bertelli, D. Novel Strategy for the Recognition of Adulterant Vegetable Oils in Essential Oils Commonly Used in Food Industries by Applying 13C NMR Spectroscopy. J. Agric. Food Chem. 2021, 69, 8276–8286. [Google Scholar] [CrossRef] [PubMed]
- Lis-Balchin, M.; Deans, S.G.; Eaglesham, E. Relationship between Bioactivity and Chemical Composition of Commercial Essential Oils. Flavour Fragr. J. 1998, 13, 98–104. [Google Scholar] [CrossRef]
- Oregano, R53, Ulei Esențial 100% pur, Definit Botanic și Biochimic. Available online: https://fares.ro/produs/ulei-esential-oregano/ (accessed on 14 May 2023).
- Eucalipt, Ulei Esențial Integral—10 Ml. Available online: https://life-bio.ro/produs/ulei-esential-de-eucalipt/ (accessed on 16 May 2023).
- Food Supplements Notifications. Available online: https://bioresurse.ro/en/pages/notificari (accessed on 13 May 2023).
- National Research and Development Institute for Food Bioresources—IBA Bucharest, Quality Policy. Available online: https://bioresurse.ro/en/pages/despre-iba#politica-de-calitate (accessed on 15 April 2023).
- Ulei Esențial de Cuișoare. Available online: https://aromateria.ro/produs/cuisoare/ (accessed on 14 May 2023).
- Ulei Esențial Pur de Menta Peppermint. Available online: https://www.ecoterapia.ro/collections/uleiuri-esentiale (accessed on 15 April 2023).
- Peschel, W.; Alvarez, B.M. Harmonised European Standards as a Basis for the Safe Use of Herbal Medicinal Products and Their Marketing Authorisation in European Union Member States. Pharmaceut. Med. 2018, 32, 275–293. [Google Scholar] [CrossRef]
- EUCAST European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 10.0. EUCAST 2020, 7.1, 1–112. Available online: Https://Www.Eucast.Org/Ast_of_Bacteria/ (accessed on 20 March 2023).
- Salehi, B.; Mishra, A.P.; Shukla, I.; Sharifi-Rad, M.; Contreras, M.d.M.; Segura-Carretero, A.; Fathi, H.; Nasrabadi, N.N.; Kobarfard, F.; Sharifi-Rad, J. Thymol, Thyme, and Other Plant Sources: Health and Potential Uses. Phytother. Res. 2018, 32, 1688–1706. [Google Scholar] [CrossRef] [PubMed]
- Gavaric, N.; Mozina, S.S.; Kladar, N.; Bozin, B. Chemical Profile, Antioxidant and Antibacterial Activity of Thyme and Oregano Essential Oils, Thymol and Carvacrol and Their Possible Synergism. J. Essent. Oil-Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Kiskó, G.; Roller, S. Carvacrol and P-Cymene Inactivate Escherichia coli O157:H7 in Apple Juice. BMC Microbiol. 2005, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial Activity of Carvacrol toward Bacillus Cereus on Rice. J. Food Prot. 2000, 63, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial Mechanism of Oregano Essential Oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, D.; Xiang, H.; Feng, H.; Jiang, Y.; Xia, L.; Dong, J.; Lu, J.; Yu, L.; Deng, X. Subinhibitory Concentrations of Thymol Reduce Enterotoxins A and B and α-Hemolysin Production in Staphylococcus aureus Isolates. PLoS ONE 2010, 5, e9736. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.; Zhao, P.; He, Y.; Kang, S.; Shen, C.; Wang, S.; Guo, M.; Wang, L.; Shi, C. Antibacterial Effect of Oregano Essential Oil against Vibrio Vulnificus and Its Mechanism. Foods 2022, 11, 403. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, J.; Song, Y.; Raka, R.N.; Xiang, J.; Wu, H.; Xiao, J.; Jin, J.; Hui, X.L. Antibacterial Activity of Oregano Essential Oils against Streptococcus Mutans in Vitro and Analysis of Active Components. BMC Complement. Med. Ther. 2023, 23, 61. [Google Scholar] [CrossRef]
- Kryvtsova, M.V.; Fedkiv, O.K.; Hrytsyna, M.R.; Salamon, I. Anty-Microbial, and Anty-Biofilm-Forming Properties of Origanum Vulgare, L. Essential Oils on Staphylococcus aureus and Its Antioxidant Action. Stud. Biol. 2020, 14, 27–38. [Google Scholar] [CrossRef]
- Sipahi, N.; Kekeç, A.I.; Halaç, B. In Vitro Effect of Some Essential Oils against Multiple Antibiotic-Resistant Bacteria from Cats and Dogs. Pak. Vet. J. 2022, 42, 561–565. [Google Scholar]
- Schillaci, D.; Napoli, E.M.; Cusimano, M.G.; Vitale, M.; Ruberto, G. Origanum Vulgare Subsp. Hirtum Essential Oil Prevented Biofilm Formation and Showed Antibacterial Activity against Planktonic and Sessile Bacterial Cells. J. Food Prot. 2013, 76, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.; Wong, K.I.; Li, X.; Wang, F.; Wei, L.; Wang, S.; Wu, M.X. Oregano Oil and Harmless Blue Light to Synergistically Inactivate Multidrug-Resistant Pseudomonas aeruginosa. Front. Microbiol. 2022, 13, 810746. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Capozzolo, F.; Amato, G.; De Feo, V.; Fratianni, F.; Vivenzio, G.; Nazzaro, F. Chemical Composition, Antibiofilm, Cytotoxic, and Anti-Acetylcholinesterase Activities of Myrtus Communis, L. Leaves Essential Oil. BMC Complement. Med. Ther. 2022, 22, 142. [Google Scholar] [CrossRef] [PubMed]
- Haji Seyedtaghiya, M.; Nayeri Fasaei, B.; Peighambari, S.M. Antimicrobial and Antibiofilm Effects of Satureja Hortensis Essential Oil against Escherichia coli and Salmonella Isolated from Poultry. Iran. J. Microbiol. 2021, 13, 5495. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, T.S.A.; Schelz, Z.; Vidács, L.; Szemerédi, N.; Veres, K.; Spengler, G.; Hohmann, J. Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum Majorana Extracts, Essential Oil and Monoterpenes. Plants 2022, 11, 1432. [Google Scholar] [CrossRef]
- Naik, G.; Haider, S.Z.; Bhandari, U.; Lohani, H.; Chauhan, N. Comparative Analysis of In Vitro Antimicrobial and Antioxidant Potential of Cinnamomum Tamala Extract and Their Essential Oils of Two Different Chemotypes. Agric. Sci. Dig. A Res. J. 2021, 41, 5187. [Google Scholar] [CrossRef]
- Everton, G.O.; Santos Júnior, P.S.; Araújo, R.J.P.; Ferreira, A.M.; Gomes, P.R.B.; Rosa, P.V.S.; Pereira, A.P.M.; Mouchrek Filho, V.E. Chemical Profile and Antimicrobial Potential of Essential Oils of Cymbopogon citratus (DC.) Stapf, Ocimum basilicum Linn and Aniba rosaeodora Ducke. Sci. Plena 2020, 16, 061502. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, S.; Mukherjee, D.; Joshi, S.J.; Ray, R.R. Antibiofilm and Anti-Quorum Sensing Activities of Eugenol and Linalool from Ocimum Tenuiflorum against Pseudomonas aeruginosa Biofilm. J. Appl. Microbiol. 2021, 131, 15171. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cai, J.; Chen, H.; Zhong, Q.; Hou, Y.; Chen, W.; Chen, W. Antibacterial Activity and Mechanism of Linalool against Pseudomonas aeruginosa. Microb. Pathog. 2020, 141, 103980. [Google Scholar] [CrossRef] [PubMed]
- Araújo Silva, V.; Pereira da Sousa, J.; de Luna Freire Pessôa, H.; Fernanda Ramos de Freitas, A.; Douglas Melo Coutinho, H.; Beuttenmuller Nogueira Alves, L.; Oliveira Lima, E. Ocimum basilicum: Antibacterial Activity and Association Study with Antibiotics against Bacteria of Clinical Importance. Pharm. Biol. 2016, 54, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Federman, C.; Ma, C.; Biswas, D. Major Components of Orange Oil Inhibit Staphylococcus aureus Growth and Biofilm Formation and Alter Its Virulence Factors. J. Med. Microbiol. 2016, 65, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of Oregano, Carvacrol and Thymol on Staphylococcus aureus and Staphylococcus epidermidis Biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, A.; Valliammai, A.; Muthuramalingam, P.; Priya, A.; Suba, M.; Ramesh, M.; Karutha Pandian, S. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An in Vitro and in Vivo Approach. ACS Omega 2020, 5, c04252. [Google Scholar] [CrossRef] [PubMed]
- Keyvan, E.; Tutun, H. Effects of Carvacrol on Staphylococcus aureus Isolated from Bulk Tank Milk. Med. Weter. 2019, 75, 238–241. [Google Scholar] [CrossRef]
- Lu, M.; Dai, T.; Murray, C.K.; Wu, M.X. Bactericidal Property of Oregano Oil against Multidrug-Resistant Clinical Isolates. Front. Microbiol. 2018, 9, 02329. [Google Scholar] [CrossRef] [Green Version]
- Lara, V.M.; Carregaro, A.B.; Santurio, D.F.; Sá, M.F.D.; Santurio, J.M.; Alves, S.H. Antimicrobial Susceptibility of Escherichia coli Strains Isolated from Alouatta Spp. Feces to Essential Oils. Evid. Based Complement. Altern. Med. 2016, 2016, 1643762. [Google Scholar] [CrossRef] [Green Version]
- Man, A.; Santacroce, L.; Jacob, R.; Mare, A.; Man, L. Antimicrobial Activity of Six Essential Oils against a Group of Human Pathogens: A Comparative Study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Ghalem, B.R.; Mohamed, B. Antibacterial Activity of Leaf Essential Oils of Eucalyptus Globulus and Eucalyptus Camaldulensis. Afr. J. Pharm. Pharmacol. 2008, 2, 211–215. [Google Scholar]
- Bachir, R.G.; Benali, M. Antibacterial Activity of the Essential Oils from the Leaves of Eucalyptus Globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameur, E.; Sarra, M.; Yosra, D.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical Composition of Essential Oils of Eight Tunisian Eucalyptus Species and Their Antibacterial Activity against Strains Responsible for Otitis. BMC Complement. Med. Ther. 2021, 21, 209. [Google Scholar]
- Merghni, A.; Noumi, E.; Hadded, O.; Dridi, N.; Panwar, H.; Ceylan, O.; Mastouri, M.; Snoussi, M. Assessment of the Antibiofilm and Antiquorum Sensing Activities of Eucalyptus Globulus Essential Oil and Its Main Component 1,8-Cineole against Methicillin-Resistant Staphylococcus aureus Strains. Microb. Pathog. 2018, 118, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; de Almeida Vaucher, R.; Ourique, A.F.; Santos, R.C.V. Antimicrobial and Antibiofilm Activities of Nanoemulsions Containing Eucalyptus globulus Oil against Pseudomonas aeruginosa and Candida spp. Microb. Pathog. 2017, 112, 230–242. [Google Scholar] [CrossRef]
- Khedhri, S.; Polito, F.; Caputo, L.; Manna, F.; Khammassi, M.; Hamrouni, L.; Amri, I.; Nazzaro, F.; De Feo, V.; Fratianni, F. Chemical Composition, Phytotoxic and Antibiofilm Activity of Seven Eucalyptus Species from Tunisia. Molecules 2022, 27, 8227. [Google Scholar] [CrossRef]
- Azzam, N.F.A.E.M. Antibacterial Effect of Eucalyptus Essential Oil. Indian J. Sci. Technol. 2020, 13, 799–804. [Google Scholar] [CrossRef]
- Mesta, A.R.; Rajeswari, N.; Kanivebagilu, V.S. Assessment of Antimicrobial Activity of Ethanolic Extraction of Usnea Ghattensis and Usnea Undulata. Int. J. Res. Ayurveda Pharm. 2020, 11, 75–77. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial Activity of Essential Oils from Eucalyptus and of Selected Components against Multidrug-Resistant Bacterial Pathogens. Pharm. Biol. 2011, 49, 553625. [Google Scholar] [CrossRef]
- Van, L.T.; Hagiu, I.; Popovici, A.; Marinescu, F.; Gheorghe, I.; Curutiu, C.; Ditu, L.M.; Holban, A.M.; Sesan, T.E.; Lazar, V. Antimicrobial Efficiency of Some Essential Oils in Antibiotic-Resistant Pseudomonas aeruginosa Isolates. Plants 2022, 11, 2003. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.D.; Nguyen-Ngoc, H.; Tran-Trung, H.; Nguyen, D.-K.; Thi Nguyen, L.-T. Limonene and Eucalyptol Rich Essential Oils with Their Antimicrobial Activity from the Leaves and Rhizomes of Conamomum vietnamense, N.S. Lý & T.S. Hoang (Zingiberaceae). Pharmacia 2023, 70, 91–96. [Google Scholar] [CrossRef]
- Mączka, W.; Duda-Madej, A.; Górny, A.; Grabarczyk, M.; Wińska, K. Can Eucalyptol Replace Antibiotics? Molecules 2021, 26, 4933. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Arciola, C.; Barbieri, R.; Silva, A.; Nabavi, S.; Tsetegho Sokeng, A.; Izadi, M.; Jafari, N.; Suntar, I.; Daglia, M.; et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [Google Scholar] [CrossRef] [Green Version]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.L.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health Beneficial and Pharmacological Properties of P-Cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef]
- Radice, M.; Durofil, A.; Buzzi, R.; Baldini, E.; Martínez, A.P.; Scalvenzi, L.; Manfredini, S. Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities, Pharmaceutical and Food Applications. Life 2022, 12, 1602. [Google Scholar] [CrossRef] [PubMed]
- Batubara, I.; Wahyuni, W.T.; Susanta, M. Antibacterial Activity of Zingiberaceae Leaves Essential Oils against Streptococcus Mutans and Teeth-Biofilm Degradation. Int. J. Pharma Bio Sci. 2016, 7, 111–116. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Falah, F.; Lavi Arab, F.; Vasiee, M.; Tabatabaee Yazdi, F. Chemical Composition and Antioxidant, Antimicrobial, and Antiproliferative Activities of Cinnamomum zeylanicum Bark Essential Oil. Evid. Based Complement. Altern. Med. 2020, 2020, 5190603. [Google Scholar] [CrossRef]
- Dmour, S.M.; Qaralleh, H.; Al-Limoun, M.; Khleifat, K.M.; Alqaraleh, M.; Alqudah, A.A.; Altarawneh, R.M. Combined Antibacterial Activity of Eucalyptol, γ-Terpinene, p-Cymol and Punicalagin with Cefotaxime against Methicillin (Oxacillin) Resistant Staphylococcus aureus Isolate. Res. J. Pharm. Technol. 2022, 15, 654. [Google Scholar] [CrossRef]
- Salehi, O.; Sami, M.; Rezaei, A. Limonene Loaded Cyclodextrin Nanosponge: Preparation, Characterization, Antibacterial Activity and Controlled Release. Food Biosci. 2021, 42, 101193. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Zhao, C.; Zhang, Z.; Nie, D.; Tang, W.; Li, Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022, 27, 7044. [Google Scholar] [CrossRef]
- Justino de Araújo, A.C.; Freitas, P.R.; Rodrigues dos Santos Barbosa, C.; Muniz, D.F.; Rocha, J.E.; Albuquerque da Silva, A.C.; Datiane de Morais Oliveira-Tintino, C.; Ribeiro-Filho, J.; Everson da Silva, L.; Confortin, C.; et al. GC-MS-FID Characterization and Antibacterial Activity of the Mikania Cordifolia Essential Oil and Limonene against MDR Strains. Food Chem. Toxicol. 2020, 136, 111023. [Google Scholar] [CrossRef]
- Gupta, A.; Jeyakumar, E.; Lawrence, R. Strategic Approach of Multifaceted Antibacterial Mechanism of Limonene Traced in Escherichia coli. Sci. Rep. 2021, 11, 13816. [Google Scholar] [CrossRef]
- Feng, X.; Xiao, Z.; Yang, Y.; Chen, S.; Liao, S.; Luo, H.; He, L.; Wang, Z.; Fan, G. β-Pinene Derived Products with Enhanced In Vitro Antimicrobial Activity. Nat. Prod. Commun. 2021, 16, 1934578X21992. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [Green Version]
- Hachlafi, N.E.L.; Aanniz, T.; El Menyiy, N.; El Baaboua, A.; El Omari, N.; Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Rev. Int. 2023, 39, 1799–1826. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Luo, Y.; Qu, Z. Research Progress on Pharmacological Action of D-Borneol. Drugs Clin. 2021, 36, 40. [Google Scholar]
- Wang, W.; Ren, Z.; Wang, L.; Cai, Y.; Ma, H.; Fang, L.; Su, J. Nanoparticle-stabilized Encapsulation of Borneol and Citral: Physicochemical Characteristics, Storage Stability, and Enhanced Antibacterial Activities. J. Food Sci. 2021, 86, 4554–4565. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhan, C.; Huang, X.; Hong, L.; Fang, L.; Wang, W.; Su, J. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Adv. Healthc. Mater. 2020, 9, 2000186. [Google Scholar] [CrossRef]
- Leitão, J.; Sousa, S.; Leite, S.; Carvalho, M. Silver Camphor Imine Complexes: Novel Antibacterial Compounds from Old Medicines. Antibiotics 2018, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaca, N.; Şener, G.; Demirci, B.; Demirci, F. Synergistic Antibacterial Combination of Lavandula latifolia Medik. Essential Oil with Camphor. Z. Naturforschung C 2021, 76, 169–173. [Google Scholar] [CrossRef]
- Rahman, F.A.; Priya, V.; Gayathri, R.; Geetha, R.V. In Vitro Antibacterial Activity of Camphor Oil against Oral Microbes. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 119–121. [Google Scholar]
- Jafari-Sales, A.; Pashazadeh, M. Study of Chemical Composition and Antimicrobial Properties of Rosemary (Rosmarinus officinalis) Essential Oil on Staphylococcus aureus and Escherichia coli in Vitro. Int. J. Life Sci. Biotechnol. 2020, 3, 62–69. [Google Scholar] [CrossRef]
- Liu, T.; Wang, J.; Gong, X.; Wu, X.; Liu, L.; Chi, F. Rosemary and Tea Tree Essential Oils Exert Antibiofilm Activities in Vitro against Staphylococcus aureus and Escherichia coli. J. Food Prot. 2020, 83, 1261–1267. [Google Scholar] [CrossRef] [PubMed]
- Stojiljkovic, J. Antibacterial Activities of Rosemary Essential Oils and Their Components against Pathogenic Bacteria. Adv. Cytol. Pathol. 2018, 3, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Santoyo, S.; Cavero, S.; Jaime, L.; Ibañez, E.; Señoráns, F.J.; Reglero, G. Chemical Composition and Antimicrobial Activity of Rosmarinus officinalis, L. Essential Oil Obtained via Supercritical Fluid Extraction. J. Food Prot. 2005, 68, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, O.; Uğur, A.; Saraç, N.; Ozcan, F.; Baygar, T. The In Vitro Antibiofilm Activity of Rosmarinus officinalis, L. Essential Oil against Multiple Antibiotic Resistant Pseudomonas Sp. and Staphylococcus Sp. J. Food Agric. Environ. 2014, 12, 82–86. [Google Scholar]
- Bogavac, M.A.; Karaman, M.A.; Sudi, J.J.; Radovanović, B.B.; Janjušević, L.N.; Ćetković, N.B.; Tešanović, K.D. Antimicrobial Potential of Rosmarinus officinalis Commercial Essential Oil in the Treatment of Vaginal Infections in Pregnant Women. Nat. Prod. Commun. 2017, 12, 1934578X1701200136. [Google Scholar] [CrossRef] [Green Version]
- Dobrescu, D.; Tanasescu, M.; Mezdrea, A.; Ivan, C.; Ordosch, E.; Neagoe, F.; Rizeanu, A.; Trifu, L.; Enescu, V. Contributions to the Complex Study of Some Lichens-Usnea Genus. Pharmacological Studies on Usnea barbata and Usnea hirta Species. Rom. J. Physiol. Physiol. Sci. 1993, 30, 101–107. [Google Scholar]
- Alghazzaly, A.M.; El-Sherbiny, G.M.; Moghannemm, S.A.; Sharaf, M.H. Antibacterial, Antibiofilm, Antioxidants and Phytochemical Profiling of Syzygium aromaticum Extract. Egypt J Aquat Biol Fish 2022, 26, 207–218. [Google Scholar] [CrossRef]
- Merghni, A.; Marzouki, H.; Hentati, H.; Aouni, M.; Mastouri, M. Antibacterial and Antibiofilm Activities of Laurus nobilis L. Essential Oil against Staphylococcus aureus Strains Associated with Oral Infections. Curr. Res. Transl. Med. 2016, 64, 29–34. [Google Scholar] [CrossRef]
- Hamzah, H.; Tunjung Pratiwi, S.U.; Hertiani, T. Efficacy of Thymol and Eugenol Against Polymicrobial Biofilm. Indones. J. Pharm. 2018, 29, 214. [Google Scholar] [CrossRef] [Green Version]
- Sudrania, M.; Valson, A.; Dangi, A.; Kekre, N. Chyluria with Massive Proteinuria: Do Not Reach for the Biopsy Gun! Saudi J. Kidney Dis. Transplant. 2020, 31, 1407. [Google Scholar]
- Prakash, A.; Baskaran, R.; Nithyanand, P.; Vadivel, V. Effect of Nanoemulsification on the Antibacterial and Anti-Biofilm Activities of Selected Spice Essential Oils and Their Major Constituents Against Salmonella enterica Typhimurium. J. Clust. Sci. 2020, 31, 1123–1135. [Google Scholar] [CrossRef]
- Santos, E.L.; Freitas, P.R.; Araújo, A.C.J.; Almeida, R.S.; Tintino, S.R.; Paulo, C.L.R.; Silva, A.C.A.; Silva, L.E.; do Amaral, W.; Deschamps, C.; et al. Enhanced Antibacterial Effect of Antibiotics by the Essential Oil of Aloysia gratissima (Gillies & Hook.) Tronc. and Its Major Constituent Beta-Caryophyllene. Phytomedicine Plus 2021, 1, 100100. [Google Scholar] [CrossRef]
- Moo, C.L.; Yang, S.K.; Osman, M.A.; Yuswan, M.H.; Loh, J.Y.; Lim, W.M.; Lim, S.H.E.; Lai, K.S. Antibacterial Activity and Mode of Action of β-Caryophyllene on Bacillus Cereus. Pol. J. Microbiol. 2020, 69, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.G.; Liu, T.; Hu, Q.P.; Cao, X.M. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds against Staphylococcus aureus. Molecules 2016, 21, 1194. [Google Scholar] [CrossRef]
- Yadav, M.K.; Chae, S.W.; Im, G.J.; Chung, J.W.; Song, J.J. Eugenol: A Phyto-Compound Effective against Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Strain Biofilms. PLoS ONE 2015, 10, 119564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, J.; Li, J.; Chen, Z.; Bai, X.; Yang, Z.; Wang, Z.; Yang, Y. Antibacterial Activity and Mechanism of Clove Essential Oil against Foodborne Pathogens. LWT 2023, 173, 114249. [Google Scholar] [CrossRef]
- Burt, S.A.; Reinders, R.D. Antibacterial Activity of Selected Plant Essential Oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.G.; Lee, J.H.; Gwon, G.; Kim, S.I.; Park, J.G.; Lee, J. Essential Oils and Eugenols Inhibit Biofilm Formation and the Virulence of Escherichia coli O157:H7. Sci. Rep. 2016, 6, 36377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musthafa, K.S.; Voravuthikunchai, S.P. Anti-Virulence Potential of Eugenyl Acetate against Pathogenic Bacteria of Medical Importance. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2015, 107, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.V.; Moreira, J.M.A.R.; de Godoy Menezes, I.; Dutra, V.; do Bom Parto Ferreira de Almeida, A. Antibiotic Resistance Profiles and Activity of Clove Essential Oil (Syzygium aromaticum) against Pseudomonas aeruginosa Isolated of Canine Otitis. Vet. World 2022, 15, 2499–2505. [Google Scholar] [CrossRef]
- Purwasena, I.A.; Astuti, D.I.; Taufik, I.; Putri, F.Z. The Potential of Clove Essential Oil Microemulsion as an Alternative Biocide against Pseudomonas aeruginosa Biofilm. J. Pure Appl. Microbiol. 2020, 14, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Prateeksha; Paliya, B.S.; Bajpai, R.; Jadaun, V.; Kumar, J.; Kumar, S.; Upreti, D.K.; Singh, B.R.; Nayaka, S.; Joshi, Y.; et al. The Genus Usnea: A Potent Phytomedicine with Multifarious Ethnobotany, Phytochemistry and Pharmacology. RSC Adv. 2016, 6, 21672–21696. [Google Scholar] [CrossRef]
- Muntean, D.; Licker, M.; Alexa, E.; Popescu, I.; Jianu, C.; Buda, V.; Dehelean, C.A.; Ghiulai, R.; Horhat, F.; Horhat, D.; et al. Evaluation of Essential Oil Obtained from Mentha × piperita L. against Multidrug-Resistant Strains. Infect. Drug Resist. 2019, 12, 2905–2914. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dong, J.; Qui, J.Z.; Wang, J.F.; Luo, M.J.; Li, H.E.; Leng, B.F.; Ren, W.Z.; Deng, X.M. Peppermint Oil Decreases the Production of Virulence- Associated Exoproteins by Staphylococcus aureus. Molecules 2011, 16, 1642–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horváth, P.; Koščová, J. In Vitro Antibacterial Activity of Mentha Essential Oils Against Staphylococcus aureus. Folia Vet. 2017, 61, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Jin, W.; Wang, J.; Sun, Y.; Wu, X.; Liu, L. Antibacterial and Anti-Biofilm Activities of Peppermint Essential Oil against Staphylococcus aureus. LWT 2019, 101, 639–645. [Google Scholar] [CrossRef]
- Sarwar, W.; Ali, Q.; Ahmed, S. Microscopic Visualization of the Antibiofilm Potential of Essential Oils against Staphylococcus aureus and Klebsiella Pneumoniae. Microsc. Res. Tech. 2022, 85, 3921–3931. [Google Scholar] [CrossRef]
- Pajohi Alamoti, M.; Bazargani-Gilani, B.; Mahmoudi, R.; Reale, A.; Pakbin, B.; Di Renzo, T.; Kaboudari, A. Essential Oils from Indigenous Iranian Plants: A Natural Weapon vs. Multidrug-Resistant Escherichia coli. Microorganisms 2022, 10, 109. [Google Scholar] [CrossRef]
- Metin, S.; Didinen, B.I.; Telci, I.; Diler, O. Essential Oil of Mentha Suaveolens Ehrh., Composition and Antibacterial Activity against Bacterial Fish Pathogens. An. Acad. Bras. Ciências 2021, 93, 20190478. [Google Scholar] [CrossRef]
- Pazarci, O.; Tutar, U.; Kilinc, S. Investigation of the Antibiofilm Effects of Mentha Longifolia Essential Oil on Titanium and Stainless Steel Orthopedic Implant Surfaces. Eurasian J. Med. 2019, 51, 18432. [Google Scholar] [CrossRef]
- Iseppi, R.; Di Cerbo, A.; Aloisi, P.; Manelli, M.; Pellesi, V.; Provenzano, C.; Camellini, S.; Messi, P.; Sabia, C. In Vitro Activity of Essential Oils against Planktonic and Biofilm Cells of Extended-Spectrum β-Lactamase (ESBL)/Carbapenamase-Producing Gram-Negative Bacteria Involved in Human Nosocomial Infections. Antibiotics 2020, 9, 272. [Google Scholar] [CrossRef]
- Singh, N.S.; Singhal, N.; Kumar, M.; Virdi, J.S. Exploring the Genetic Mechanisms Underlying Amoxicillin-Clavulanate Resistance in Waterborne Escherichia coli. Infect. Genet. Evol. 2021, 90, 104767. [Google Scholar] [CrossRef] [PubMed]
- Sandulovici, R.C.; Carmen-Marinela, M.; Grigoroiu, A.; Moldovan, C.A.; Savin, M.; Ordeanu, V.; Voicu, S.N.; Cord, D.; Costache, G.M.; Galatanu, M.L.; et al. The Physicochemical and Antimicrobial Properties of Silver/Gold Nanoparticles Obtained by “Green Synthesis” from Willow Bark and Their Formulations as Potential Innovative Pharmaceutical Substances. Pharmaceuticals 2023, 16, 10048. [Google Scholar] [CrossRef] [PubMed]
- Stefan, D.S.; Popescu, M.; Luntraru, C.M.; Suciu, A.; Belcu, M.; Ionescu, L.E.; Popescu, M.; Iancu, P.; Stefan, M. Comparative Study of Useful Compounds Extracted from Lophanthus Anisatus by Green Extraction. Molecules 2022, 27, 7737. [Google Scholar] [CrossRef]
- Martínez, A.; Manrique-Moreno, M.; Klaiss-Luna, M.C.; Stashenko, E.; Zafra, G.; Ortiz, C. Effect of Essential Oils on Growth Inhibition, Biofilm Formation and Membrane Integrity of Escherichia coli and Staphylococcus aureus. Antibiotics 2021, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Sequeda, N.; Cáceres, M.; Stashenko, E.E.; Hidalgo, W.; Ortiz, C. Antimicrobial and Antibiofilm Activities of Essential Oils against Escherichia coli O157:H7 and Methicillin-Resistant Staphylococcus aureus(MRSA). Antibiotics 2020, 9, 730. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.; Gîrd, C.E.; Rambu, D.; Calcan, S.I.; Cucolea, E.I.; Costache, T.; Ungureanu-Iuga, M.; Oroian, M.; Mironeasa, S.; et al. Antioxidant, Cytotoxic, and Rheological Properties of Canola Oil Extract of Usnea barbata (L.) Weber Ex F. H. Wigg from Călimani Mountains, Romania. Plants 2022, 11, 854. [Google Scholar] [CrossRef]
- Guillín, Y.; Cáceres, M.; Torres, R.; Stashenko, E.; Ortiz, C. Effect of Essential Oils on the Inhibition of Biofilm and Quorum Sensing in Salmonella Enteritidis 13076 and Salmonella Typhimurium 14028. Antibiotics 2021, 10, 1191. [Google Scholar] [CrossRef]
- Popovici, V.; Bucur, L.; Gîrd, C.E.; Popescu, A.; Matei, E.; Caraiane, A.; Botnarciuc, M. Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber Ex F. H. Wigg from Călimani Mountains, Romania. Pharmaceuticals 2022, 15, 829. [Google Scholar] [CrossRef] [PubMed]
- Popovici, V.; Matei, E.; Cozaru, G.C.; Bucur, L.; Gîrd, C.E.; Schröder, V.; Ozon, E.A.; Musuc, A.M.; Mitu, M.A.; Atkinson, I.; et al. In Vitro Anticancer Activity of Mucoadhesive Oral Films Loaded with Usnea barbata (L.) F. H. Wigg Dry Acetone Extract, with Potential Applications in Oral Squamous Cell Carcinoma Complementary Therapy. Antioxidants 2022, 11, 1934. [Google Scholar] [CrossRef] [PubMed]
- Popovici, V.; Matei, E.; Cozaru, G.; Bucur, L.; Gîrd, C.E.; Schröder, V.; Ozon, E.A.; Sarbu, I.; Musuc, A.M.; Atkinson, I.; et al. Formulation and Development of Bioadhesive Oral Films Containing Usnea barbata (L.) F. H. Wigg Dry Ethanol Extract (F-UBE-HPC) with Antimicrobial and Anticancer Properties for Potential Use in Oral Cancer Complementary Therapy. Pharmaceutics 2022, 14, 1808. [Google Scholar] [CrossRef] [PubMed]
Antibacterial Effect | Antibiofilm Effect | ||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | ||
GEN | Mean | 87.33 x | 87.07 | 86.70 x | 50.60 a, b, x | 38.33 a, x | 37.90 b, x |
SD | 0.85 | 1.90 | 1.20 | 0.70 | 0.85 | 1.20 | |
STR | Mean | 88.00 y | 86.73 | 85.00 y | 48.27 a, b, x | 43.67 a, x | 41.47 b, x |
SD | 2.10 | 1.25 | 1.00 | 1.05 | 1.05 | 0.55 | |
AMC | Mean | 96.83 a, x, y | 89.66 a | 17.73 a, x, y | 72.87 a, x | 68.53 a, x | 17.43 a, x |
SD | 1.15 | 2.45 | 0.75 | 1.65 | 1.45 | 0.55 | |
OEO1 | Mean | 92.76 a | 77.23 a | 12.70 a, x | 96.76 a | 96.33 b, x | 39.26 a, b, x |
SD | 2.25 | 1.55 | 0.80 | 1.75 | 1.65 | 0.75 | |
OEO2 | Mean | 90.40 a | 78.03 a | 39.53 a, x | 94.20 a | 89.26 a, x | 19.13 a, x |
SD | 1.60 | 1.25 | 1.25 | 1.30 | 1.75 | 0.45 | |
EEO1 | Mean | 88.50 | 86.80 | 86.46 | 53.63 a, x | 51.10 a, x | ND |
SD | 1.50 | 1.80 | 1.15 | 1.15 | 0.80 | ||
EEO2 | Mean | 87.76 | 87.63 | 86.26 | 47.27 a, x | 35.10 a, x | ND |
SD | 1.65 | 1.67 | 1.62 | 1.25 | 1.40 | ||
REO1 | Mean | 88.16 a | 87.13 b, x | 81.80 a, b, x | 40.27 a, x | 33.87 a, x | 28.10 a, x |
SD | 2.06 | 1.65 | 1.80 | 0.75 | 1.05 | 0.40 | |
REO2 | Mean | 88.13 a | 75.26 b, x | 70.73 a, b, x | 49.23 a, x | 46.67 a, x | 18.33 a, x |
SD | 1.85 | 1.25 | 1.25 | 0.75 | 1.15 | 0.35 | |
CEO1 | Mean | 91.26 a, x | 45.40 a, x | 40.13 a, x | 95.87 a, x, y | 95.40 b, x | 56.87 a, b |
SD | 1.75 | 0.90 | 0.85 | 1.85 | 1.80 | 1.85 | |
CEO2 | Mean | 84.80 a, x | 51.63 a, x | 2.70 a, x | 81.23 a, x | 77.13 a, x | ND |
SD | 1.60 | 0.85 | 0.10 | 1.66 | 1.80 | ||
CEO3 | Mean | 78.80 a, x | 47.23 a, x | ND | 83.50 y | 81.77 x | ND |
SD | 1.20 | 0.75 | 1.50 | 1.75 | |||
PEO1 | Mean | 87.50 a, x, y | 82.43 a | 67.10 a, x | 91.13 a, x, y | 88.17 b, x, y | 77.20 a, b, x, y |
SD | 1.70 | 1.55 | 1.40 | 1.80 | 1.76 | 1.40 | |
PEO2 | Mean | 85.23 a, z, w | 81.70 a | 56.83 a, x | 89.23 a, z, w | 88.67 b, z, w | 81.87 a, b, x, y |
SD | 0.45 | 0.80 | 0.95 | 1.25 | 1.65 | 1.85 | |
PEO3 | Mean | 79.73 x, z | ND | ND | 32.17 a, x, z | 23.77 a, x, z | 18.27 a, x |
SD | 2.75 | 1.30 | 1.25 | 0.75 | |||
PEO4 | Mean | 79.83 y, w | ND | ND | 38.73 a, y, w | 20.33 a, y, w | 18.17 a, y |
SD | 2.75 | 1.15 | 0.65 | 0.70 |
Antibacterial Efficacy | Antibiofilm Efficacy | ||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | ||
GEN | Mean | 89.26 x | 88.96 | 88.00 x | 76.33 a | 71.27 a | 63.90 a, x |
SD | 1.25 | 2.00 | 1.50 | 1.65 | 1.80 | 1.90 | |
STR | Mean | 89.13 y | 88.17 | 85.47 y | 72.90 | 67.87 | 67.77 y |
SD | 1.75 | 1.50 | 2.50 | 1.90 | 2.90 | 2.25 | |
AMC | Mean | 96.90 a, x, y | 84.47 a | 19.60 a, x, y | 82.47 a | 79.23 b | 52.47 a, b, x, y |
SD | 2.90 | 2.50 | 0.60 | 2.50 | 2.25 | 1.30 | |
OEO1 | Mean | 94.00 a | 79.40 a, x | 13.40 a, x | 95.13 a | 86.10 a | 2.93 a |
SD | 2.00 | 1.80 | 1.40 | 3.15 | 2.45 | 0.45 | |
OEO2 | Mean | 89.80 a | 68.90 a, x | 60.67 a, x | 95.63 a | 86.00 a | ND |
SD | 2.80 | 2.00 | 1.20 | 3.15 | 3.00 | ||
EEO1 | Mean | 86.93 | 84.23 | 83.73 x | 61.73 a, x | 54.00 a, x | ND |
SD | 2.35 | 1.25 | 1.75 | 1.85 | 2.00 | ||
EEO2 | Mean | 85.70 a | 85.47 b | 71.30 a, b, x | 52.33 a, x | 43.10 a, x | ND |
SD | 2.30 | 2.50 | 2.30 | 0.85 | 1.10 | ||
REO1 | Mean | 85.77 a | 83.87 b | 71.57 a, b | 49.23 a, x | 42.50 a, x | ND |
SD | 2.75 | 3.85 | 2.10 | 1.25 | 0.90 | ||
REO2 | Mean | 84.97 a | 82.30 b | 68.47 a, b | 30.07 a, x | 15.73 a, x | ND |
SD | 3.00 | 2.30 | 2.50 | 1.30 | 0.95 | ||
CEO1 | Mean | 92.47 a, x, y | 46.27 a, x | 22.30 a | 95.10 a, x, y | 91.20 b | 11.20 a, b |
SD | 3.50 | 2.25 | 1.30 | 3.90 | 4.20 | 0.60 | |
CEO2 | Mean | 78.10 a, x | 34.70 a, x | ND | 82.20 x | ND | ND |
SD | 2.10 | 1.70 | 3.20 | ||||
CEO3 | Mean | 76.80 a, y | 18.50 a, x | ND | 78.50 y | ND | ND |
SD | 2.80 | 0.50 | 4.50 | ||||
PEO1 | Mean | 79.00 a, x, y, z | 70.00 a, x | 45.57 a | 34.23 x, y | ND | ND |
SD | 3.00 | 2.00 | 2.50 | 1.55 | |||
PEO2 | Mean | 72.50 a, x | 43.87 a, x | 29.80 a, x | 2.90 x | ND | ND |
SD | 2.50 | 2.15 | 1.80 | 0.10 | |||
PEO3 | Mean | 72.77 y | ND | ND | 3.10 y | ND | ND |
SD | 2.80 | 0.10 | |||||
PEO4 | Mean | 71.30 a, z | 4.60 a, x | ND | 4.50 x, y | ND | ND |
SD | 2.30 | 0.20 | 0.15 |
Antibacterial Activity | Antibiofilm Activity | ||||||
---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D1 | D2 | D3 | ||
GEN | Mean | 91.80 a | 58.97 a, x | 0.81 a, x | 86.40 a | 10.50 a, x | ND |
SD | 4.20 | 2.00 | 0.06 | 3.40 | 1.25 | ||
STR | Mean | 92.80 a | 88.93 b, x | 22.53 a, b, x | 81.90 a | 60.27 a, x | ND |
SD | 5.80 | 4.30 | 1.25 | 2.90 | 2.25 | ||
AMC | Mean | 91.40 a | 77.07 b, x | 29.50 b, x | 87.73 a | 76.73 a, x | 24.40 a |
SD | 4.40 | 2.90 | 1.50 | 3.75 | 2.75 | 1.40 | |
OEO1 | Mean | 92.00 a | 70.73 a | ND | 96.00 a | 95.77 b | 27.77 a, b, x |
SD | 4.00 | 3.25 | 4.50 | 3.75 | 1.25 | ||
OEO2 | Mean | 91.40 a | 75.00 a | 28.00 a | 95.97 a | 90.83 b | 8.50 a, b, x |
SD | 5.40 | 3.50 | 1.50 | 4.05 | 5.15 | 0.60 | |
EEO1 | Mean | 87.20 | 86.70 | 86.57 | 96.07 | 95.27 | 88.07 |
SD | 3.20 | 3.30 | 2.95 | 3.85 | 2.95 | 3.50 | |
EEO2 | Mean | 87.90 | 86.47 | 84.93 | 96.10 a | 95.60 b | 86.30 a, b |
SD | 4.90 | 3.10 | 4.05 | 4.10 | 3.90 | 3.30 | |
REO1 | Mean | 86.50 a | 84.70 b | 75.73 a, b | 94.93 | 94.07 | 93.87 |
SD | 3.70 | 3.80 | 3.75 | 2.95 | 2.90 | 2.23 | |
REO2 | Mean | 87.50 a | 85.77 b | 66.10 a, b | 95.50 | 95.07 | 89.33 |
SD | 4.50 | 3.75 | 3.10 | 3.70 | 3.90 | 4.35 | |
CEO1 | Mean | 93.60 a, x | 49.30 a, x | 21.90 a | 94.80 a, x, y | 92.40 b, x | 16.00 a, b, x |
SD | 4.58 | 2.92 | 2.02 | 4.47 | 3.04 | 0.76 | |
CEO2 | Mean | 67.80 a, x | 20.50 a, x | ND | 43.90 a, x | 7.10 a, x | 4.10 a, x |
SD | 3.52 | 1.28 | 1.98 | 0.50 | 0.62 | ||
CEO3 | Mean | 59.60 a, x | 24.50 a, x | ND | 44.30 a, y | 16.40 a, x | ND |
SD | 2.53 | 1.54 | 2.38 | 1.59 | |||
PEO1 | Mean | 86.70 a | 77.44 a | 69.70 a | 74.60 a, x | 68.80 b | 57.20 a, b, x |
SD | 4.15 | 3.87 | 2.97 | 3.51 | 2.89 | 2.59 | |
PEO2 | Mean | 86.10 a | 79.20 b | 61.40 a, b | 73.20 a, y | 65.90 a | 48.40 a, x |
SD | 4.92 | 4.05 | 3.47 | 3.35 | 2.92 | 1.64 | |
PEO3 | Mean | 86.10 | ND | ND | 79.90 | ND | ND |
SD | 4.51 | 3.94 | |||||
PEO4 | Mean | 85.00 a | 3.40 b | ND | 85.80 x, y | ND | ND |
SD | 4.44 | 0.18 | 4.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, R.; Popovici, V.; Ionescu, L.E.; Ordeanu, V.; Popescu, D.M.; Ozon, E.A.; Gîrd, C.E. Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics 2023, 12, 1191. https://doi.org/10.3390/antibiotics12071191
Neagu R, Popovici V, Ionescu LE, Ordeanu V, Popescu DM, Ozon EA, Gîrd CE. Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics. 2023; 12(7):1191. https://doi.org/10.3390/antibiotics12071191
Chicago/Turabian StyleNeagu, Răzvan, Violeta Popovici, Lucia Elena Ionescu, Viorel Ordeanu, Diana Mihaela Popescu, Emma Adriana Ozon, and Cerasela Elena Gîrd. 2023. "Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils" Antibiotics 12, no. 7: 1191. https://doi.org/10.3390/antibiotics12071191
APA StyleNeagu, R., Popovici, V., Ionescu, L. E., Ordeanu, V., Popescu, D. M., Ozon, E. A., & Gîrd, C. E. (2023). Antibacterial and Antibiofilm Effects of Different Samples of Five Commercially Available Essential Oils. Antibiotics, 12(7), 1191. https://doi.org/10.3390/antibiotics12071191