Epidemiology of Antimicrobial Resistance Genes in Staphyloccocus aureus Isolates from a Public Database in a One Health Perspective—Sample Characteristics and Isolates’ Sources
Abstract
:1. Introduction
2. Results
2.1. Data Description
2.2. Resistance Gene Distribution
2.3. Cluster Analysis
3. Discussion
3.1. Relevance of the Dataset
3.2. Antimicrobial Resistance Genes
3.3. Antimicrobial Resistance Genes’ Pattern
4. Materials and Methods
4.1. NCBI Pathogen Detection Isolate Browser and Antibacterial Data (NPDIB)
4.2. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.T.G.; Feil, E.J.; Lindsay, J.A.; Peacock, S.J.; Day, N.P.J.; Enright, M.C.; Foster, T.J.; Moore, C.E.; Hurst, L.; Atkin, R.; et al. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 2004, 101, 9786–9791. [Google Scholar] [CrossRef]
- Zecconi, A.; Cesaris, L.; Liandris, E.; Daprà, V.; Piccinini, R. Role of several Staphylococcus aureus virulence factors on the inflammatory response in bovine mammary gland. Microb. Pathog. 2006, 40, 177–183. [Google Scholar] [CrossRef]
- Zecconi, A.; Scali, F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol. Lett. 2013, 150, 12–22. [Google Scholar] [CrossRef]
- Foster, T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017, 41, 430–449. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, G.; Leone, S.; Lauria, F.N.; Nicastri, E.; Wenzel, R.P. Methicillin-resistant Staphylococcus aureus: The superbug. Int. J. Infect. Dis. 2010, 14, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Solna, Sweden, 2022.
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar] [PubMed]
- Otto, M. Staphylococcal biofilms. Microbiol. Spectr. 2018, 6, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Lu, W.; Li, A.; Lu, J.; Song, C.; Xu, J.; Dong, Y.; Fu, C.; Lin, X.; Zhu, M. ANT(9)-Ic, a Novel Chromosomally Encoded Aminoglycoside. Microbiol. Spectr. 2023, 11, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside Modifying Enzymes. Drug Resist. Updat. 2010, 13, 151–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharkey, L.K.R.; Edwards, T.A.; O’Neill, A.J. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 2016, 7, e01975-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlynarczyk-Bonikowska, B.; Kowalewski, C.; Krolak-Ulinska, A.; Marusza, W. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8088. [Google Scholar] [CrossRef]
- Lannergård, J.; Norström, T.; Hughes, D. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 2009, 53, 2059–2065. [Google Scholar] [CrossRef] [Green Version]
- Gatignol, A.; Durand, H.; Tiraby, G. Bleomycin resistance conferred by a drug-binding protein. FEBS Lett. 1988, 230, 171–175. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Mizuta, S.; Suenaga, H.; Miyazaki, K. Metagenomic screening for bleomycin resistance genes. Appl. Environ. Microbiol. 2008, 74, 6803–6805. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.; Kim, S.; Ryu, S.H.; Hwang, K.Y.; Cho, Y. Structural basis for the antibiotic resistance of eukaryotic isoleucyl-trna synthetase. Mol. Cells 2020, 43, 350–359. [Google Scholar] [CrossRef]
- Burckhardt, R.M.; Escalante-Semerena, J.C. Insights into the function of the Nacetyltransferase SatA that detoxifies streptothricin in Bacillus subtilis and Bacillus anthraci. Appl. Environ. Microbiol. 2019, 85, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Moreillon, P. New and emerging treatment of Staphylococcus aureus infections in the hospital setting. Clin. Microbiol. Infect. 2008, 14, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Kehrenberg, C.; Schwarz, S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob. Agents Chemother. 2006, 50, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.D. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv. Drug Deliv. Rev. 2005, 57, 1451–1470. [Google Scholar] [CrossRef]
- Aubry-Damon, H.; Soussy, C.J.; Courvalin, P. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1998, 42, 2590–2594. [Google Scholar] [CrossRef]
- Mlynarczyk, B.; Mlynarczyk, A.; Kmera-Muszynska, M.; Majewski, S.; Mlynarczyk, G. Mechanisms of resistance to antimicrobial drugs in pathogenic Gram-positive cocci. Mini Rev. Med. Chem. 2010, 10, 928–937. [Google Scholar] [CrossRef]
- Weisblum, B. Macrolide resistance. Drug Resist. Updat. 1998, 1, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, S.; Ganjloo, S.; Pourmand, M.R.; Mashhadi, R.; Ghazvini, K. Epidemiology of efflux pumps genes mediating resistance among Staphylococcus aureus; A systematic review. Microb. Pathog. 2020, 139, 103850. [Google Scholar] [CrossRef]
- Rajer, F.; Sandegren, L. The Role of Antibiotic Resistance Genes in the Fitness Cost of Multiresistance Plasmids. mBio 2022, 13, e0355221. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Kayayama, Y.; Matsuo, M.; Aiba, Y.; Saito, M.; Hishinuma, T.; Iwamoto, A. Vancomycin-intermediate resistance in Staphylococcus aureus. J. Glob. Antimicrob. Resist. 2014, 2, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Sabokroo, N.; Wang, Y.; Hashemian, M.; Karamollahi, S.; Kouhsari, E. Systematic review and meta-analysis of the epidemiology of vancomycin-resistance Staphylococcus aureus isolates. Antimicrob. Resist. Infect. Control 2021, 10, 101. [Google Scholar] [CrossRef]
- Emaneini, M.; Bigverdi, R.; Kalantar, D.; Soroush, S.; Jabalameli, F.; Noorazar Khoshgnab, B.; Asadollahi, P.; Taherikalani, M. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Ann. Burns Fire Disasters 2013, 26, 76–80. [Google Scholar]
- Miklasińska-Majdanik, M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P.; Singh, A.K.; Shukla, S.; Agarwal, L. Prevalence of mupirocin resistant Staphylococcus aureus isolates among patients admitted to a tertiary care hospital. N. Am. J. Med. Sci. 2014, 6, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayyaz, M.; Mirza, I.A.; Ahmed, Z.; Abbasi, S.A.; Hussain, A.; Ali, S. In Vitro Susceptibility of Chloramphenicol Against Methicillin-Resistant Staphylococcus aureus. J. Coll. Physicians Surg. Pak. 2013, 23, 637–640. [Google Scholar]
- Budri, P.E.; Shore, A.C.; Coleman, D.C.; Kinnevey, P.M.; Humpreys, H.; Fitzgerald-Hughes, D. Observational cross-sectional study of nasal staphylococcal species of medical students of diverse geographical origin, prior to healthcare exposure: Prevalence of SCCmec, fusC, fusB and the arginine catabolite mobile element (ACME) in the absence of sele. BMJ Open 2018, 8, e020391. [Google Scholar] [CrossRef] [Green Version]
- Nurjadi, D.; Olalekan, A.O.; Layer, F.; Shittu, A.O.; Alabi, A.; Ghebremedhin, B.; Schaumburg, F.; Hofmann-Eifler, J.; Van Genderen, P.J.J.; Caumes, E.; et al. Emergence of trimethoprim resistance gene dfrG in Staphylococcus aureus causing human infection and colonization in sub-Saharan Africa and its import to Europe. J. Antimicrob. Chemother. 2014, 69, 2361–2368. [Google Scholar] [CrossRef] [Green Version]
- Nurjadi, D.; Schäfer, J.; Friedrich-Jänicke, B.; Mueller, A.; Neumayr, A.; Calvo-Cano, A.; Goorhuis, A.; Molhoek, N.; Lagler, H.; Kantele, A.; et al. Predominance of dfrG as determinant of trimethoprim resistance in imported Staphylococcus aureus. Clin. Microbiol. Infect. 2015, 21, 1095.e5–1095.e9. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Zetola, N.; Francis, J.S.; Nuermberger, E.L.; Bishai, W.R. Community-acquired meticillin-resistant Staphylococcus aureus: An emerging threat. Lancet Infect. Dis. 2005, 5, 275–286. [Google Scholar] [CrossRef]
- Haag, A.F.; Ross Fitzgerald, J.; Penadés, J.R. Staphylococcus aureus in animals. Gram-Positive Pathog. 2019, 7, 731–746. [Google Scholar] [CrossRef] [Green Version]
- Yee, R.; Bard, J.D.; Simner, P.J. The genotype-to-phenotype dilemma: How should laboratories approach discordant susceptibility results? J. Clin. Microbiol. 2021, 59, e00138-20. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFINder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meroni, G.; Sora, V.M.; Martino, P.A.; Sbernini, A.; Laterza, G.; Zaghen, F.; Soggiu, A.; Zecconi, A. Epidemiology of Antimicrobial Resistance Genes in Streptococcus agalactiae Sequences from a Public Database in a One Health Perspective. Antibiotics 2022, 11, 1236. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-74991-3. [Google Scholar]
Category | Source | Isolates (N) | Relative Frequency among Category (%) |
---|---|---|---|
Non-Human-Associated (NHA) | Animal | 725 | 34.7 |
Environment | 256 | 12.2 | |
Farm | 201 | 9.6 | |
Food | 909 | 43.5 | |
Human-Associated (HUA) | Blood | 4298 | 25.6 |
Respiratory sources | 7366 | 43.9 | |
Skin | 1338 | 8.0 | |
Wound | 704 | 4.2 | |
Abscess | 312 | 1.8 | |
Other districts | 1846 | 11.0 | |
Other sources | 923 | 5.5 | |
Unknown (UNK) | Unknown sources | 14,247 | 92.8 |
Other districts | 432 | 2.8 | |
Other sources | 676 | 4.4 |
Gene | TOTAL | NHA 2 | HUA | UNK |
---|---|---|---|---|
mepA | 99.9 | 100.0 a3 | 100.0 b | 99.9 a |
tet (38) | 99.0 | 99.4 a | 98.4 b | 99.6 a |
blaI | 82.1 | 72.8 a | 80.5 b | 85.0 c |
blaR1 | 72.4 | 66.4 a | 75.4 b | 70.0 c |
mecA | 67.1 | 49.9 a | 73.5 b | 62.4 c |
blaZ | 66.7 | 66.4 a | 64.5 a | 69.2 b |
fos(B) | 62.1 | 45.2 a | 71.4 b | 54.3 c |
mecR1 | 56.2 | 29.9 a | 66.7 b | 48.2 c |
parC | 51.0 | 24.2 a | 59.0 b | 45.8 c |
gyrA | 48.5 | 19.2 a | 57.1 b | 43.1 c |
murA | 44.0 | 54.8 a | 43.0 b | 43.5 b |
Abc-f | 40.4 | 34.3 a | 46.6 b | 34.4 a |
glpT | 27.3 | 42.2 a | 20.4 b | 32.9 c |
ant(9)-la | 26.8 | 6.4 a | 36.0 b | 19.5 c |
erm(A) | 26.6 | 4.7 a | 35.9 b | 19.4 c |
ant(6)-la | 21.4 | 24.8 a | 28.8 b | 12.7 c |
mecI | 20.7 | 4.0 a | 30.2 b | 12.5 c |
aadD1 | 20.5 | 12.1 a | 28.6 b | 12.9 a |
aph(3′)-lla | 20.4 | 18.1 a | 27.9 b | 12.5 c |
aac(6′)-le/aph(2”)-la | 17.8 | 12.7 a | 18.1 b | 18.2 b |
sat4 | 17.5 | 8.9 a | 25.0 b | 10.5 a |
erm(C) | 16.6 | 16.8 a | 15.4 b | 17.9 a |
blaPC1 | 16.5 | 9.9 a | 16.3 b | 17.6 c |
bleO | 15.2 | 3.2 a | 21.5 b | 9.9 c |
Tet(K) | 14.2 | 19.5 a | 10.9 b | 17.1 c |
msr(A) | 13.4 | 9.1 a | 19.7 b | 7.0 c |
mph(C) | 12.9 | 9.0 a | 19.2 b | 6.5 c |
dfrG | 10.7 | 14.3 a | 11.4 b | 9.4 c |
tet(M) | 10.6 | 11.4 a | 8.2 b | 13.1 a |
parE | 6.2 | 1.2 a | 6.3 b | 6.8 b |
rpoB | 5.3 | 3.9 a | 6.6 b | 4.1 a |
mup(A) | 4.2 | 0.5 a | 6.0 b | 2.6 c |
tet(L) | 3.2 | 8.8 a | 2.4 b | 3.2 c |
erm(B) | 3.0 | 12.7 a | 2.2 b | 2.5 b |
ileS | 2.9 | 0.4 a | 2.8 b | 3.4 c |
fex(A) | 2.4 | 9.8 a | 2.2 b | 1.5 c |
fusC | 2.4 | 0.2 a | 2.1 b | 2.9 c |
catA | 2.3 | 4.4 a | 2.9 b | 1.5 c |
dfrS1 | 2.0 | 1.0 a | 2.3 b | 1.8 c |
Antibiotic Class | Gene | Cluster | ||||||
---|---|---|---|---|---|---|---|---|
ARG (n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
aminoglycosides | ant(9)-la (9179) | 0.3% | 0.3% | 0.1% | 95.7% | 20% | 94.7% | 9.4% |
ant(6)-la (7310) | 10.6% | 0.1% | 0% | 0.3% | 94.3% | 99.2% | 8.7% | |
aadD1 (7033) | 17.7% | 1.1% | 3.3% | 70.5% | 19.9% | 23.6% | 5.3% | |
aph(3′)-lla (6984) | 0.7% | 0.5% | 0.2% | 2.9% | 96.6% | 99.3% | 7.9% | |
aac(6′)-le/aph(2”)-la (6102) | 18.3% | 1.7% | 4% | 23.3% | 10.6% | 92.1% | 14.3% | |
antibiotics targeting protein synthesis | Abc-f (13,816) | 49.7% | 34.2% | 52.1% | 59.3% | 53.2% | 24.3% | 13.3% |
diaminopyrimidines | dfrG (3657) | 16.4% | 2.2% | 6.2% | 0.8% | 6.9% | 64.2% | 9% |
dfrS1 (681) | 2.7% | 0.6% | 1.4% | 4.9% | 0.7% | 1.1% | 1.3% | |
fluoroquinolones | parC (17,446) | 97.7% | 13.3% | 1.4% | 92.2% | 64.6% | 96.0% | 18.7% |
gyrA (16,601) | 95.0% | 10.3% | 0.2% | 91.4% | 61.1% | 95.8% | 14.6% | |
parE (2126) | 15.2% | 0.8% | 0.3% | 13.5% | 3.7% | 14.3% | 0.3% | |
fusidanes | fusC (807) | 2.7% | 3.1% | 7.6% | 0.9% | 1.2% | 0.7% | 0.7% |
glycopeptides | bleO (5197) | 5.9% | 0.1% | 0.6% | 70.1% | 16.2% | 1% | 0.6% |
mupirocines | mup(A) (1421) | 5% | 1.1% | 1.5% | 4.0% | 7.0% | 23.1% | 0.4% |
ileS (1000) | 1.6% | 0.4% | 0.1% | 11.9% | 1.5% | 4.9% | 0.4% | |
nucleosides | sat4 (5986) | 0.7% | 0.3% | 0% | 1.8% | 87.2% | 98.7% | 1.4% |
penams | mecA (22,968) | 94.4% | 18.2% | 32.0% | 93.3% | 91.3% | 98.2% | 53.5% |
blaZ (22,850) | 96.1% | 0.4% | 99.4% | 56.5% | 97.6% | 27.1% | 60.1% | |
blaPC1 (5641) | 7.9% | 0.1% | 0.2% | 10.7% | 1.7% | 66.2% | 39.3% | |
phenicols | fex(A) (806) | 10% | 0.4% | 0.8% | 0% | 0% | 0% | 2.6% |
catA (795) | 1.5% | 0.4% | 0.9% | 1.6% | 2.3% | 4.6% | 4.6% | |
phosphonic acid | fos(B) (21,257) | 33.1% | 51% | 64.2% | 96.9% | 93.3% | 99.5% | 34.1% |
murA (15,048) | 10.3% | 48.4% | 5.5% | 16.1% | 57.6% | 73.3% | 93.8% | |
glpT (9354) | 0.3% | 34.3% | 1.7% | 8% | 2% | 0.3% | 92.6% | |
rifamycines | rpoB (1819) | 3.1% | 1.8% | 0.9% | 13.5% | 2.5% | 25.1% | 1.6% |
macrolides | mph(C) (4401) | 4.2% | 0.6% | 0.6% | 6.2% | 87.7% | 1.9% | 0.3% |
msr(A) (4571) | 4.4% | 0.9% | 1.5% | 6.4% | 87.8% | 2.1% | 1.3% | |
erm(A) (112) | 0.3% | 0.2% | 0.1% | 95.6% | 19.9% | 95.2% | 8.5% | |
erm(C) (5685) | 50.7% | 4.8% | 10.5% | 7.8% | 11.4% | 3.3% | 15.7% | |
erm(B) (1015) | 2.5% | 0.9% | 1% | 0% | 0.2% | 0% | 9.8% | |
tetracyclines | tet (38) (33,893) | 99.6% | 99.9% | 100% | 99.6% | 93.9% | 98.5% | 100% |
tet(k) (4869) | 8.5% | 3.4% | 9.1% | 3.5% | 8.4% | 40.2% | 30.7% | |
tet (L) (1087) | 9.9% | 0.3% | 0.7% | 0.3% | 2.6% | 0.1% | 4.7% | |
tet(m) (3621) | 1.1% | 1.6% | 1.6% | 11.9% | 1% | 43.9% | 22.3% | |
mepA (34,205) | 99.9% | 100% | 99.9% | 100% | 100% | 100% | 99.8% |
Source of the Isolates | Cluster | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
NHA 1 | 189 (3.5%) a2 | 528 (13.8%) a | 417 (8.5%) a | 66 (1.1%) a | 192 (4.6%) a | 4 (0.2%) a | 695 (8.7%) a |
HUA | 2361 (43.8%) b | 1643 (43%) b | 1993 (40.6%) b | 3735 (63.8%) b | 2916 (69.1%) b | 1497 (72.5%) b | 2642 (33.1%) b |
UNK | 2845 (52.7%) c | 1653 (43.2%) c | 2494 (50.9%) c | 2050 (35%) c | 1110 (26.3%) c | 564 (27.3%) c | 4639 (58.2%) c |
TOT | 5395 (100%) | 3824 (100%) | 4904 (100%) | 5851 (100%) | 4218 (100%) | 2065 (100%) | 7976 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaghen, F.; Sora, V.M.; Meroni, G.; Laterza, G.; Martino, P.A.; Soggiu, A.; Bonizzi, L.; Zecconi, A. Epidemiology of Antimicrobial Resistance Genes in Staphyloccocus aureus Isolates from a Public Database in a One Health Perspective—Sample Characteristics and Isolates’ Sources. Antibiotics 2023, 12, 1225. https://doi.org/10.3390/antibiotics12071225
Zaghen F, Sora VM, Meroni G, Laterza G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. Epidemiology of Antimicrobial Resistance Genes in Staphyloccocus aureus Isolates from a Public Database in a One Health Perspective—Sample Characteristics and Isolates’ Sources. Antibiotics. 2023; 12(7):1225. https://doi.org/10.3390/antibiotics12071225
Chicago/Turabian StyleZaghen, Francesca, Valerio Massimo Sora, Gabriele Meroni, Giulia Laterza, Piera Anna Martino, Alessio Soggiu, Luigi Bonizzi, and Alfonso Zecconi. 2023. "Epidemiology of Antimicrobial Resistance Genes in Staphyloccocus aureus Isolates from a Public Database in a One Health Perspective—Sample Characteristics and Isolates’ Sources" Antibiotics 12, no. 7: 1225. https://doi.org/10.3390/antibiotics12071225
APA StyleZaghen, F., Sora, V. M., Meroni, G., Laterza, G., Martino, P. A., Soggiu, A., Bonizzi, L., & Zecconi, A. (2023). Epidemiology of Antimicrobial Resistance Genes in Staphyloccocus aureus Isolates from a Public Database in a One Health Perspective—Sample Characteristics and Isolates’ Sources. Antibiotics, 12(7), 1225. https://doi.org/10.3390/antibiotics12071225