In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates
Abstract
:1. Introduction
2. Results
2.1. Activity on Reference Strains
2.2. Activity on Gram-Positive Isolates
2.3. Activity on Enterobacterales
2.4. Activity on Non-Fermenters
2.5. Colistin-Resistant Isolates
2.6. Fluoroquinolone-Resistant Isolates
3. Discussion
4. Materials and Methods
4.1. The Tested Compounds
4.2. Bacterial Isolates
4.3. Bacterial Identification and Susceptibility Testing of Isolates
4.4. Minimum Bactericidal Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial Resistance Crisis: Causes, Consequences, and Management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Al Mir, H.; Rafei, R.; Dabboussi, F.; Madec, J.Y.; Haenni, M.; Hamze, M. Epidemiology of antimicrobial resistance in Lebanese extra-hospital settings: An overview. J. Glob. Antimicrob. Resist. 2019, 17, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Boyd, N.K.; Teng, C.; Frei, C.R. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Front. Cell. Infect. Microbiol. 2021, 11, 684515. [Google Scholar] [CrossRef]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [Green Version]
- Baumann, S.; Herrmann, J.; Raju, R.; Steinmetz, H.; Mohr, K.I.; Hüttel, S.; Harmrolfs, K.; Stadler, M.; Müller, R. Cystobactamids: Myxobacterial Topoisomerase Inhibitors Exhibiting Potent Antibacterial Activity. Angew. Chem. Int. Ed. 2014, 53, 14605–14609. [Google Scholar] [CrossRef]
- Mitscher, L.A.; Juvarkar, J.V.; Rosenbrook, W.; Andres, W.W.; Schenck, J.R.; Egan, R.S. Structure of chelocardin, a novel tetracycline antibiotic. J. Am. Chem. Soc. 1970, 92, 6070–6071. [Google Scholar] [CrossRef]
- Groß, S.; Schnell, B.; Haack, P.A.; Auerbach, D.; Müller, R. In vivo and in vitro reconstitution of unique key steps in cystobactamid antibiotic biosynthesis. Nat. Commun. 2021, 12, 1696. [Google Scholar] [CrossRef] [PubMed]
- Hüttel, S.; Testolin, G.; Herrmann, J.; Planke, T.; Gille, F.; Moreno, M.; Stadler, M.; Brönstrup, M.; Kirschning, A.; Müller, R. Discovery and Total Synthesis of Natural Cystobactamid Derivatives with Superior Activity against Gram-Negative Pathogens. Angew. Chem. Int. Ed. 2017, 56, 12760–12764. [Google Scholar] [CrossRef] [PubMed]
- Testolin, G.; Cirnski, K.; Rox, K.; Prochnow, H.; Fetz, V.; Grandclaudon, C.; Mollner, T.; Baiyoumy, A.; Ritter, A.; Leitner, C.; et al. Synthetic studies of cystobactamids as antibiotics and bacterial imaging carriers lead to compounds with high in vivo efficacy. Chem Sci. 2019, 11, 1316–1334. [Google Scholar] [CrossRef] [Green Version]
- Lukežič, T.; Lešnik, U.; Podgoršek, A.; Horvat, J.; Polak, T.; Šala, M.; Jenko, B.; Raspor, P.; Herron, P.R.; Hunter, I.S.; et al. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: A platform for producing novel tetracycline antibiotics. Microbiology 2013, 159, 2524–2532. [Google Scholar] [CrossRef] [Green Version]
- Stepanek, J.J.; Lukežič, T.; Teichert, I.; Petković, H.; Bandow, J.E. Dual mechanism of action of the atypical tetracycline chelocardin. Biochim. Biophys. Acta 2016, 1864, 645–654. [Google Scholar] [CrossRef]
- Hennessen, F.; Miethke, M.; Zaburannyi, N.; Loose, M.; Lukežič, T.; Bernecker, S.; Hüttel, S.; Jansen, R.; Schmiedel, J.; Fritzenwanker, M.; et al. Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin. Antibiotics 2020, 9, 619. [Google Scholar] [CrossRef] [PubMed]
- Colomb-Cotinat, M.; Lacoste, J.; Brun-Buisson, C.; Jarlier, V.; Coignard, B.; Vaux, S. Estimating the morbidity and mortality associated with infections due to multidrug-resistant bacteria (MDRB), France, 2012. Antimicrob. Resist. Infect. Control. 2016, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. 2017. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 29 June 2023).
- Franke, R.; Overwin, H.; Häussler, S.; Brönstrup, M.; Traxler, M.F. Targeting Bacterial Gyrase with Cystobactamid, Fluoroquinolone, and Aminocoumarin Antibiotics Induces Distinct Molecular Signatures in Pseudomonas aeruginosa. mSystems 2021, 6, e00610–e00621. [Google Scholar] [CrossRef]
- Lukežič, T.; Fayad, A.A.; Bader, C.; Harmrolfs, K.; Bartuli, J.; Groß, S.; Lešnik, U.; Hennessen, F.; Herrmann, J.; Pikl, Š.; et al. Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics. ACS Chem. Biol. 2019, 14, 468–477. [Google Scholar] [CrossRef]
- Lešnik, U.; Lukežič, T.; Podgoršek, A.; Horvat, J.; Polak, T.; Šala, M.; Jenko, B.; Harmrolfs, K.; Ocampo-Sosa, A.; Martínez-Martínez, L.; et al. Construction of a new class of tetracycline lead structures with potent antibacterial activity through biosynthetic engineering. Angew. Chem. (Int. Ed Engl.) 2015, 54, 3937–3940. [Google Scholar] [CrossRef] [PubMed]
- Elgaher, W.A.M.; Hamed, M.M.; Baumann, S.; Herrmann, J.; Siebenbürger, L.; Krull, J.; Cirnski, K.; Kirschning, A.; Brönstrup, M.; Müller, R.; et al. Cystobactamid 507: Concise Synthesis, Mode of Action, and Optimization toward More Potent Antibiotics. Chem. Eur. J. 2020, 26, 7219–7225. [Google Scholar] [CrossRef]
- Michalczyk, E.; Hommernick, K.; Behroz, I.; Kulike, M.; Pakosz-Stępień, Z.; Mazurek, L.; Seidel, M.; Kunert, M.; Santos, K.; von Moeller, H.; et al. Molecular mechanism of topoisomerase poisoning by the peptide antibiotic albicidin. Nat. Catal. 2023, 6, 52–67. [Google Scholar] [CrossRef]
- Kleebauer, L.; Zborovsky, L.; Hommernick, K.; Seidel, M.; Weston, J.B.; Süssmuth, R.D. Overcoming AlbD Protease Resistance and Improving Potency: Synthesis and Bioactivity of Antibacterial Albicidin Analogues with Amide Bond Isosteres. Org. Lett. 2021, 23, 7023–7027. [Google Scholar] [CrossRef] [PubMed]
- Domenico, P.; Salo, R.J.; Cross, A.S.; Cunha, B.A. Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect. Immun. 1994, 62, 4495–4499. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Martín, F.; D’Amelio, N. Drug resistance: An incessant fight against evolutionary strategies of survival. Microbiol. Res. 2023, 14, 507–542. [Google Scholar] [CrossRef]
- Hobby, C.R.; Herndon, J.L.; Morrow, C.A.; Peters, R.E.; Symes, S.J.K.; Giles, D.K. Exogenous fatty acids alter phospholipid composition, membrane permeability, capacity for biofilm formation, and antimicrobial peptide susceptibility in Klebsiella pneumoniae. Microbiologyopen 2019, 8, e00635. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Vivas, J.; Chapartegui-González, I.; Fernández-Martínez, M.; González-Rico, C.; Fortún, J.; Escudero, R.; Marco, F.; Linares, L.; Montejo, M.; Aranzamendi, M.; et al. Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep. 2019, 9, 8928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Whitfield, C.; Williams, D.M.; Kelly, S.D. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 2020, 295, 10593–10609. [Google Scholar] [CrossRef]
- Post, S.J.; Shapiro, J.A.; Wuest, W.M. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. Medchemcomm 2019, 10, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Benamara, H.; Rihouey, C.; Jouenne, T.; Alexandre, S. Impact of the biofilm mode of growth on the inner membrane phospholipid composition and lipid domains in Pseudomonas aeruginosa. Biochim. Biophys. Acta 2011, 1808, 98–105. [Google Scholar] [CrossRef] [Green Version]
- EUCAST. European Committee on Antimicrobial Susceptibility Testing. 2022. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 29 June 2023).
MIC (μg/mL) | MBC (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Reference Strains | CN-861-2 | CN-DM-861 | CHD | CDCHD | CN-861-2 | CN-DM-861 | CHD | CDCHD |
Escherichia coli ATCC25922 | 0.06 | 0.0019 | 0.5 | 0.25 | 0.125 | 0.015 | 2 | 2 |
Klebsiella pneumoniae ATCC15380 | 4 | 0.5 | 32 | 4 | ND a | ND | ND | ND |
Klebsiella pneumoniae ATCC700603 | 64 | 32 | 8 | 4 | 512 | 256 | 16 | 16 |
Enterobacter cloacae ATCC13047 | 8 | 0.125 | 2 | 1 | ND | ND | ND | ND |
Staphylococcus aureus ATCC25923 | 0.25 | 0.25 | 2 | 4 | 0.5 | 0.25 | 16 | 8 |
Staphylococcus aureus ATCC29213 | 0.125 | 0.5 | 2 | 2 | 0.5 | 1 | 256 | 4 |
Staphylococcus aureus NCTC12493 | ≤0.06 | ≤0.06 | 1 | 1 | 0.06 | 0.125 | 8 | 2 |
Enterococcus faecalis ATCC29212 | 0.25 | 0.25 | 2 | 1 | 1 | 1 | 512 | 128 |
Pseudomonas aeruginosa ATCC27853 | 0.5 | 0.25 | 8 | 4 | 1 | 2 | 512 | 32 |
Acinetobacter baumannii ATCC17978 | 2 | 1 | 8 | 2 | ND | ND | ND | ND |
Species | MICs (µg/mL) | ||||
---|---|---|---|---|---|
# of Tested Isolates | CN-861 | CN-DM-861 | CHD | CDCHD | |
Streptococcus pneumoniae | 2 | 0.25–2 | 0.5 | 0.5–4 | 2–4 |
Enterococcus faecalis ATCC29212 | 1 | 0.25 | 0.25 | 1 | 2 |
Enterococcus faecium vanA | 4 | 1–4 | 1–8 | 4–8 | 2–4 |
Enterococcus faecium vanB | 2 | 0.5 | 0.5–2 | 4–8 | 2–4 |
Enterococcus faecium Tet(M) | 2 | ≤0.125–0.5 | ≤0.125–0.25 | 4–8 | 2–8 |
Staphylococcus capitis | 1 | 0.25 | 0.125 | 2 | 1 |
Staphylococcus aureus ATCC25923 | 1 | 0.25 | 0.25 | 1 | 4 |
Staphylococcus aureus ATCC29213 | 1 | 0.25 | 0.5 | 2 | 2 |
Staphylococcus aureus NCTC12493 | 1 | 0.5 | ≤0.125 | 1 | 1 |
Staphylococcus aureus mecA | 2 | ≤0.125 | ≤0.125 | 4 | 4 |
Staphylococcus aureus mecC | 1 | ≤0.125 | 0.5 | 4 | 4 |
Staphylococcus epidermidis mecA | 3 | ≤0.125 | ≤0.125 | 2–4 | 2–4 |
Corynebacterium sp. | 1 | 8 | 8 | 1 | 0.5 |
Nocardia asteroides | 3 | 64–>128 | >128 | 4–8 | 2–4 |
Nocardia farcinica | 1 | >128 | >128 | 8 | 4 |
Species | MIC Range [MIC50] (µg/mL) | MIC90 (µg/mL) | Percentage of Resistant Isolates (%) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | CN-861-2 | CN-DM-861 | CHD | CDCHD | CN-861-2 | CN-DM-861 | CDCHD | CHD | AMX | AMC | PRL | IMP | MER | ERT | CAZ | CTX | FEP | FF | CIP | LEV | TGC | CT | |
E. coli a | 50 | 0.06–256 [0.25] | 0.0019–256 [0.25] | 0.25–32 [2] | 0.25–16 [1] | 2 | 2 | 16 | 8 | 100 | 100 | 100 | 68 | 81 | 87 | 100 | 96 | 100 | 25 | ND | 81 | 12.5 | 43 |
K. pneumoniae b | 56 | 0.5–256 [128] | 0.25–256 [128] | 0.5–32 [8] | 0.5–32 [2] | 256 | 256 | 16 | 32 | 100 | 100 | 100 | 33 | 90 | 100 | 100 | 100 | 95 | 90 | ND | 90 | 81 | 46 |
K. oxytoca c | 22 | 0.25–4 [0.25] | 0.25–2 [0.25] | 0.25–32 [0.5] | 0.25–32 [1] | 2 | 2 | 8 | 16 | 100 | 28 | 100 | 0 | ND | 0 | 28 | 30 | 23 | ND n | 7 | 7 | ND | ND |
K. variicola d | 5 | 0.5–64 [8] | 0.25 [0.25] | 0.5–2 [1] | 1–2 [1] | 16 | 0.25 | 2 | 2 | 100 | 0 | 100 | 0 | ND | 0 | 0 | 0 | 0 | ND | 0 | 0 | ND | ND |
Enterobacter sp. e | 28 | 0.25–64 [1] | 0.25–2 [0.25] | 1–16 [4] | 0.5–32 [4] | 64 | 2 | 16 | 16 | 100 | 100 | 100 | 72 | 72 | 90 | 100 | 100 | 90 | 72 | ND | 63 | 9 | 45 |
C. freundii f | 20 | 0.25–1 [0.25] | 0.25–1 [0.25] | 1–16 [4] | 0.5–4 [1] | 1 | 1 | 4 | 8 | 100 | 100 | 100 | 87 | 87 | 100 | 100 | 100 | 100 | 6 | ND | 93 | 12.5 | 62.5 |
M. morganii g | 7 | 2–64 [4] | 0.5–1 [1] | 4–16 [4] | 2–32 [8] | 64 | 1 | 32 | 16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ND | 25 | 25 | 100 |
Salmonella sp. h | 11 | 0.25–5 [0.5] | 0.25–5 [0.25] | 0.5–4 [2] | 0.25–2 [1] | 0.25 | 0.25 | 2 | 4 | ND | 40 | 0 | 0 | 0 | 0 | ND | 0 | 0 | 40 | 20 | ND | ND | ND |
S. marcescens i | 12 | 1–128 [16] | 0.25–32 [0.25] | 0.25–4 [2] | 0.5–32 [2] | 128 | 32 | 32 | 4 | 100 | 100 | 100 | 80 | 80 | 100 | 100 | 100 | 100 | 40 | ND | 100 | 0 | 80 |
S. flexneri j | 1 O | 0.5 | 0.5 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ND | ND | ||||
K. aerogenes k | 4 O | 0.5–8 | ND | 2–16 | 8–16 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||
C. brakii k | 2 | 0.25–4 | 0.25–2 | 4–16 | 2 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||
P. stuartii l | 1 | 128 | 128 | 4 | 8 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND | ||||
P. mirabilis m | 4 | 8–32 | 8–32 | 1–4 | 4–16 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 100 | 100 | 0 | 0 | 100 | 0 | 100 |
Species | MIC Range [MIC50] (µg/mL) | MIC90 (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|
n | CN-861-2 | CN-DM-861 | CHD | CDCHD | CN-861-2 | CN-DM-861 | CHD | CDCHD | |
P. aeruginosa | 13 a | 0.5–256 [4] | 0.5–32 [2] | 16–256 [64] | 32–256 [32] | 8 | 8 | 256 | 256 |
A. baumannii | 22 a | 0.5–256 [8] | 0.25–256 [4] | 16–64 [8] | 2–64 [2] | 128 | 128 | 32 | 64 |
S. maltophilia | 7 a | 0.5–256 [4] | 0.5–64 [2] | 0.5–32 [1] | 0.5–4 [1] | 128 | 32 | 16 | 4 |
A. xylosidans | 4 b | 128 | 128 | 16–32 | 4–16 | ||||
B. cepacia | 2 b | 256 | 128–256 | 8 | 4–8 |
Species | # of Isolates | Resistance Mechanism | MIC Range [MIC50] (µg/mL) | ||||
---|---|---|---|---|---|---|---|
CN-861-2 | CN-DM-861 | CHD | CDCHD | Colistin | |||
K. pneumoniae | 5 | mgrB mutation | 256 | 256 | 0.5–8 [4] | 4–32 [16] | 8–128 [64] |
E. coli | 8 | Plasmid-mediated resistance (mcr-1) | 0.25–16 [0.25] | 0.25–4 [0.25] | 0.25–4 [0.5] | 0.25–8 [8] | 4–8 [4] |
E. coli | 11 | Chromosomal resistance to colistin a | 0.25–32 [0.25] | 0.25–2 [0.25] | 0.5–4 [1] | 0.25–16 [0.5] | 4–16 [4] |
Species | Isolate # | ß-lactam Resistance | MIC Range [MIC50] (µg/mL) | |||||
---|---|---|---|---|---|---|---|---|
CN-861-2 | CN-DM-861 | CHD | CDCHD | CIP a | LEV b | |||
K. pneumoniae | 4 | 2 NDM, 1 CTX-M-15, 1 OXA-48 | 16–>128 [>128] | 2–>128 [>128] | 4–32 [32] | 2–8 [2] | >4 | >4 |
K. oxytoca | 1 | OXA-48 LIKE | <0.25 | <0.25 | 8 | 2 | >4 | >4 |
E. coli | 8 | 6 NDM, 2 CTX-M-15 | <0.25 | <0.25 | 1–8 [2] | 0.5–2 [0.5] | >4 | >4 |
E. cloacae | 3 | 1 Hyper-AmpC, 1 VIM, and 1 OXA-48 | <0.25 | <0.25 | 1–16 [1] | 0.5 [1] | >4 | >4 |
C. freundii | 2 | OXA-48 LIKE | <0.25–0.5 | <0.25–0.5 | 8–16 | 1 | >4 | >4 |
C. brakii | 1 | OXA-48 LIKE | <0.25 | <0.25 | 4 | 2 | >4 | >4 |
MICs | Cystobactamids | Chelocardins | ||
---|---|---|---|---|
CN-861-2 | CN-DM-861 | CDCHD | CHD | |
MIC ≤ 2 µg/mL | K. oxytoca E. coli C. freundii E. cloacae Salmonella Shigella | K. oxytoca K. variicola E. coli C. freundii E. cloacae Salmonella Shigella M. morganii | K. oxytoca K. variicola E. coli C. freundii E. cloacae Salmonella Shigella S. maltophilia | K. oxytoca E. coli Salmonella Shigella S. maltophilia P. mirabilis P. stuarti N. asteroides |
2 µg/mL < MIC ≤ 16 µg/mL | K. variicola M. morganii P. mirabilis P. aeruginosa A. baumannii S. maltophilia | A. baumannii | K. pneumoniae M. morganii P. mirabilis P. stuarti A. baumannii N. asteroides N. farcinica B. cepacia | K. pneumoniae M. morganii P. stuarti C. freundii E. cloacae A. baumannii N. farcinica B. cepacia |
MIC > 16 µg/mL | K. pneumoniae P. stuarti B. cepacia N. asteroides N. farcinica | K. pneumoniae N. asteroides N. farcinica | P. aeruginosa | P. aeruginosa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rima, M.; Pfennigwerth, N.; Cremanns, M.; Cirnski, K.; Oueslati, S.; Gatermann, S.G.; d’Amélio, N.; Herrmann, J.; Müller, R.; Naas, T. In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates. Antibiotics 2023, 12, 1265. https://doi.org/10.3390/antibiotics12081265
Rima M, Pfennigwerth N, Cremanns M, Cirnski K, Oueslati S, Gatermann SG, d’Amélio N, Herrmann J, Müller R, Naas T. In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates. Antibiotics. 2023; 12(8):1265. https://doi.org/10.3390/antibiotics12081265
Chicago/Turabian StyleRima, Mariam, Niels Pfennigwerth, Martina Cremanns, Katarina Cirnski, Saoussen Oueslati, Sören G. Gatermann, Nicola d’Amélio, Jennifer Herrmann, Rolf Müller, and Thierry Naas. 2023. "In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates" Antibiotics 12, no. 8: 1265. https://doi.org/10.3390/antibiotics12081265
APA StyleRima, M., Pfennigwerth, N., Cremanns, M., Cirnski, K., Oueslati, S., Gatermann, S. G., d’Amélio, N., Herrmann, J., Müller, R., & Naas, T. (2023). In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates. Antibiotics, 12(8), 1265. https://doi.org/10.3390/antibiotics12081265