Antimicrobial-Resistant Bacteria from Free-Living Green Turtles (Chelonia mydas)
Abstract
:1. Introduction
2. Results
2.1. Isolated Bacteria of Neck Samples
2.2. Isolated Bacteria of Cloaca Samples
2.3. Antimicrobial Bacterial-Resistant Isolates from Neck Samples
2.4. Antimicrobial Bacterial Resistant Isolates from Cloaca Samples
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Sample Collection
4.3. Isolation of Bacteria
4.4. MALDI-TOF MS Identification
4.5. 16S rRNA Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Boeckel, T.P.V.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- ONeill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nation. The Review on Antimicrobial Resistance. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 8 January 2023).
- Kraker, M.E.A.D.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 17 April 2023).
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buschhardt, T.; Günther, T.; Skjerdal, T.; Torpdahl, M.; Gethmann, J.; Filippitzi, M.-E.; Maassen, C.; Jore, S.; Ellis-Iversen, J.; Filter, M.; et al. A One Health Glossary to Support Communication and Information Exchange between the Human Health, Animal Health and Food Safety Sectors. One Health 2021, 13, 100263. [Google Scholar] [CrossRef]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- OHHLEP; Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; Chaudhary, A.; et al. One Health: A New Definition for a Sustainable and Healthy Future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
- FAO; UNEP; WHO; WOAH. One Health Joint Plan of Action, 2022–2026. In Working Together for the Health of Humans, Animals, Plants and the Environment; World Organisation for Animal Health: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- WOAH. Working together for the health of humans, animals, plants and the environment. One Health Joint Plan of Action (2022–2026). Bulletin de l’OIE 2022, 2. [Google Scholar] [CrossRef]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The Natural Indicator of Environmental Pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Domiciano, I.G.; Domit, C.; Bracarense, A.P.F.R.L. The Green Turtle Chelonia mydas as a Marine and Coastal Environmental Sentinels: Anthropogenic Activities and Diseases. Semin. Ciências Agrárias 2017, 38, 3417–3434. [Google Scholar] [CrossRef] [Green Version]
- Read, T.C.; Wantiez, L.; Werry, J.M.; Farman, R.; Petro, G.; Limpus, C.J. Migrations of Green Turtles (Chelonia mydas) between Nesting and Foraging Grounds across the Coral Sea. PLoS ONE 2014, 9, e100083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuschke, S.G. What Lives on and in the Sea Turtle? A Literature Review of Sea Turtle Bacterial Microbiota. Anim. Microbiome. 2022, 4, 52. [Google Scholar] [CrossRef]
- Al-Bahry, S.N.; Al-Zadjali, M.A.; Mahmoud, I.Y.; Elshafie, A.E. Biomonitoring Marine Habitats in Reference to Antibiotic Resistant Bacteria and Ampicillin Resistance Determinants from Oviductal Fluid of the Nesting Green Sea Turtle, Chelonia mydas. Chemosphere 2012, 87, 1308–1315. [Google Scholar] [CrossRef]
- Ciccarelli, S.; Valastro, C.; Bello, A.D.; Paci, S.; Caprio, F.; Corrente, M.L.; Trotta, A.; Franchini, D. Diagnosis and Treatment of Pulmonary Disease in Sea Turtles (Caretta caretta). Animals 2020, 10, 1355. [Google Scholar] [CrossRef]
- Hamann, M.; Godfrey, M.; Seminoff, J.; Arthur, K.; Barata, P.; Bjorndal, K.; Bolten, A.; Broderick, A.; Campbell, L.; Carreras, C.; et al. Global Research Priorities for Sea Turtles: Informing Management and Conservation in the 21st Century. Endanger. Species Res. 2010, 11, 245–269. [Google Scholar] [CrossRef] [Green Version]
- León, Y.; Bjorndal, K. Selective Feeding in the Hawksbill Turtle, an Important Predator in Coral Reef Ecosystems. Mar. Ecol. Prog. Ser. 2002, 245, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, A.A.; Lutz, P.L. Marine Turtles as Sentinels of Ecosystem Health: Is Fibropapillomatosis an Indicator? Ecohealth 2004, 1, 275–283. [Google Scholar] [CrossRef]
- Fernandes, M.; Grilo, M.L.; Carneiro, C.; Cunha, E.; Tavares, L.; Patino-Martinez, J.; Oliveira, M. Antibiotic Resistance and Virulence Profiles of Gram-Negative Bacteria Isolated from Loggerhead Sea Turtles (Caretta caretta) of the Island of Maio, Cape Verde. Antibiotics 2021, 10, 771. [Google Scholar] [CrossRef]
- Ahasan, M.D.S.; Picard, J.; Elliott, L.; Kinobe, R.; Owens, L.; Ariel, E. Evidence of Antibiotic Resistance in Enterobacteriales Isolated from Green Sea Turtles, Chelonia mydas on the Great Barrier Reef. Mar. Pollut. Bull. 2017, 120, 18–27. [Google Scholar] [CrossRef]
- Pace, A.; Dipineto, L.; Fioretti, A.; Hochscheid, S. Loggerhead Sea Turtles as Sentinels in the Western Mediterranean: Antibiotic Resistance and Environment-Related Modifications of Gram-Negative Bacteria. Mar. Pollut. Bull. 2019, 149, 110575. [Google Scholar] [CrossRef]
- Trotta, A.; Marinaro, M.; Sposato, A.; Galgano, M.; Ciccarelli, S.; Paci, S.; Corrente, M. Antimicrobial Resistance in Loggerhead Sea Turtles (Caretta caretta): A Comparison between Clinical and Commensal Bacterial Isolates. Animals 2021, 11, 2435. [Google Scholar] [CrossRef] [PubMed]
- Dierig, A.; Frei, R.; Egli, A. The Fast Route to Microbe Identification. Pediatr. Infect. Dis. J. 2015, 34, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, D.S.; Estima, S.C.; Gandra, T.B.R.; Silva, A.P.; Bugoni, L.; Swimmer, Y.; Seminoff, J.A.; Secchi, E.R. Long-Term Spatial and Temporal Patterns of Sea Turtle Strandings in Southern Brazil. Mar. Biol. 2016, 163, 247. [Google Scholar] [CrossRef]
- Cantor, M.; Barreto, A.S.; Taufer, R.M.; Giffoni, B.; Castilho, P.V.; Maranho, A.; Beatriz, C.; Kolesnikovas, C.; Godoy, D.; Rogério, D.W.; et al. High Incidence of Sea Turtle Stranding in the Southwestern Atlantic Ocean. ICES J. Mar. Sci. 2020, 77, 1864–1878. [Google Scholar] [CrossRef]
- Taji, A.; Heidari, H.; Ebrahim-Saraie, H.S.; Sarvari, J.; Motamedifar, M. High Prevalence of Vancomycin and High-Level Gentamicin Resistance in Enterococcus Faecalis Isolates. Acta Microbiol. Imm. H 2018, 66, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Hernndez, G.; Caballero, M.; Garca, F. Aerobic bacterial flora of nesting green turtles (Chelonia mydas) from tortuguero national park, costa rica. J. Zoo Wildl. Med. 2006, 37, 549–552. [Google Scholar] [CrossRef]
- Ahn, Y.; Jung, J.Y.; Kweon, O.; Veach, B.T.; Khare, S.; Gokulan, K.; Piñeiro, S.A.; Cerniglia, C.E. Impact of Chronic Tetracycline Exposure on Human Intestinal Microbiota in a Continuous Flow Bioreactor Model. Antibiotics 2021, 10, 886. [Google Scholar] [CrossRef] [PubMed]
- Rivero, M.; Alonso, J.; Ramón, M.F.; Gonzales, N.; Pozo, A.; Marín, I.; Navascués, A.; Juanbeltz, R. Infections Due to Cellulosimicrobium Species: Case Report and Literature Review. BMC Infect. Dis. 2019, 19, 816. [Google Scholar] [CrossRef]
- Zhang, H.; He, C.; Tian, R.; Wang, R. A Case Report of the Differential Diagnosis of Cellulosimicrobium cellulans-Infected Endocarditis Combined with Intracranial Infection by Conventional Blood Culture and Second-Generation Sequencing. BMC Infect. Dis. 2020, 20, 893. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Wang, J.; Ji, L.; Geng, Y.; Ou, Y.; Yang, S.; Yin, L.; Li, L.; Chen, D. Effect of Bacterial Infection on the Edibility of Aquatic Products: The Case of Crayfish (Procambarus clarkii) Infected with Citrobacter freundii. Front. Microbiol. 2021, 12, 722037. [Google Scholar] [CrossRef] [PubMed]
- Behera, B.K.; Paria, P.; Das, A.; Das, B.K. Molecular Identification and Pathogenicity Study of Virulent Citrobacter freundii Associated with Mortality of Farmed Labeo rohita (Hamilton 1822), in India. Aquaculture 2022, 547, 737437. [Google Scholar] [CrossRef]
- Miller, S.A.; Ferreira, J.P.; LeJeune, J.T. Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture 2022, 12, 289. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Heal. 2022, 244, 114006. [Google Scholar] [CrossRef]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kudo, K.; Tsukamoto, N.; Ito, M.; Kobayashi, N. Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus Faecalis and Enterococcus Faecium Clinical Isolates in Northern Japan: Identification of OptrA in ST480 E. Faecalis. Antibiotics 2023, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CSLI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Drzewiecka, D. Significance and Roles of Proteus Spp. Bacteria in Natural Environments. Microbial. Ecol. 2016, 72, 741–758. [Google Scholar] [CrossRef] [Green Version]
- Gerba, C.P. Environmental Microbiology, 3th ed. In Part VI Water—Foodborne Pathogens; Elsevier: Amsterdam, The Netherlands, 2015; pp. 509–550. [Google Scholar] [CrossRef]
- McLellan, S.L.; Eren, A.M. Discovering New Indicators of Fecal Pollution. Trends. Microbiol. 2014, 22, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, T.F.; Costa, F.A.A.D.; Vilela, M.C.; Rigon, M.; Abensur, H.; Araújo, M.R.E. de Endocardite Por Lactococcus garvieae: Primeiro Relato de Caso Da América Latina. Arq. Bras. Cardiol. 2011, 97, e108–e110. [Google Scholar] [CrossRef] [Green Version]
- Meyburgh, C.; Bragg, R.; Boucher, C. Lactococcus garvieae: An Emerging Bacterial Pathogen of Fish. Dis. Aquat. Organ. 2017, 123, 67–79. [Google Scholar] [CrossRef]
- Malek, A.; Hoz, A.D.L.; Gomez-Villegas, S.I.; Nowbakht, C.; Arias, C.A. Lactococcus garvieae, an Unusual Pathogen in Infective Endocarditis: Case Report and Review of the Literature. BMC Infect. Dis. 2019, 19, 301. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Norzagaray, A.A.; Aguirre, A.A.; Velazquez-Roman, J.; Flores-Villaseñor, H.; León-Sicairos, N.; Ley-Quiñonez, C.P.; Hernández-Díaz, L.D.J.; Canizalez-Roman, A. Isolation, Characterization, and Antibiotic Resistance of Vibrio Spp. in Sea Turtles from Northwestern Mexico. Front. Microbiol. 2015, 6, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre, A.A.; Tabor, G.M. Introduction: Marine Vertebrates as Sentinels of Marine Ecosystem Health. Ecohealth 2004, 1, 236–238. [Google Scholar] [CrossRef]
- Blasi, M.F.; Migliore, L.; Mattei, D.; Rotini, A.; Thaller, M.C.; Alduina, R. Antibiotic Resistance of Gram-Negative Bacteria from Wild Captured Loggerhead Sea Turtles. Antibiotics 2020, 9, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, M.-A.; Chang, C.-C.; Li, T.-H. Antimicrobial-Resistance Profiles of Gram-Negative Bacteria Isolated from Green Turtles (Chelonia mydas) in Taiwan. Environ. Pollut. 2021, 277, 116870. [Google Scholar] [CrossRef]
- Foti, M.; Giacopello, C.; Bottari, T.; Fisichella, V.; Rinaldo, D.; Mammina, C. Antibiotic Resistance of Gram Negatives Isolates from Loggerhead Sea Turtles (Caretta caretta) in the Central Mediterranean Sea. Mar. Pollut. Bull. 2009, 58, 1363–1366. [Google Scholar] [CrossRef]
- Trotta, A.; Cirilli, M.; Marinaro, M.; Bosak, S.; Diakoudi, G.; Ciccarelli, S.; Paci, S.; Buonavoglia, D.; Corrente, M. Detection of Multi-Drug Resistance and AmpC β-Lactamase/Extended-Spectrum β-Lactamase Genes in Bacterial Isolates of Loggerhead Sea Turtles (Caretta caretta) from the Mediterranean Sea. Mar. Pollut. Bull. 2021, 164, 112015. [Google Scholar] [CrossRef]
- Gitirana, H.M.; Gomes, S.M.; Lôbo-Hajdu, G. Residência de Tartarugas Marinhas Da Espécie Chelonia mydas Na Região Costeira de Itaipu, Niterói—RJ, Brasil. In Proceedings of the V Jornada Sobre Tartarugas Marinhas Do Atlântico Sul Ocidental (ASO), Florianópolis, Brazil, 27–28 November 2011. [Google Scholar]
- Gomes, B.G.; Tagliolatto, A.B.; Guimarães, S.M. Occurrence of Sea Turtles on Niterói City Beaches, Rio de Janeiro, Brazil. Mar. Turt. Newsl. 2021, 163, 10–14. [Google Scholar]
- Carini, A.D.P.; Ariel, E.; Picard, J.; Elliott, L. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages. Int. J. Microbiol. 2017, 2017, 5798161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-X.; Liu, J.-S.; Han, L.-F.; Xia, S.; Li, S.-Z.; Li, O.Y.; Kassegne, K.; Li, M.; Yin, K.; Hu, Q.-Q.; et al. Towards a Global One Health Index: A Potential Assessment Tool for One Health Performance. Infect. Dis. Poverty 2022, 11, 57. [Google Scholar] [CrossRef]
- Fistarol, G.O.; Coutinho, F.H.; Moreira, A.P.B.; Venas, T.; Cánovas, A.; Paula, S.E.M.D.; Coutinho, R.; de Moura, R.L.; Valentin, J.L.; Tenenbaum, D.R.; et al. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro. Front. Microbiol. 2015, 6, 1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timbó, M.; Silva, M.L.D.; Castro, R.D.O.; Araújo, F.V. de Diagnóstico Da Percepção Ambiental Dos Usuários Das Praias de Itaipu e Itacoatiara Quanto à Presença de Resíduos Sólidos. Rev. Gestão Costeira Integr. 2019, 19, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Culafic, D.M.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.M.B.; Bronzato, G.F.; Santiago, G.S.; Botelho, L.A.B.; Moreira, B.M.; Coelho, I.D.S.; Souza, M.M.S.D.; Coelho, S.D.M.D.O. The Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS) Identification versus Biochemical Tests: A Study with Enterobacteria from a Dairy Cattle Environment. Braz. J. Microbiol. 2016, 48, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, V.H.G.; Gomes, P.D.S.F.C.; Azevedo-Martins, A.C.; Cabral, B.C.A.; Woerner, A.E.; Budowle, B.; Moura-Neto, R.S.; Silva, R. Evaluation of 16S RRNA Hypervariable Regions for Bioweapon Species Detection by Massively Parallel Sequencing. Int. J. Microbiol. 2020, 2020, 8865520. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
Neck | Family | Genus | Species | Number of Isolates |
---|---|---|---|---|
Gram-negative | Enterobacteriaceae | Citrobacter | C. freundii | 2 |
Escherichia | E. coli | 1 | ||
Salmonella | Salmonella sp. | 1 | ||
Serratia | S. marcescens | 11 | ||
S. ureylitica | 1 | |||
Morganellaceae | Proteus | P. mirabilis | 1 | |
Gram-positive | Enterococcaceae | Enterococcus | E. faecalis | 8 |
Microbacteriaceae | Microbacterium | Microbacterium spp. | 5 | |
Promicromonosporaceae | Cellulosimicrobium | C. cellulans | 8 |
Cloaca | Family | Genus | Species | Number of Isolates |
---|---|---|---|---|
Gram-negative | Enterobacteriaceae | Citrobacter | C. braaki | 2 |
C. freundii | 20 | |||
Klebsiella | K. oxytoca | 1 | ||
K. variicola | 1 | |||
Salmonella | Salmonella sp. | 1 | ||
Serratia | S. marcescens | 1 | ||
Morganellaceae | Morganella | M. morganii | 40 | |
Proteus | P. mirabilis | 14 | ||
Gram-positive | Enterococcaceae | Enterococcus | E. faecalis | 9 |
E. hirae | 2 | |||
Streptococcaceae | Lactococcus | L. garvieae | 1 |
Neck | Family | Genus | Species | Number of Resistant Isolates (Antimicrobial) |
---|---|---|---|---|
Enterobacteriaceae | Citrobacter | C. freundii | 1 (GEN) | |
Gram-negative | Escherichia | E. coli | 1 (CIP) | |
Salmonella | Salmonella sp. | 1 (TET) | ||
Serratia | S. marcescens | 3 (TET) | ||
S. ureylitica | 1 (TET) | |||
Morganellaceae | Proteus | P. mirabilis | 1 (CIP) | |
Gram-positive | Enterococcaceae | Enterococcus | E. faecalis | 6 (TET) * |
Microbacteriaceae | Microbacterium | Microbacterium spp. | 5 (GEN) | |
Promicromonosporaceae | Cellulosimicrobium | C. cellulans | 2 (CIP) 6 (GEN) |
Cloaca | Family | Genus | Species | Number of Resistant Isolates (Antimicrobial) |
---|---|---|---|---|
Enterobacteriaceae | Citrobacter | C. braaki | 2 (CEP) | |
Gram-negative | Klebsiella | K. oxytoca | 1 (CEP) | |
K. variicola | 1 (CEP) | |||
Morganellaceae | Morganella | M. morganii | 2 (TET) | |
Proteus | P. mirabilis | 1 (CEP) | ||
Gram-positive | Enterococcaceae | Enterococcus | E. faecalis | 8 (TET) * 1 (VAN) |
Streptococcaceae | Lactococcus | L. garvieae | 1 (CIP) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Short, F.S.; Lôbo-Hajdu, G.; Guimarães, S.M.; Laport, M.S.; Silva, R. Antimicrobial-Resistant Bacteria from Free-Living Green Turtles (Chelonia mydas). Antibiotics 2023, 12, 1268. https://doi.org/10.3390/antibiotics12081268
Short FS, Lôbo-Hajdu G, Guimarães SM, Laport MS, Silva R. Antimicrobial-Resistant Bacteria from Free-Living Green Turtles (Chelonia mydas). Antibiotics. 2023; 12(8):1268. https://doi.org/10.3390/antibiotics12081268
Chicago/Turabian StyleShort, Fernanda S., Gisele Lôbo-Hajdu, Suzana M. Guimarães, Marinella S. Laport, and Rosane Silva. 2023. "Antimicrobial-Resistant Bacteria from Free-Living Green Turtles (Chelonia mydas)" Antibiotics 12, no. 8: 1268. https://doi.org/10.3390/antibiotics12081268
APA StyleShort, F. S., Lôbo-Hajdu, G., Guimarães, S. M., Laport, M. S., & Silva, R. (2023). Antimicrobial-Resistant Bacteria from Free-Living Green Turtles (Chelonia mydas). Antibiotics, 12(8), 1268. https://doi.org/10.3390/antibiotics12081268