Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico
Abstract
:1. Introduction
2. Results
2.1. Gram-Negative Bacilli Isolates
2.2. Carbapenem-Resistant Gram-Negative Bacilli
Carbapenem Resistance by Culture Site
2.3. Carbapenemase Production
2.4. Antimicrobial Resistance Rates
3. Discussion
4. Materials and Methods
4.1. Design
4.2. Sampling
4.3. Tests
4.3.1. Carbapenemase Related-Genes Detection
4.3.2. Sequencing
4.4. Statistical Analysis
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, 1st ed.; Review on Antimicrobial Resistance: London, UK, 2014; pp. 1–20. [Google Scholar]
- World Health Organization. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery and Development of New Antibiotics. 2017. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25FebET_NM_WHO.pdf (accessed on 20 February 2023).
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef] [PubMed]
- Haji, S.H.; Aka, S.T.H.; Ali, F.A. Prevalence and characterisation of carbapenemase encoding genes in multidrug-resistant Gram-negative bacilli. PLoS ONE 2021, 16, e0259005. [Google Scholar] [CrossRef] [PubMed]
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniak, A.; Villagra, N.A.; Undabarrena, A.; Gallardo, N.; Keller, N.; Moraga, M.; Román, J.C.; Mora, G.C.; García, P. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J. Med. Microbiol. 2012, 61, 1270–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, B.G.; Barlow, M. Revised Ambler classification of {beta}-lactamases. J. Antimicrob. Chemother. 2005, 55, 1050–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis 2019, 69 (Suppl. S7), S521–S528. [Google Scholar] [CrossRef] [Green Version]
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef]
- Garza-Ramos, U.; Silva-Sánchez, J.; López-Jácome, L.E.; Hernández-Durán, M.; Colín-Castro, C.A.; Sánchez-Pérez, A.; Rodríguez-Santiago, J.; Morfín-Otero, R.; Rodriguez-Noriega, E.; Velázquez-Acosta, M.D.; et al. Carbapenemase-Encoding Genes and Colistin Resistance in Gram-Negative Bacteria During the COVID-19 Pandemic in Mexico: Results from the Invifar Network. Microb. Drug Resist. 2023, 29, 239–248. [Google Scholar] [CrossRef]
- Garza-González, E.; Bocanegra-Ibarias, P.; Bobadilla-Del-Valle, M.; Ponce-de-León-Garduño, L.A.; Esteban-Kenel, V.; Silva-Sánchez, J.; Garza-Ramos, U.; Barrios-Camacho, H.; López-Jácome, L.E.; Colin-Castro, C.A.; et al. Drug resistance phenotypes and genotypes in Mexico in representative gram-negative species: Results from the INVIFAR network. PLoS ONE 2021, 16, e0248614. [Google Scholar] [CrossRef]
- Vamsi, S.K.; Moorthy, R.S.; Hemiliamma, M.N.; Chandra Reddy, R.B.; Chanderakant, D.J.; Sirikonda, S. Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. Saudi Med. J. 2022, 43, 236–243. [Google Scholar] [CrossRef]
- Plan Universitario de Control de la Resistencia Antimicrobiana (PUCRA), Universidad Nacional Autónoma de México. Segundo Reporte de Los Hospitales de La Red Del PUCRA: Resistencia Antimicrobiana y Consumo de Antimicrobianos; UNAM: Mexico City, Mexico, 2019. Available online: www.puis.unam.mx (accessed on 24 February 2023).
- Sader, H.S.; Castanheira, M.; Farrell, D.J.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: Results from SENTRY Antimicrobial Surveillance Program (2011–2014). Int. J. Antimicrob. Agents 2016, 48, 144–150. [Google Scholar] [CrossRef]
- World Health Organization Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. Geneva, Switzerland. 2021. Available online: https://www.who.int/publications/i/item/9789240027336 (accessed on 28 January 2023).
- Labarca, J.A.; Salles, M.J.; Seas, C.; Guzmán-Blanco, M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Crit. Rev. Microbiol. 2016, 42, 276–292. [Google Scholar] [CrossRef]
- Cai, B.; Echols, R.; Magee, G.; Arjona Ferreira, J.C.; Morgan, G.; Ariyasu, M.; Sawada, T.; Nagata, T.D. Prevalence of Carbapenem-Resistant Gram-Negative Infections in the United States Predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum. Infect. Dis. 2017, 4, ofx176. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Trinh, T.D.; Zasowski, E.J.; Lagnf, A.M.; Bhatia, S.; Melvin, S.M.; Steed, M.E.; Simon, S.P.; Estrada, S.J.; Morrisette, T.; et al. Real-World Experience with Ceftazidime-Avibactam for Multidrug-Resistant Gram-Negative Bacterial Infections. Open Forum. Infect. Dis. 2019, 6, ofz522. [Google Scholar] [CrossRef] [Green Version]
- Göttig, S.; Frank, D.; Mungo, E.; Nolte, A.; Hogardt, M.; Besier, S.; Wichelhaus, T.A. Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo. J. Antimicrob. Chemother. 2019, 74, 3211–3216. [Google Scholar] [CrossRef]
- Sousa, A.; Pérez-Rodríguez, M.T.; Soto, A.; Rodríguez, L.; Pérez-Landeiro, A.; Martínez-Lamas, L.; Nodar, A.; Crespo, M. Effectiveness of ceftazidime/avibactam as salvage therapy for treatment of infections due to OXA-48 carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 3170–3175. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Tan, X.; Kim, H.S.; Baugh, K.; Huang, Y.; Kadiyala, N.; Wences, M.; Singh, N.; Wenzler, E.; Bulman, Z.P. Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales. Infect. Drug Resist. 2021, 14, 125–142. [Google Scholar] [CrossRef]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215 (Suppl. S1), S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, M.; Lutgring, J.D.; Ansari, U.; Lawsin, A.; Albrecht, V.; McAllister, G.; Daniels, J.; Lonsway, D.; McKay, L.; Beldavs, Z.; et al. Molecular Characterization of Carbapenem-Resistant Enterobacterales Collected in the United States. Microb. Drug Resist. 2022, 28, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Walther-Rasmussen, J.; Høiby, N. OXA-type carbapenemases. J. Antimicrob. Chemother. 2006, 57, 373–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garza-Ramos, U.; Morfin-Otero, R.; Sader, H.S.; Jones, R.N.; Hernández, E.; Rodriguez-Noriega, E.; Sanchez, A.; Carrillo, B.; Esparza-Ahumada, S.; Silva-Sanchez, J. Metallo-beta-lactamase gene bla(IMP-15) in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob. Agents Chemother. 2008, 52, 2943–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-García, A.; Rocha-Gracia, R.D.C.; Bello-López, E.; Juárez-Zelocualtecalt, C.; Sáenz, Y.; Castañeda-Lucio, M.; López-Pliego, L.; González-Vázquez, M.C.; Torres, C.; Ayala-Nuñez, T. Characterization of antimicrobial resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa carrying IMP variants recovered from a Mexican Hospital. Infect. Drug Resist. 2018, 11, 1523–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocanegra-Ibarias, P.; Garza-González, E.; Morfín-Otero, R.; Barrios, H.; Villarreal-Treviño, L.; Rodríguez-Noriega, E.; Garza-Ramos, U.; Petersen-Morfin, S.; Silva-Sanchez, J. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS ONE 2017, 12, e0179651. [Google Scholar] [CrossRef]
- Aquino-Andrade, A.; Merida-Vieyra, J.; Arias de la Garza, E.; Arzate-Barbosa, P.; De Colsa Ranero, A. Carbapenemase-producing Enterobacteriaceae in Mexico: Report of seven non-clonal cases in a pediatric hospital. BMC Microbiol. 2018, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Barrios, H.; Garza-Ramos, U.; Reyna-Flores, F.; Sanchez-Perez, A.; Rojas-Moreno, T.; Garza-Gonzalez, E.; Llaca-Diaz, J.M.; Camacho-Ortiz, A.; Guzmán-López, S.; Silva-Sanchez, J. Isolation of carbapenem-resistant NDM-1-positive Providencia rettgeri in Mexico. J. Antimicrob. Chemother. 2013, 68, 1934–1936. [Google Scholar] [CrossRef] [Green Version]
- Elbadawi, H.S.; Elhag, K.M.; Mahgoub, E.; Altayb, H.N.; Ntoumi, F.; Elton, L.; McHugh, T.D.; Tembo, J.; Ippolito, G.; Osman, A.Y.; et al. Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BMC Microbiol. 2021, 21, 136. [Google Scholar] [CrossRef]
- Mendez-Sotelo, B.J.; López-Jácome, L.E.; Colín-Castro, C.A.; Hernández-Durán, M.; Martínez-Zavaleta, M.G.; Rivera-Buendía, F.; Velázquez-Acosta, C.; Rodríguez-Zulueta, A.P.; Morfín-Otero, M.D.R.; Franco-Cendejas, R. Comparison of Lateral Flow Immunochromatography and Phenotypic Assays to PCR for the Detection of Carbapenemase-Producing Gram-Negative Bacteria, a Multicenter Experience in Mexico. Antibiotics 2023, 12, 96. [Google Scholar] [CrossRef]
- Tamma, P.D.; Goodman, K.E.; Harris, A.D.; Tekle, T.; Roberts, A.; Taiwo, A.; Simner, P.J. Comparing the Outcomes of Patients With Carbapenemase-Producing and Non-Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae Bacteremia. Clin. Infect. Dis. 2017, 64, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Barceló, I.M.; Jordana-Lluch, E.; Escobar-Salom, M.; Torrens, G.; Fraile-Ribot, P.A.; Cabot, G.; Mulet, X.; Zamorano, L.; Juan, C.; Oliver, A. Role of Enzymatic Activity in the Biological Cost Associated with the Production of AmpC β-Lactamases in Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10, e0270022. [Google Scholar] [CrossRef]
- Philippon, A.; Arlet, G.; Jacoby, G.A. Plasmid-determined AmpC-type beta-lactamases. Antimicrob. Agents Chemother. 2002, 46, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chetri, S.; Bhowmik, D.; Paul, D.; Pandey, P.; Chanda, D.D.; Chakravarty, A.; Bora, D.; Bhattacharjee, A. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019, 19, 210. [Google Scholar] [CrossRef] [Green Version]
- Masi, M.; Réfregiers, M.; Pos, K.M.; Pagès, J.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol. 2017, 2, 17001. [Google Scholar] [CrossRef]
- Nang, S.C.; Li, J.; Velkov, T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit Rev Microbiol 2019, 45, 131–161. [Google Scholar] [CrossRef]
- Ara, B.; Urmi, U.L.; Haque, T.A.; Nahar, S.; Rumnaz, A.; Ali, T.; Alam, M.S.; Mosaddek, A.S.M.; Rahman, N.A.A.; Haque, M.; et al. Detection of mobile colistin-resistance gene variants (mcr-1 and mcr-2) in urinary tract pathogens in Bangladesh: The last resort of infectious disease management colistin efficacy is under threat. Expert. Rev. Clin. Pharmacol. 2021, 14, 513–522. [Google Scholar] [CrossRef]
- Ejaz, H.; Younas, S.; Qamar, M.U.; Junaid, K.; Abdalla, A.E.; Abosalif, K.O.A.; Alameen, A.A.M.; Elamir, M.Y.M.; Ahmad, N.; Hamam, S.S.M.; et al. Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Antibiotics 2021, 10, 467. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI Standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; pp. 1–91. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; pp. 1–325. [Google Scholar]
- GenBank. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 15 January 2023).
Carbapenem-Susceptible Isolates (n = 471) | Carbapenem-Resistant Isolates (n = 37) | p-Value | |
---|---|---|---|
Age, years (IQR) | 48 (27–61) | 43 (27–55) | 0.405 * |
Sex, n (%) | 0.004 ** | ||
Male | 214 (45.4) | 26 (70.3) | |
Female | 257 (54.6) | 11 (29.7) | |
Setting, n (%) | 0.770 ** | ||
Inpatient | 333 (70.7) | 27 (73) | |
Outpatient | 138 (29.3) | 10 (27) | |
Culture site, n (%) | |||
Urine | 247 (52.4) | 11 (29.7) | 0.007 ** |
Blood | 75 (15.9) | 6 (16.2) | 1 ** |
Sputum | 24 (5.1) | 2 (5.4) | 1 *** |
Tracheal/bronchial | 47 (10) | 8 (21.6) | 0.047 *** |
Wound | 64 (13.6) | 8 (21.6) | 0.177 ** |
Peritoneal fluid | 8 (1.7) | 2 (5.4) | 0.160 *** |
Pleural fluid | 5 (1.1) | 0 | 1 *** |
CSF | 1 (0.2) | 0 | 1 *** |
Enterobacterales, n = 428 (%) | 417 (88.5) | 11 (29.7) | |
E. coli, n = 272 | 268 (56.9) | 4 (10.8) | 0.107 |
K. pneumoniae, n = 85 | 83 (17.6) | 2 (5.4) | 1 |
E. cloacae, n = 18 | 13 (2.8) | 5 (13.5) | <0.0001 |
Others, n = 53 | 53 (11.2) | 0 | 0.373 |
Non-fermenters, n = 80 (%) | 54 (11.5) | 26 (70.3) | 0.657 |
P. aeruginosa, n = 74 | 49 (10.4) | 25 (67.6) | |
A. baumannii, n = 6 | 5 (1) | 1 (2.7) |
Bacteria | Culture Site | Overall Estimation of Carbapenem-Resistance Prevalence | |||||
---|---|---|---|---|---|---|---|
Urine | Blood | Sputum | Tracheal/Bronchial | Wound | Peritoneal Fluid | ||
Enterobacterales | |||||||
E. coli | 0/182 | 3/43 | 0/6 | 0/7 | 1/28 | 0/3 | 4/272 |
(0%) | (7%) | (0%) | (0%) | (3.6%) | (0%) | (1.5%) | |
K. pneumoniae | 1/30 | 0/13 | 0/6 | 0/18 | 0/12 | 1/4 | 2/85 |
(3.3%) | (0%) | (0%) | (0%) | (0%) | (25%) | (2.4%) | |
E. cloacae | 1/3 | 1/2 | 0/1 | 1/6 | 2/6 | 0 | 5/18 |
(33.3%) | (50%) | (0%) | (16.7%) | (33.3%) | (27.8%) | ||
Others | 0/23 | 0/9 | 0/2 | 0/6 | 0/11 | 0/2 | 0/53 |
Estimated prevalence for Enterobacterales | 2/238 | 4/67 | 0/15 | 1/37 | 3/57 | 1/9 | 11/428 |
(0.8%) | (6.0%) | (0%) | (2.7%) | (5.2%) | (11.1%) | (2.6%) | |
Non-fermenters | |||||||
P. aeruginosa | 9/19 | 2/12 | 2/11 | 6/15 | 5/15 | 1/1 | 25/74 |
(47.4%) | (16.7%) | (18.2%) | (40%) | (33.3%) | (100%) | (33.8%) | |
A. baumannii | 0/1 | 0/2 | 0 | 1/3 | 0 | 0 | 1/6 |
(0%) | (0%) | (33.3%) | (16.7%) | ||||
Estimated prevalence for non-fermenters | 9/20 | 2/14 | 2/11 | 7/18 | 5/15 | 1/1 | 26/80 |
(45%) | (14.2%) | (18.2%) | (38.9%) | (33.3%) | (100%) | (32.5%) | |
All | |||||||
Overall estimation prevalence according to site | 11/258 | 6/81 | 2/26 | 8/55 | 8/72 | 2/10 | 37/508 |
(4.3%) | (7.4%) | (7.7%) | (14.5%) | (11.1%) | (20%) | (7.3%) |
Bacterial Specie | Isolates (%) | Carbapenemase Genes | Carbapenemase Producing Isolates (%) | |||
---|---|---|---|---|---|---|
Class A | Class B | |||||
GES | NDM | IMP | VIM | |||
Enterobacterales | ||||||
E. cloacae | 5 (13.5) | - | 2 NDM-1 | - | - | 2 (40) |
E. coli | 4 (9.5) | - | 3 NDM-5 1 NDM-1 | - | - | 4 (100) |
K. pneumoniae | 2 (5.4) | - | 1 NDM-7 | - | - | 1 (50) |
Total of CRE | 11 (29.7) | - | 7 (100) | - | - | 7 (63.6) |
Non-fermenters | ||||||
P. aeruginosa | 25 (67.6) | 2 GES-40 1 GES-26 | - | 3 IMP-75 1 IMP-83 | 1 VIM-2 | 8 (32) |
A. baumannii | 1 (2.7) | - | - | - | - | 0 |
Total of CRPA and CRAB | 26 (70.3) | 3 (37.5) | - | 4 (50) | 1 (12.5) | 8 (30.8) |
All | ||||||
Total (%) | 37 (100) | 3 (8.1) | 7 (18.9) | 4 (11) | 1 (2.7) |
P. aeruginosa (n = 25) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMK I = 32 R ≥ 64 | GEN I = 8 R ≥ 16 | ATM I = 16 R ≥ 32 | CAZ I = 16 R ≥ 32 | CEF I = 16 R ≥ 32 | CIP I = 1 R ≥ 2 | LVX I = 2 R ≥ 4 | DOR I = 4 R ≥ 8 | IMP I = 4 R ≥ 8 | MEM I = 4 R ≥ 8 | COL I ≤ 2 R ≥ 4 | PTZ I = 32/4–64/4 R ≥ 128/4 | ||
I | 16 | 12 | 8 | 4 | 8 | 8 | 4 | 0 | 0 | 4 | 100 | 36 | |
R | 24 | 60 | 52 | 52 | 44 | 44 | 40 | 96 | 88 | 92 | 0 | 36 | |
E. cloacae (n = 5) | |||||||||||||
AMK I = 32 R ≥ 64 | GEN I = 8 R ≥ 16 | ATM I = 8 R ≥ 16 | CAZ I = 8 R ≥ 16 | CEF SDD = 4–8 R ≥ 16 | CIP I = 0.5 R ≥ 1 | LVX I = 1 R ≥ 2 | ETP I = 1 R ≥ 2 | DOR I = 2 R ≥ 4 | IMP I = 2 R ≥ 4 | MEM I = 2 R ≥ 4 | COL I ≤ 2 R ≥ 4 | PTZ SDD = 16/4 R ≥ 128/4 | |
I | 0 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 0 | 80 | 0 |
R | 20 | 40 | 80 | 100 | 40 | 20 | 20 | 100 | 60 | 60 | 60 | 20 | 100 |
E. coli (n = 4) | |||||||||||||
AMK I = 32 R ≥ 64 | GEN I = 8 R ≥ 16 | ATM I = 8 R ≥ 16 | CAZ I = 8 R ≥ 16 | CEF SDD = 4–8 R ≥ 16 | CIP I = 0.5 R ≥ 1 | LVX I = 1 R ≥ 2 | ETP I = 1 R ≥ 2 | DOR I = 2 R ≥ 4 | IMP I = 2 R ≥ 4 | MEM I = 2 R ≥ 4 | COL I ≤ 2 R ≥ 4 | PTZ SDD = 16/4 R ≥ 128/4 | |
I | 0 | 0 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 |
R | 25 | 25 | 75 | 100 | 75 | 75 | 75 | 100 | 100 | 100 | 100 | 0 | 100 |
K. pneumoniae (n = 2) | |||||||||||||
AMK I = 32 R ≥ 64 | GEN I = 8 R ≥ 16 | ATM I = 8 R ≥ 16 | CAZ I = 8 R ≥ 16 | CEF SDD = 4–8 R ≥ 16 | CIP I = 0.5 R ≥ 1 | LVX I = 1 R ≥ 2 | ETP I = 1 R ≥ 2 | DOR I = 2 R ≥ 4 | IMP I = 2 R ≥ 4 | MEM I = 2 R ≥ 4 | COL I ≤ 2 R ≥ 4 | PTZ SDD = 16/4 R ≥ 128/4 | |
I | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 100 | 0 |
R | 50 | 50 | 50 | 100 | 50 | 100 | 50 | 100 | 50 | 50 | 50 | 0 | 100 |
A. baumannii (n = 1) * | |||||||||||||
AMK I = 32 R ≥ 64 | GEN I = 8 R ≥ 16 | CAZ I = 16 R ≥ 32 | CEF I = 16 R ≥ 32 | CIP I = 2 R ≥ 4 | LVX I = 4 R ≥ 8 | DOR I = 4 R ≥ 8 | IMP I = 4 R ≥ 8 | MEM I = 4 R ≥ 8 | COL I ≤ 2 R ≥ 4 | PTZ I = 32/4–64/4 R ≥ 128/4 | |||
I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | ||
R | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 100 |
Gen | Sequence | Amplicon (bp) |
---|---|---|
blaGES | Forward 5′-TCATTCACGCHCTATTVCTGGCA-3′ Reverse 5′-CTATTTGTCCGTGCTCAGG-3′ | 857 |
blaKPC | Forward 5′-ATGTCACTGTATCGCCGTCT-3′ Reverse 5′-TTACTGCCCGTTGACGC-3′ | 798 |
blaNDM | Forward 5′-ATGGAATTGCCCAATATT-3′ Reverse 5′-TCAGYGCAGCTTGTCGGC-3′ | 650 |
blaVIM | Forward 5′-AGATTGVCGATGGTGTTTGGT-3′ Reverse 5′-GAGCAAGTCTAGACCGCCC-3′ | 430 |
blaIMP | Forward 5′-GTTTATGTTCATACTTCGTTTG-3′ Reverse 5′-CAACCAGTTTTGCHTTAC-3′ | 425 |
blaOXA-48 | Forward 5′-GAATGCCTGCGGTAGCAA-3′ Reverse 5′-AAACCATCCGATGTGGGCAT-3′ | 438 |
mcr-1 | Forward 5′-TCTTGTGGCGAGTGTTGCCGT-3’ Reverse 5′-CCAATGATACGCATGATAAACGCTG-3′ | 190 |
mcr-2 | Forward 5′-CTGTTGCTTGTGCCGATTGGACTA-3′ Reverse 5′-ACGGCCATAGCCATTGAACTGC-3′ | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Saucedo, J.R.; López-Jacome, L.E.; Franco-Cendejas, R.; Colín-Castro, C.A.; Hernández-Duran, M.; Rivera-Garay, L.R.; Zamarripa-Martinez, K.S.; Mosqueda-Gómez, J.L. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics 2023, 12, 1295. https://doi.org/10.3390/antibiotics12081295
Nieto-Saucedo JR, López-Jacome LE, Franco-Cendejas R, Colín-Castro CA, Hernández-Duran M, Rivera-Garay LR, Zamarripa-Martinez KS, Mosqueda-Gómez JL. Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics. 2023; 12(8):1295. https://doi.org/10.3390/antibiotics12081295
Chicago/Turabian StyleNieto-Saucedo, Jose Raul, Luis Esaú López-Jacome, Rafael Franco-Cendejas, Claudia Adriana Colín-Castro, Melissa Hernández-Duran, Luis Raúl Rivera-Garay, Karina Senyase Zamarripa-Martinez, and Juan Luis Mosqueda-Gómez. 2023. "Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico" Antibiotics 12, no. 8: 1295. https://doi.org/10.3390/antibiotics12081295
APA StyleNieto-Saucedo, J. R., López-Jacome, L. E., Franco-Cendejas, R., Colín-Castro, C. A., Hernández-Duran, M., Rivera-Garay, L. R., Zamarripa-Martinez, K. S., & Mosqueda-Gómez, J. L. (2023). Carbapenem-Resistant Gram-Negative Bacilli Characterization in a Tertiary Care Center from El Bajio, Mexico. Antibiotics, 12(8), 1295. https://doi.org/10.3390/antibiotics12081295