Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan
Abstract
:1. Introduction
2. Results
2.1. Population Characteristics and Frequency of Multidrug Resistance
2.2. Most of the Microorganisms Which Were Identified Were Not the Main Etiological Factors of Pneumonia
2.3. Enterobacterales and S. aureus Were Found Most Often in COVID-19 and Non-COVID-19 Patients
2.4. The ESKAPE Pathogens S. aureus, K. pneumoniae, P. aeruginosa, E. cloacae, and E. aerogenes were Identified among the Pathogens Analyzed
2.5. Gram-Negative Bacteria Obtained in COVID-19 and Non-COVID-19 Patients Showed Different Degrees of Resistance to Commonly Used Antibiotics
3. Discussion
4. Materials and Methods
4.1. Cases and Ethics
4.2. Pathogen Identification
4.3. Antibiotic Susceptibility
4.4. Sample Size Calculation
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Troeger, C.; Blacker, B.F.; Khalil, I.A.; Rao, P.C.; Cao, S.J.; Zimsen, S.R.M.; Albertson, S.; Stanaway, J.D.; Deshpande, A.; Farag, T.; et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect. Dis. 2018, 18, 1191–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cilloniz, C.; Martin-Loeches, I.; Garcia-Vidal, C.; San Jose, A.; Torres, A. Microbial etiology of pneumonia: Epidemiology, diagnosis and resistance patterns. Int. J. Mol. Sci. 2016, 17, 2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaffe, E.; Sonkin, R.; Strugo, R.; Zerath, E. Evolution of emergency medical calls during a pandemic—An emergency medical service during the COVID-19 outbreak. Am. J. Emerg. Med. 2021, 43, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, G.R.; Leong, D.P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G.B.F.; Wielgosz, A.; et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet 2020, 395, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Koulenti, D.; Tsigou, E.; Rello, J. Nosocomial pneumonia in 27 ICUs in Europe: Perspectives from the EU-VAP/CAP study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1999–2006. [Google Scholar] [CrossRef]
- Shoar, S.; Musher, D.M. Etiology of community-acquired pneumonia in adults: A systematic review. Pneumonia 2020, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-acquired pneumonia requiring hospitalization among U.S. adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef]
- Dueck, N.P.; Epstein, S.; Franquet, T.; Moore, C.C.; Bueno, J. Atypical pneumonia: Definition, causes, and imaging features. Radiographics 2021, 41, 720–741. [Google Scholar] [CrossRef]
- Feng, D.Y.; Zhou, Y.Q.; Zou, X.L.; Zhou, M.; Zhu, J.X.; Wang, Y.H.; Zhang, T.T. Differences in microbial etiology between hospital-acquired pneumonia and ventilator-associated pneumonia: A single-center retrospective study in Guang Zhou. Infect. Drug Resist. 2019, 12, 993–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahamtan, A.; Ardebili, A. Real-time RT-PCR in COVID-19 detection: Issues affecting the results. Expert Rev. Mol. Diagn. 2020, 20, 453–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, M.; Desai, K. Fatal superimposed bacterial sepsis in a healthy coronavirus (COVID-19) patient. Cureus 2020, 12, e8350. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.J.; Loman, N.; Bogaert, D.; O’Grady, J. Co-infections: Potentially lethal and unexplored in COVID-19. Lancet Microbe 2020, 1, e11. [Google Scholar] [CrossRef]
- Chen, G.; Xu, K.; Sun, F.; Sun, Y.; Kong, Z.; Fang, B. Risk factors of multidrug-resistant bacteria in lower respiratory tract infections: A systematic review and meta-analysis. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 7268519. [Google Scholar] [CrossRef]
- Murdoch, D.R.; O’Brien, K.L.; Scott, J.A.; Karron, R.A.; Bhat, N.; Driscoll, A.J.; Knoll, M.D.; Levine, O.S. Breathing new life into pneumonia diagnostics. J. Clin. Microbiol. 2009, 47, 3405–3408. [Google Scholar] [CrossRef] [Green Version]
- Feikin, D.R.; Hammitt, L.L.; Murdoch, D.R.; O’Brien, K.L.; Scott, J.A.G. The enduring challenge of determining pneumonia etiology in children: Considerations for future research priorities. Clin. Infect. Dis. 2017, 64, S188–S196. [Google Scholar] [CrossRef]
- Tacconelli, E. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development; World Health Organization (WHO): Geneva, Switzerland, 2017; pp. 1–7. [Google Scholar]
- Musher, D.M.; Abers, M.S.; Bartlett, J.G. Evolving understanding of the causes of pneumonia in adults, with special attention to the role of pneumococcus. Clin. Infect. Dis. 2017, 65, 1736–1744. [Google Scholar] [CrossRef] [Green Version]
- Lavrinenko, A.; Kolesnichenko, S.; Kadyrova, I.; Turmukhambetova, A.; Akhmaltdinova, L.; Klyuyev, D. Bacterial co-infections and antimicrobial resistance in patients hospitalized with suspected or confirmed COVID-19 pneumonia in Kazakhstan. Pathogens 2023, 12, 370. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; van Rensburg, M.J.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, e360–e370. [Google Scholar] [CrossRef]
- Gasperini, B.; Cherubini, A.; Lucarelli, M.; Espinosa, E.; Prospero, E. Multidrug-resistant bacterial infections in geriatric hospitalized patients before and after the COVID-19 outbreak: Results from a retrospective observational study in two geriatric wards. Antibiotics 2021, 10, 95. [Google Scholar] [CrossRef] [PubMed]
- La, Y.; Hong, J.Y.; Lee, H.S.; Lee, E.H.; Lee, K.H.; Song, Y.G.; Kim, S.B.; Han, S.H. Increase of multidrug-resistant bacteria after the COVID-19 pandemic in South Korea: Time-series analyses of a long-term multicenter cohort. J. Infect. 2022, 85, 702–769. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Merenstein, C.; Liang, G.X.; Whiteside, S.A.; Cobian-Guemes, A.G.; Merlino, M.S.; Taylor, L.J.; Glascock, A.; Bittinger, K.; Tanes, C.; Graham-Wooten, J.; et al. Signatures of COVID-19 severity and immune response in the respiratory tract microbiome. Mbio 2021, 12, e0177721. [Google Scholar] [CrossRef] [PubMed]
- Segrelles-Calvo, G.; de S Araújo, G.R.; Llopis-Pastor, E.; Carrillo, J.; Hernandez-Hernandez, M.; Rey, L.; Melean, N.R.; Escribano, I.; Anton, E.; Zamarro, C.; et al. Candida spp. co-infection in COVID-19 patients with severe pneumonia: Prevalence study and associated risk factors. Respir. Med. 2021, 188, 106619. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.; Abdolrasouli, A.; Elamin, T.; Gonzalo, X.; Charani, E.; Patel, A.; Donaldson, H.; Hughes, S.; Armstrong-James, D.; Moore, L.S.; et al. A retrospective multicenter analysis of candidaemia among COVID-19 patients during the first UK pandemic wave. J. Infect. 2021, 82, 276–316. [Google Scholar] [CrossRef] [PubMed]
- Raghubanshi, B.R.; Karki, B.M.S. Bacteriology of sputum samples: A descriptive cross-sectional study in a tertiary care hospital. J. Nepal Med. Assoc. 2020, 58, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, A.P.; Shmylenko, V.A.; Trotsenko, O.E.; Kotova, V.O.; Butakova, L.V.; Bazykina, E.A. Characteristics of bacterial microflora isolated from sputum of patients with pneumonia registered in Khabarovsk City and Khabarovsk Territory in the initial period of COVID-19 pandemic in May–June, 2020. Probl. Osob. Opasnykh Infektsii 2020, 3, 43–49. [Google Scholar] [CrossRef]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; Ej Golzari, S. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020, 20, 646. [Google Scholar] [CrossRef]
- Nakajima, M.; Umezaki, Y.; Takeda, S.; Yamaguchi, M.; Suzuki, N.; Yoneda, M.; Hirofuji, T.; Sekitani, H.; Yamashita, Y.; Morita, H. Association between oral candidiasis and bacterial pneumonia: A retrospective study. Oral Dis. 2019, 26, 234–237. [Google Scholar] [CrossRef]
- Oancea, R.; Amariei, C.; Eaton, K.A.; Widstrom, E. The healthcare system and the provision of oral healthcare in European Union member states: Part 5: Romania. Br. Dent. J. 2016, 220, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.; Romano, A.; Di Palo, M.P.; Baroni, A.; Serpico, R.; Contaldo, M. Oral candidiasis in adult and pediatric patients with COVID-19. Biomedicines 2023, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, M.; Varma, S.R.; Jaber, M.; Sreelatha, S.V.; Thomas, B.; Nair, A.S. Mycotic infections—Mucormycosis and oral candidiasis associated with COVID-19: A significant and challenging association. J. Oral Microbiol. 2021, 13, 1967699. [Google Scholar] [CrossRef]
- Arastehfar, A.; Carvalho, A.; Nguyen, M.H.; Hedayati, M.T.; Netea, M.G.; Perlin, D.S.; Hoenigl, M. COVID-19-associated candidiasis (CAC): An underestimated complication in the absence of immunological predispositions? J. Fungi. 2020, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yang, Q.; Xu, M.; Kong, H.; Chen, H.; Fu, Y.; Yao, Y.; Zhou, H.; Zhou, J. Secondary bacterial infections in critical ill patients with coronavirus disease 2019. Open Forum Infect. Dis. 2020, 7, ofaa220. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Li, W.; Jiang, H.; Yan, H.; Wang, H.; Ye, B.; Zhou, L.; Chen, Y. Comparison of the distribution and changes in the antibiotic resistance of clinical bacterial isolates from the lower respiratory tract of children in Shenzhen before the epidemic, during the epidemic, and during the period of normalized prevention and control of COVID-19. Infect. Dis. Ther. 2023, 12, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.A.; Madi, D.; Bhat, S.; Mary, T.; Shenoy Mulki, S.; Kotian, H. Profile of secondary bacterial and fungal infections in hospitalized COVID-19 patients in a tertiary care centre. Infect. Drug Resist. 2022, 15, 5705–5714. [Google Scholar] [CrossRef]
- Sahu, C.; Singh, S.; Pathak, A.; Patel, S.S.; Ghoshal, U.; Singh, U.S.; Hashim, Z. Trends of drug resistance to the commonly used antibiotics to combat the COVID-19 pandemic: Experience from a super-speciality institute of Northern India. J. Fam. Med. Prim. Care 2022, 11, 6255–6259. [Google Scholar] [CrossRef]
- Subagdja, M.F.M.; Sugianli, A.K.; Prodjosoewojo, S.; Hartantri, Y.; Parwati, I. Antibiotic resistance in COVID-19 with bacterial infection: Laboratory-based surveillance study at single tertiary hospital in Indonesia. Infect. Drug Resist. 2022, 15, 5849–5856. [Google Scholar] [CrossRef]
- Mobarak Qamsari, M.; Sahebi, L.; Salehi, M.R.; Labbani-Motlagh, Z.; Shavandi, M.; Alijani, N.; Amini, S.; Sefidbakht, S.; Feizabadi, M.M. Respiratory bacterial and fungal superinfections during the third surge of the COVID-19 pandemic in Iran. Microb. Drug Resist. 2023, 29, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Floridia, M.; Giuliano, M.; Monaco, M.; Palmieri, L.; Lo Noce, C.; Palamara, A.T.; Pantosti, A.; Brusaferro, S.; Onder, G.; Italian National Institute of Health, C.-M.G. Microbiologically confirmed infections and antibiotic-resistance in a national surveillance study of hospitalised patients who died with COVID-19, Italy 2020–2021. Antimicrob. Resist. Infect. Control 2022, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, I.; De Renzi, G.; Foddai, E.; Cordani, E.; Mognetti, B. Profile of bacterial infections in COVID-19 patients: Antimicrobial resistance in the time of SARS-CoV-2. Biology 2021, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Roh, E.J.; Lee, M.H.; Lee, J.Y.; Kim, H.B.; Ahn, Y.M.; Kim, J.K.; Kim, H.Y.; Jung, S.S.; Kim, M.; Kang, E.K.; et al. Analysis of national surveillance of respiratory pathogens for community-acquired pneumonia in children and adolescents. BMC Infect. Dis. 2022, 22, 330. [Google Scholar] [CrossRef]
- Gajic, I.; Jovicevic, M.; Popadic, V.; Trudic, A.; Kabic, J.; Kekic, D.; Ilic, A.; Klasnja, S.; Hadnadjev, M.; Popadic, D.J.; et al. The emergence of multi-drug-resistant bacteria causing healthcare-associated infections in COVID-19 patients: A retrospective multi-centre study. J. Hosp. Infect. 2023, 137, 1–7. [Google Scholar] [CrossRef]
- Gomez-Simmonds, A.; Annavajhala, M.K.; McConville, T.H.; Dietz, D.E.; Shoucri, S.M.; Laracy, J.C.; Rozenberg, F.D.; Nelson, B.; Greendyke, W.G.; Furuya, E.Y.; et al. Carbapenemase-producing Enterobacterales causing secondary infections during the COVID-19 crisis at a New York City hospital. J. Antimicrob. Chemother. 2021, 76, 380–384. [Google Scholar] [CrossRef]
- Zeshan, B.; Karobari, M.I.; Afzal, N.; Siddiq, A.; Basha, S.; Basheer, S.N.; Peeran, S.W.; Mustafa, M.; Daud, N.H.A.; Ahmed, N.; et al. The usage of antibiotics by COVID-19 patients with comorbidities: The risk of increased antimicrobial resistance. Antibiotics 2022, 11, 35. [Google Scholar] [CrossRef]
- Bezruk, V.V.; Shkrobanets, I.D.; Godovanets, O.S.; Buriak, O.H.; Pervozvanska, O.I.; Honcharuk, L.M.; Voytkevich, N.I.; Makarova, O.V.; Yurkiv, O.I.; Sheremet, M.I.; et al. Management of antibacterial therapy of infectious and inflammatory diseases of the urinary tract in children and regional peculiarities during the COVID-19 pandemic. J. Med. Life 2022, 15, 617–619. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
Factors | COVID-19-PCR+ | COVID-19-PCR− | Non-COVID-19 |
---|---|---|---|
Population, n | 133 | 133 | 74 |
Age, year; mean ± SE | 59.8 ± 1.3 | 55.9 ± 1.5 | 55.2 ± 1.8 |
Gender | |||
Male, n (%) | 58 (17.1) | 62 (18.3) | 42 (12.4) |
Female, n (%) | 75 (22.1) | 71 (20.9) | 31 (9.1) |
Intensive care unit (ICU) treatment, n (%) | 31 (9.1) | 13 (3.8) | 31 (9.1) |
Multidrug resistance (MDR), n (%) | 66 (19.4) | 31 (9.1) | 45 (13.2) |
Country | No. of Strains | No. of Patients | Landscape and Level of Resistance Change | References |
---|---|---|---|---|
China | 18965 | ND 1 | Yes | [38] |
India | 28 | 200 | No | [39] |
India | ND | 2000 | Yes | [40] |
Indonesia | 733 | 2786 | Yes | [41] |
Iran | 192 | 192 | Yes | [42] |
Italy | 245 | 157 | Yes | [43] |
Italy | 2002 | 1090 | Yes | [44] |
Kazakhstan | 340 | 340 | Yes | Current study |
Korea | 696 | 1023 | No | [45] |
Serbia | 1410 | 834 | Yes | [46] |
USA | 31 | 13 | Yes | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ablakimova, N.; Mussina, A.Z.; Smagulova, G.A.; Rachina, S.; Kurmangazin, M.S.; Balapasheva, A.; Karimoldayeva, D.; Zare, A.; Mahdipour, M.; Rahmanifar, F. Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan. Antibiotics 2023, 12, 1297. https://doi.org/10.3390/antibiotics12081297
Ablakimova N, Mussina AZ, Smagulova GA, Rachina S, Kurmangazin MS, Balapasheva A, Karimoldayeva D, Zare A, Mahdipour M, Rahmanifar F. Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan. Antibiotics. 2023; 12(8):1297. https://doi.org/10.3390/antibiotics12081297
Chicago/Turabian StyleAblakimova, Nurgul, Aigul Z. Mussina, Gaziza A. Smagulova, Svetlana Rachina, Meirambek S. Kurmangazin, Aigerim Balapasheva, Dinara Karimoldayeva, Afshin Zare, Mahdi Mahdipour, and Farhad Rahmanifar. 2023. "Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan" Antibiotics 12, no. 8: 1297. https://doi.org/10.3390/antibiotics12081297
APA StyleAblakimova, N., Mussina, A. Z., Smagulova, G. A., Rachina, S., Kurmangazin, M. S., Balapasheva, A., Karimoldayeva, D., Zare, A., Mahdipour, M., & Rahmanifar, F. (2023). Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan. Antibiotics, 12(8), 1297. https://doi.org/10.3390/antibiotics12081297