Evaluation of Enterococcal Probiotic Usage and Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain Emergence
Abstract
:1. Introduction
2. Current Usage of Enterococci in the US and Regulations
3. Probiotic Potential (Efficacy of Enterococcal Strains)
3.1. Effects on Gastrointestinal (GI) Diseases
3.2. Effects on Respiratory Diseases
3.3. Antimicrobial Effects
3.4. Hypocholesterolemic Effects
3.5. GABA-Production
4. Safety of Enterococcal Consumption: Virulence and Antibiotic Resistance
4.1. Opportunistic Pathogenicity of Enterococci
4.2. Virulence Factors and Pathogenicity of Enterococcus in Probiotics
4.3. Antibiotic Resistance
4.4. Concern of Transfer of Virulence and Antibiotic Resistance
5. Future Directions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Gupta, H.; Kapila, S.; Kaur, G.; Vij, S.; Malik, R.K. Safety Assessment and Evaluation of Probiotic Potential of Bacteriocinogenic Enterococcus Faecium KH 24 Strain under in Vitro and in Vivo Conditions. Int. J. Food Microbiol. 2010, 141, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.; Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocin Production: A Probiotic Trait? Appl. Environ. Microbiol. 2012, 78, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Moritz, E.M.; Hergenrother, P.J. Toxin–Antitoxin Systems Are Ubiquitous and Plasmid-Encoded in Vancomycin-Resistant Enterococci. Proc. Natl. Acad. Sci. USA 2007, 104, 311–316. [Google Scholar] [CrossRef]
- Ferchichi, M.; Sebei, K.; Boukerb, A.M.; Karray-Bouraoui, N.; Chevalier, S.; Feuilloley, M.G.J.; Connil, N.; Zommiti, M. Enterococcus spp.: Is It a Bad Choice for a Good Use—A Conundrum to Solve? Microorganisms 2021, 9, 2222. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. GRAS Notices. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/?set=GRASNotices (accessed on 1 August 2023).
- US Food and Drug Administration. Generally Recognized as Safe (GRAS). Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 1 August 2023).
- US Food and Drug Administration. Guidance for Industry: Frequently Asked Questions About GRAS for Substances Intended for Use in Human or Animal Food. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-frequently-asked-questions-about-gras-substances-intended-use-human-or-animal-food (accessed on 1 August 2023).
- US Food and Drug Administration. Microorganisms & Microbial-Derived Ingredients Used in Food. Available online: https://www.fda.gov/food/generally-recognized-safe-gras/microorganisms-microbial-derived-ingredients-used-food-partial-list (accessed on 26 June 2023).
- Reid, G. The Scientific Basis for Probiotic Strains of Lactobacillus. Appl. Environ. Microbiol. 1999, 65, 3763–3766. [Google Scholar] [CrossRef] [PubMed]
- O′Callaghan, A.; Sinderen, D.V. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Snydman, D.R. The Safety of Probiotics. Clin. Infect. Dis. 2008, 46, S104–S111. [Google Scholar] [CrossRef]
- Amazon. Available online: https://www.amazon.com (accessed on 30 May 2023).
- GNC. Available online: https://www.gnc.com (accessed on 30 May 2023).
- Vitamin Shoppe. Available online: https://www.vitaminshoppe.com (accessed on 30 May 2023).
- Bodybuilding.com. Available online: https://www.bodybuilding.com (accessed on 30 May 2023).
- The Vitamin Company. Available online: https://thevitamincompany.com (accessed on 30 May 2023).
- iHerb. Available online: https://www.iherb.com (accessed on 30 May 2023).
- Swanson Vitamins. Available online: https://www.swansonvitamins.com (accessed on 30 May 2023).
- Lucky Vitamin. Available online: https://www.luckyvitamin.com (accessed on 30 May 2023).
- PureFormulas. Available online: https://www.pureformulas.com (accessed on 30 May 2023).
- Thrive Market. Available online: https://thrivemarket.com (accessed on 30 May 2023).
- European Food Safety Authority (EFSA) Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the Update of the List of QPS-recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA. EFSA J. 2017, 15, e05966. [Google Scholar] [CrossRef]
- Montealegre, M.C.; Singh, K.V.; Murray, B.E. Gastrointestinal Tract Colonization Dynamics by Different Enterococcus faecium Clades. J. Infect. Dis. 2016, 213, 1914–1922. [Google Scholar] [CrossRef]
- Beukers, A.G.; Zaheer, R.; Goji, N.; Amoako, K.K.; Chaves, A.V.; Ward, M.P.; McAllister, T.A. Comparative Genomics of Enterococcus spp. Isolated from Bovine Feces. BMC Microbiol. 2017, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Buydens, P.; Debeuckelaere, S. Efficacy of SF 68 in the Treatment of Acute Diarrhea a Placebo-Controlled Trial. Scand. J. Gastroenterol. 1996, 31, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Kong, M.S.; Lai, M.W.; Chao, H.C.; Chang, K.W.; Chen, S.Y.; Huang, Y.C.; Chiu, C.H.; Li, W.C.; Lin, P.Y.; et al. Probiotics Have Clinical, Microbiologic, and Immunologic Efficacy in Acute Infectious Diarrhea. J. Pediatr. Infect. Dis. 2010, 29, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, S.; Yu, Y.; Si, J.; Liu, B. A Probiotic Treatment Containing Lactobacillus, Bifidobacterium and Enterococcus Improves IBS Symptoms in an Open Label Trial. J. Zhejiang Univ. Sci. 2006, 7, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Yakovenko, E.P.; Strokova, T.V.; Ivanov, A.N.; Iakovenko, A.V.; Gioeva, I.Z.; Aldiyarova, M.A. The Effectiveness of a Probiotic Containing Bifidobacterium Longum BB-46 and Enterococcus Faecium ENCfa-68 in the Treatment of Post-Infectious Irritable Bowel Syndrome. Prospective Randomized Comparative Study. Terapevticheskii Arkhiv 2022, 94, 180–187. [Google Scholar] [CrossRef]
- Ahmadi, S.; Wang, S.; Nagpal, R.; Wang, B.; Jain, S.; Razazan, A.; Mishra, S.P.; Zhu, X.; Wang, Z.; Kavanagh, K.; et al. A Human-Origin Probiotic Cocktail Ameliorates Aging-Related Leaky Gut and Inflammation via Modulating the Microbiota/Taurine/Tight Junction Axis. JCI Insight 2020, 5, e132055. [Google Scholar] [CrossRef] [PubMed]
- Anania, C.; Di Marino, V.P.; Olivero, F.; De Canditiis, D.; Brindisi, G.; Iannilli, F.; De Castro, G.; Zicari, A.M.; Duse, M. Treatment with a Probiotic Mixture Containing Bifidobacterium Animalis Subsp. Lactis BB12 and Enterococcus Faecium L3 for the Prevention of Allergic Rhinitis Symptoms in Children: A Randomized Controlled Trial. Nutrients 2021, 13, 1315. [Google Scholar] [CrossRef]
- Habermann, W.; Zimmermann, K.; Skarabis, H.; Kunze, R.; Rusch, V. The effect of a bacterial immunostimulant (human Enterococcus faecalis bacteria) on the occurrence of relapse in patients with chronic recurrent bronchitis. Arzneimittelforschung 2001, 51, 931–937. [Google Scholar] [CrossRef]
- Rieger, J.; Janczyk, P.; Hünigen, H.; Neumann, K.; Plendl, J. Intraepithelial Lymphocyte Numbers and Histomorphological Parameters in the Porcine Gut after Enterococcus Faecium NCIMB 10415 Feeding in a Salmonella Typhimurium Challenge. Vet. Immunol. Immunopathol. 2015, 164, 40–50. [Google Scholar] [CrossRef]
- Di Pierro, F.; Basile, I.; Danza, M.L.; Venturelli, L.; Contini, R.; Risso, P.; Colombo, M. Use of a Probiotic Mixture Containing Bifidobacterium Animalis Subsp. Lactis BB12 and Enterococcus Faecium L3 in Atopic Children. Minerva Pediatr. 2018, 70, 418–424. [Google Scholar] [CrossRef]
- Gonchar, N.V.; Suvorov, A.N.; Maryshev, V.P.; Sorokina, T.M.; Churkova, T.V.; Kharit, S.M. Probiotics, Nutritional Status and Resistance to Respiratory Infections in Infants. Eksp. Klin. Gastroentero. 2015, 1, 48–54. [Google Scholar]
- Hlivak, P.; Odraska, J.; Ferencik, M.; Ebringer, L.; Jahnova, E.; Mikes, Z. One-Year Application of Probiotic Strain Enterococcus Faecium M-74 Decreases Serum Cholesterol Levels. Bratisl. Lek. Listy 2005, 106, 67–72. [Google Scholar] [PubMed]
- Agerbaek, M.; Gerdes, L.U.; Richelsen, B. Hypocholesterolaemic Effect of a New Fermented Milk Product in Healthy Middle-Aged Men. Eur. J. Clin. Nutr. 1995, 49, 346–352. [Google Scholar] [PubMed]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A Viable Alternative to Antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Farias, F.M.; Teixeira, L.M.; Vallim, D.C.; Bastos, M.D.C.D.F.; Miguel, M.A.L.; Bonelli, R.R. Characterization of Enterococcus Faecium E86 Bacteriocins and Their Inhibition Properties against Listeria Monocytogenes and Vancomycin-Resistant Enterococcus. Braz. J. Microbiol. 2021, 52, 1513–1522. [Google Scholar] [CrossRef] [PubMed]
- Solas, M.; Puert, E.; Ramirez, M.J. Treatment Options in Alzheimer´s Disease: The GABA Story. Curr. Pharm. Des. 2015, 21, 4960–4971. [Google Scholar] [CrossRef]
- Sakkaa, S.E.; Zaghloul, E.H.; Ghanem, K.M. Psychobiotic Potential of Gamma-Aminobutyric Acid–Producing Marine Enterococcus Faecium SH9 from Marine Shrimp. Probiotics Antimicro. 2022, 14, 934–946. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Smaoui, S. Enterococci: Between Emerging Pathogens and Potential Probiotics. Biomed Res. Int. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.; Igrejas, G.; Poeta, P. Enterococci, from Harmless Bacteria to a Pathogen. Microorganisms 2020, 8, 1118. [Google Scholar] [CrossRef]
- Manfredo-Vieira, S.; Hiltensperger, M.; Kumar, V.; Zegarra-Ruiz, D.; Dehner, C.; Khan, N.; Costa, F.R.C.; Tiniakou, E.; Greiling, T.; Ruff, W.; et al. Translocation of a Gut Pathobiont Drives Autoimmunity in Mice and Humans. Science 2018, 359, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Huycke, M.M. Extracellular Superoxide Production by Enterococcus Faecalis Promotes Chromosomal Instability in Mammalian Cells. Gastroenterology 2007, 132, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Nallapareddy, S.R.; Singh, K.V.; Duh, R.-W.; Weinstock, G.M.; Murray, B.E. Diversity of Ace, a Gene Encoding a Microbial Surface Component Recognizing Adhesive Matrix Molecules, from Different Strains of Enterococcus Faecalis and Evidence for Production of Ace during Human Infections. Infect. Immun. 2000, 68, 5210–5217. [Google Scholar] [CrossRef]
- Nallapareddy, S.R.; Weinstock, G.M.; Murray, B.E. Clinical Isolates of Enterococcus Faecium Exhibit Strain-Specific Collagen Binding Mediated by Acm, a New Member of the MSCRAMM Family: An E. Faecium Collagen-Binding Adhesin. Mol. Microbiol. 2003, 47, 1733–1747. [Google Scholar] [CrossRef]
- Nallapareddy, S.R.; Singh, K.V.; Sillanpaa, J.; Garsin, D.A.; Hook, M.; Erlandsen, S.L.; Murray, B.E. Endocarditis and Biofilm-Associated Pili of Enterococcus Faecalis. J. Clin. Investig. 2006, 116, 2799–2807. [Google Scholar] [CrossRef]
- Hendrickx, A.P.A.; Van Luit-Asbroek, M.; Schapendonk, C.M.E.; Van Wamel, W.J.B.; Braat, J.C.; Wijnands, L.M.; Bonten, M.J.M.; Willems, R.J.L. SgrA, a Nidogen-Binding LPXTG Surface Adhesin Implicated in Biofilm Formation, and EcbA, a Collagen Binding MSCRAMM, Are Two Novel Adhesins of Hospital-Acquired Enterococcus Faecium. Infect. Immun. 2009, 77, 5097–5106. [Google Scholar] [CrossRef] [PubMed]
- Lowe, A.M.; Lambert, P.A.; Smith, A.W. Cloning of an Enterococcus Faecalis Endocarditis Antigen: Homology with Adhesins from Some Oral Streptococci. Infect. Immun. 1995, 63, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Shankar, N.; Lockatell, C.V.; Baghdayan, A.S.; Drachenberg, C.; Gilmore, M.S.; Johnson, D.E. Role of Enterococcus Faecalis Surface Protein Esp in the Pathogenesis of Ascending Urinary Tract Infection. Infect. Immun. 2001, 69, 4366–4372. [Google Scholar] [CrossRef]
- Schmitt, A.; Jiang, K.; Camacho, M.I.; Jonna, V.R.; Hofer, A.; Westerlund, F.; Christie, P.J.; Berntsson, R.P.-A. PrgB Promotes Aggregation, Biofilm Formation, and Conjugation through DNA Binding and Compaction: PrgB Structure and DNA-Binding Activity. Mol. Microbiol. 2018, 109, 291–305. [Google Scholar] [CrossRef]
- Sillanpää, J.; Nallapareddy, S.R.; Prakash, V.P.; Qin, X.; Höök, M.; Weinstock, G.M.; Murray, B.E. Identification and Phenotypic Characterization of a Second Collagen Adhesin, Scm, and Genome-Based Identification and Analysis of 13 Other Predicted MSCRAMMs, Including Four Distinct Pilus Loci, in Enterococcus Faecium. Microbiology 2008, 154, 3199–3211. [Google Scholar] [CrossRef]
- Park, S.Y.; Shin, Y.P.; Kim, C.H.; Park, H.J.; Seong, Y.S.; Kim, B.S.; Seo, S.J.; Lee, I.H. Immune Evasion of Enterococcus Faecalis by an Extracellular Gelatinase That Cleaves C3 and IC3b. J. Immunol. 2008, 181, 6328–6336. [Google Scholar] [CrossRef] [PubMed]
- Engelbert, M.; Mylonakis, E.; Ausubel, F.M.; Calderwood, S.B.; Gilmore, M.S. Contribution of Gelatinase, Serine Protease, and Fsr to the Pathogenesis of Enterococcus Faecalis Endophthalmitis. Infect. Immun. 2004, 72, 3628–3633. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Teng, F.; Murray, B.E. Gelatinase Is Important for Translocation of Enterococcus Faecalis across Polarized Human Enterocyte-Like T84 Cells. Infect. Immun. 2005, 73, 1606–1612. [Google Scholar] [CrossRef]
- Huycke, M.M.; Gilmore, M.S. Frequency of Aggregation Substance and Cytolysin Genes among Enterococcal Endocarditis Isolates. Plasmid 1995, 34, 152–156. [Google Scholar] [CrossRef]
- Creti, R.; Koch, S.; Fabretti, F.; Baldassarri, L.; Huebner, J. Enterococcal Colonization of the Gastrointestinal Tract: Role of Biofilm and Environmental Oligosaccharides. BMC Microbiol. 2006, 6, 60. [Google Scholar] [CrossRef]
- Bourgogne, A.; Hilsenbeck, S.G.; Dunny, G.M.; Murray, B.E. Comparison of OG1RF and an Isogenic FsrB Deletion Mutant by Transcriptional Analysis: The Fsr System of Enterococcus Faecalis Is More than the Activator of Gelatinase and Serine Protease. J. Bacteriol. 2006, 188, 2875–2884. [Google Scholar] [CrossRef]
- Thurlow, L.R.; Thomas, V.C.; Fleming, S.D.; Hancock, L.E. Enterococcus Faecalis Capsular Polysaccharide Serotypes C and D and Their Contributions to Host Innate Immune Evasion. Infect. Immun. 2009, 77, 5551–5557. [Google Scholar] [CrossRef]
- Domann, E.; Hain, T.; Ghai, R.; Billion, A.; Kuenne, C.; Zimmermann, K.; Chakraborty, T. Comparative Genomic Analysis for the Presence of Potential Enterococcal Virulence Factors in the Probiotic Enterococcus Faecalis Strain Symbioflor 1. Int. J. Med. Microbiol. 2007, 297, 533–539. [Google Scholar] [CrossRef]
- Leavis, H.L.; Bonten, M.J.; Willems, R.J. Identification of High-Risk Enterococcal Clonal Complexes: Global Dispersion and Antibiotic Resistance. Curr. Opin. Microbiol. 2006, 9, 454–460. [Google Scholar] [CrossRef]
- Lebreton, F.; Valentino, M.D.; Schaufler, K.; Earl, A.M.; Cattoir, V.; Gilmore, M.S. Transferable Vancomycin Resistance in Clade B Commensal-Type Enterococcus Faecium. J. Antimicrob. Chemother. 2018, 73, 1479–1486. [Google Scholar] [CrossRef]
- Papanicolaou, G.A.; Ustun, C.; Young, J.-A.H.; Chen, M.; Kim, S.; Woo Ahn, K.; Komanduri, K.; Lindemans, C.; Auletta, J.J.; Riches, M.L.; et al. Bloodstream Infection Due to Vancomycin-Resistant Enterococcus Is Associated With Increased Mortality After Hematopoietic Cell Transplantation for Acute Leukemia and Myelodysplastic Syndrome: A Multicenter, Retrospective Cohort Study. Clin. Infect. Dis. 2019, 69, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Bi, R.; Qin, T.; Fan, W.; Ma, P.; Gu, B. The Emerging Problem of Linezolid-Resistant Enterococci. J. Glob. Antimicrob. Resist. 2018, 13, 11–19. [Google Scholar] [CrossRef]
- Dadashi, M.; Sharifian, P.; Bostanshirin, N.; Hajikhani, B.; Bostanghadiri, N.; Khosravi-Dehaghi, N.; Van Belkum, A.; Darban-Sarokhalil, D. The Global Prevalence of Daptomycin, Tigecycline, and Linezolid-Resistant Enterococcus Faecalis and Enterococcus Faecium Strains From Human Clinical Samples: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 720647. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yin, D.; Li, P.; Guo, Y.; Ming, D.; Lin, Y.; Yan, X.; Zhang, Z.; Hu, F. First Report Cfr and OptrA Co-Harboring Linezolid-Resistant Enterococcus Faecalis in China. Ind. Diamond Rev. 2020, 13, 3919–3922. [Google Scholar] [CrossRef]
- Tsilipounidaki, K.; Gerontopoulos, A.; Papagiannitsis, C.; Petinaki, E. First Detection of an OptrA-Positive, Linezolid-Resistant ST16 Enterococcus Faecalis from Human in Greece. New Microbes New Infect. 2019, 29, 100515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Schwarz, S.; Li, Y.; Shen, Z.; Zhang, Q.; Wu, C.; Shen, J. Transferable Multiresistance Plasmids Carrying Cfr in Enterococcus spp. from Swine and Farm Environment. Antimicrob. Agents Chemother. 2013, 57, 42–48. [Google Scholar] [CrossRef]
- Tran, T.T.; Munita, J.M.; Arias, C.A. Mechanisms of Drug Resistance: Daptomycin Resistance: Daptomycin Resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 32–53. [Google Scholar] [CrossRef]
- Fiedler, S.; Bender, J.K.; Klare, I.; Halbedel, S.; Grohmann, E.; Szewzyk, U.; Werner, G. Tigecycline Resistance in Clinical Isolates of Enterococcus faecium Is Mediated by an Upregulation of Plasmid-Encoded Tetracycline Determinants Tet (L) and Tet (M). J. Antimicrob. Chemother. 2016, 71, 871–881. [Google Scholar] [CrossRef]
- Linkevicius, M.; Sandegren, L.; Andersson, D. Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance. Antimicrob. Agents Chemother. 2016, 60, 789–796. [Google Scholar] [CrossRef]
- Franz, C.M.A.P.; Huch, M.; Abriouel, H.; Holzapfel, W.; Gálvez, A. Enterococci as Probiotics and Their Implications in Food Safety. Int. J. Food Microbiol. 2011, 151, 125–140. [Google Scholar] [CrossRef]
- De Niederhäusern, S.; Bondi, M.; Messi, P.; Iseppi, R.; Sabia, C.; Manicardi, G.; Anacarso, I. Vancomycin-Resistance Transferability from VanA Enterococci to Staphylococcus Aureus. Curr. Microbiol. 2011, 62, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Eaton, T.J.; Gasson, M.J. Molecular Screening of Enterococcus Virulence Determinants and Potential for Genetic Exchange between Food and Medical Isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, T.O.; McCarron, M.; Dooley, J.S.G.; Arnscheidt, J. Transfer of Antibiotic Resistance Genes between Enterococcus Faecalis Strains in Filter Feeding Zooplankton Daphnia Magna and Daphnia Pulex. Sci. Total Environ. 2019, 659, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Moubareck, C.; Bourgeois, N.; Courvalin, P.; Doucet-Populaire, F. Multiple Antibiotic Resistance Gene Transfer from Animal to Human Enterococci in the Digestive Tract of Gnotobiotic Mice. Antimicrob. Agents Chemother. 2003, 47, 2993–2996. [Google Scholar] [CrossRef]
Species and Strain | Company | Product | Online Store | Other Species Present |
---|---|---|---|---|
E. faecalis TH10 | Dr. Ohira, Premier Research Labs, Quantum Nutrition Labs | Dr. Ohira’s Probiotics Professional Formula, Dr. Ohira’s Probiotics Original Formula, Premier Probiotic Caps, Quantum Probiotic Support | iHerb, Amazon, Swanson Vitamins, Lucky Vitamins, Pure Formulas | Bifidobacterium breve M16, Lactobacillus acidophilus ATCC SD521 |
E. faecium R0026 | Natural Factors | ReliefBiotic IB, IBS Relief Biotic | iHerb, Amazon | Lacticaseibacillus rhamnosus R0011, Lactobacillus helveticus R0052, Bacillus subtilis R0179 |
E. faecium SD5843 | ProBioCare | Probiotic for Men, Probiotic for Women | Vitamin Shoppe | Lacticaseibacillus casei LC11, Lactiplantibacillus plantarum LP115, L. rhamnosus GG |
E. faecium T110 | Advanced Orthomolecular Research | Probiotic 3 | Amazon, iHerb, Pure Formulas | Clostridium butyricum TOA, B. subtilis TOA |
E. faecium VPro21 | Solaray | Mycrobiome Probiotic Adult 50+, Mycrobiome Probiotic Men’s, Mycrobiome Probiotic Women’s, Mycrobiome Probiotic Urgent care, Mycrobiome Probiotic Weight, Mycrobiome Probiotic Colon, Super Multidophilus | Vitamin Shoppe, Amazon, Pure Formulas, iHerb, Swanson Vitamins | Bifidobacterium lactis VK2, B. infantis VPro53, B. longum VPro51, B. longum VPro55, B. breve VPro52, L. plantarum VPro10, Lacticaseibacillus paracasei VPro224, L. paracasei VK4, Lactococcus lactis VPro17, Lactobacillus gasseri Vpro16 |
E. faecium W54 | North American Herb and Spice, Zenement | Health-Bac, Proactiflora | Amazon | B. lactis W51, B. lactis W52, B. longum BL21, B. lactis BLa80 L. acidophilus W22, L. paracasei 20, L. acidophilus LA85, L. plantarum Lp90 |
E. faecium NS * | NatureWise | Time Release Probiotics, Maximum Care | iHerb | L. casei, Limosilactobacillus fermentum, L. plantarum |
E. faecium NS * | Professional Formulas | IntestiCalm | Amazon, Pure Formulas | L. rhamnosus, L. plantarum, Bifidobacterium bifidum, B. infantis |
E. faecium NS * | Nutra Biogenesis | MicroBiotic Intensive, MicroBiotic Lower GI | Amazon, Pure Formulas | L. plantarum, L. paracasei B. lactis, B. longum |
Probiotic Potential | Type of Research | Enterococcal Strains | Functions | Reference |
---|---|---|---|---|
Acute Diarrhea | A placebo-controlled trial in adults | E. faecium SF68 | Significantly shorter duration of acute diarrhea with no adverse drug reactions | Buydens et al. 1996 [26] |
A placebo-controlled trial in pediatrics | E. faecalis (in BIO-THREE®) | Significantly shorter duration of acute diarrhea and hospital stay Decreased levels of cytokines IL-10, TNF-α, IFN-γ, and IL- 12 | Chen et al. 2010 [27] | |
Irritable Bowel Syndrome (IBS) | Open-label trial in adults | Enterococcus (non-specified strain) | Improvement of IBS symptoms Reduction of enterococcal count (p < 0.01) and count of Bacteroides (p < 0.05) in the intestinal flora | Fan et al. 2006 [28] |
Open-randomized placebo-controlled trial | E. faecium ENCFa68 | Improved clinical manifestations of the disease Restoration of the normal composition of intestinal microbiota and normalization of the content of fecal calprotectin | Yakovenko et al. 2022 [29] | |
Gastrointestinal Inflammation | Mice | 5 Enterococcus strains (not specified) | Reduced intestinal epithelial permeability by increasing stimulation of tight junctions Reduced inflammation | Ahmadi et al. 2020 [30] |
Allergic Rhinitis (AR) | A placebo-controlled trial in pediatrics | E. faecium L3 LMG P27496 | Reduced symptoms of AR Significant reduction in nasal symptom score Significant reduction in intake of pharmacological therapy (antihistamines and local steroids) | Anania et al. 2021 [31] |
Chronic Recurrent Bronchitis | Double-blind, placebo-controlled multicenter trial | E. faecalis (in Symbioflor 1) | Significant reduction of the duration until relapse Significant reduction in the need for antibiotics | Habermann et al. 2001 [32] |
Salmonellae-infections | Piglets | E. faecium NCIMB 10415 | Increased number of intraepithelial lymphocytes (IEL), which are potentially related to the early detection of pathogenic bacteria | Rieger et al. 2015 [33] |
Atopic respiratory symptoms | Retrospective trial in pediatrics | E. faecium L3 | Significant reduction of rhinitis, watery eyes, and cough/bronchospasm Significant reduction of need for drugs (e.g., antihistamines, corticosteroids) | Di Pierro et al. 2018 [34] |
Acute Respiratory Infections (ARI) | Observational research on orphan infants | E. faecium L3 | Reduction of ARI cases | Gonchar et al. 2015 [35] |
Hyperlipidemia | Randomized placebo-controlled human volunteers | E. faecium M74 | Reduction in LDL cholesterol | Hlivak et al. 2005 [36] |
E. faecium (non-specified strain) | Agerbaek et al. 1995 [37] |
Virulence Factors | Classification | Type of Research | Enterococcus strains | Functions | Reference |
---|---|---|---|---|---|
Adhesin to collagen of E. faecalis (Ace) | Adherence | Cell culture and analysis of clinical isolates from patients with endocarditis | E. faecium OG1RF | Ability to bind with collagen type I and IV, as well as laminin | Nallapareddy et al., 2000 [47] |
Cell wall-anchored collagen membrane adhesin (Acm) | Adherence | Cell culture and analysis of isolates from patients with severe clinical infections | E. faecium TX0054 E. faecium TX2535 E. faecium TX2555 | Ability to bind with collagen type I | Nallapareddy et al., 2003 [48] |
Endocarditis- and biofilm-associated pili (Ebp) | Adherence | Analysis of isolates from rats | E. faecalis OG1RF | Contribution to biofilm formation and adherence to fibrinogen | Nallapareddy et al., 2006 [49] |
Enterococcus collagen-binding adhesin (EcbA) | Adherence | Cell culture and analysis of hospital-acquired isolates in vitro | E. faecalis E1162 | Ability to bind with collagen type I, IV, V, and fibrinogen | Hendrickx et al., 2009 [50] |
E. faecalis antigen A (EfaA) | Adherence | In vitro analysis of clinical isolates from patients with endocarditis | E. faecalis EBH1 | Potential function as an adhesin in the endocardium | Lowe et al., 1995 [51] |
Extracellular surface protein (Esp) | Adherence | In vivo experiment regarding urinary tract infection with a mouse model | E. faecalis MMH94 | Colonization and survival in the bladder | Shankar et al., 2001 [52] |
Promotion aggregation complex (PrgB) | Adherence | In vitro experiment with PrgB (AS 10) wildtype and PrgB mutant | E. faecalis OG1RF | Promotion of aggregation and biofilm formation | Schmitt et al., 2018 [53] |
Second collagen adhesin of E. faecium (Scm) | Adherence | Cell culture and analysis of endocarditis isolates | E. faecium TX0068 E. faecium TX0074 | Ability to bind with specificity to collagen type V | Sillanpää et al., 2008 [54] |
Serine glutamate repeat A (SgrA) | Adherence | Cell culture and analysis of hospital-acquired isolates in vitro | E. faecium U0317 E. faecium E1162 | Potential contribution to biofilm formation by binding nidogen and fibrinogen | Hendrickx et al., 2009 [50] |
Gelatinase (GelE) | Exoenzyme | Cell culture and analysis in vitro | E. faecalis (non-specified) | Cleavage of complement C3, resulting in activation of the complement system | Park et al., 2008 [55] |
Serine Protease (SprE) | Exoenzyme | In vivo experiment with rabbit model of endophthalmitis | E. faecalis OG1RF | Activation of fsrABC by working together with GelE (Attenuation of endophthalmitis pathogenesis in rabbits with SprE-deficient mutant) | Engelbert et al., 2004 [56] |
Cytolysin (Cyl) | Exotoxin | Translocation experiment in vitro | E. faecalis JH22, E. faecalis TX1322 | Cleavage of complements C3 and iC3b | Zeng et al., 2005 [57] |
In vitro analysis of clinical isolates in patients | E. faecalis (non-specified) | Higher occurrence of Cyl among clinical pathogens | Huycke et al., 1995 [58] | ||
Biofilm on plastic D (BopD) | Biofilm | In vivo experiment with mice | E. faecalis T9, E. faecalis 10D5, E. faecalis TDM | Contribution to biofilm formation | Creti et al., 2006 [59] |
Quorum-sensing complex (FsrABC) | Biofilm | Comparative Transcriptional Analysis | E. faecalis OG1RF, E. faecalis TX5266 | Encoding of a two-component signal transduction system for initiation of quorum sensing | Bourgogne et al., 2006 [60] |
Capsular polysaccharides (Cps) | Immune Modulation | Cell culture and analysis in vitro | E. faecalis V583, E. faecalis LT02, E. faecalis LT06 | Higher resistance to opsonophagocytosis | Thurlow et al., 2009 [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, E.J.; Lee, H.H.-Y.; Kim, M.; Kim, M.-K. Evaluation of Enterococcal Probiotic Usage and Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain Emergence. Antibiotics 2023, 12, 1327. https://doi.org/10.3390/antibiotics12081327
Im EJ, Lee HH-Y, Kim M, Kim M-K. Evaluation of Enterococcal Probiotic Usage and Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain Emergence. Antibiotics. 2023; 12(8):1327. https://doi.org/10.3390/antibiotics12081327
Chicago/Turabian StyleIm, Eric Jeeho, Harry Hyun-Yup Lee, Minzae Kim, and Myo-Kyoung Kim. 2023. "Evaluation of Enterococcal Probiotic Usage and Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain Emergence" Antibiotics 12, no. 8: 1327. https://doi.org/10.3390/antibiotics12081327
APA StyleIm, E. J., Lee, H. H. -Y., Kim, M., & Kim, M. -K. (2023). Evaluation of Enterococcal Probiotic Usage and Review of Potential Health Benefits, Safety, and Risk of Antibiotic-Resistant Strain Emergence. Antibiotics, 12(8), 1327. https://doi.org/10.3390/antibiotics12081327