Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Phase I (Model Refinement)
2.2.1. Preparation of F. tularensis for Animal Challenge
2.2.2. Inhalational Challenge
2.2.3. Model Assessment
2.3. Phase II (Treatment Evaluation)
2.3.1. Preparation of F. tularensis for Animal Challenges and Inhalational Challenges
2.3.2. Minimum Inhibitory Concentration Testing by Broth Macrodilution
2.3.3. Antibiotics and Formulation Preparation for Animal Experiments
2.3.4. Antibiotic Administration
2.3.5. Clinical Observations and Body Weights
2.3.6. Bacterial Enumeration
2.4. Statistical Analysis
2.4.1. Survival
2.4.2. Body Weight
2.4.3. Bacteremia and Bacterial Load
3. Results
3.1. Phase I
3.1.1. Inhalational Challenge
3.1.2. Mortality, Clinical Observations, and Body Weights
3.2. Phase II
3.2.1. Inhalational Challenge
3.2.2. Minimum Inhibitory Concentration of Ceftobiprole against F. tularensis Used for Inhalational Challenges
3.2.3. Mortality and Clinical Observations
3.2.4. Body Weights
3.2.5. Bacteremia and Tissue Burden
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ellis, J.; Oyston, P.C.F.; Green, M.; Titball, R.W. Tularemia. Clin. Microbiol. Rev. 2002, 15, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Atlas, R.M. Bioterrorism: From threat to reality. Annu. Rev. Microbiol. 2002, 56, 167–185. [Google Scholar] [CrossRef]
- Dietrich, T.; Garcia, K.; Strain, J.; Ashurst, J. Extended-interval gentamicin dosing for pulmonic Tularemia. Case Rep. Infect. Dis. 2019, 2019, 9870510. [Google Scholar] [CrossRef] [PubMed]
- Generali, J.A.; Gada, D.J. Ciprofloxacin: Tularemia (adults). Hosp. Pharm. 2015, 50, 274–276. [Google Scholar] [CrossRef]
- Lester Rothfeldt, L.K.; Jacobs, R.F.; Wheeler, J.G.; Weinstein, S.; Haselow, D.T. Variation in tularemia clinical manifestations—Arkansas, 2009–2013. Open Forum Infect. Dis. 2017, 4, ofx027. [Google Scholar] [CrossRef]
- Limaye, A.P.; Hooper, C.J. Treatment of tularemia with fluoroquinolones: Two cases and review. Clin. Infect. Dis. 1999, 29, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Karlı, A.; Şensoy, G.; Paksu, Ş.; Korkmaz, M.F.; Ertuğrul, Ö.; Karlı, R. Treatment-failure tularemia in children. Korean J. Pediatr. 2018, 61, 49. [Google Scholar] [CrossRef]
- Darling, R.G.; Woods, J.B.; Dembek, Z.F. USAMRIID’s Medical Management of Biological Casualties Handbook; US Army Medical Research Institute of Infectious Diseases: Fort Detrick, MD, USA, 2004. [Google Scholar]
- WHO. Guidelines on Tularaemia: Epidemic and Pandemic Alert and Response; World Health Organization: Geneva, Switzerland, 2007.
- Infectious Diseases Society of America. Bad Bugs, No Drugs: As Antibiotic Discovery Stagnates a Public Health Crisis Brews; Infectious Diseases Society of America: Alexandria, VA, USA, 2004. [Google Scholar]
- Bioterrorism and Drug Preparedness. 2022. Available online: https://www.fda.gov/drugs/emergency-preparedness-drugs/bioterrorism-and-drug-preparedness (accessed on 1 March 2023).
- National Research Council (NRC). The Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011.
- Barbour, A.; Schmidt, S.; Rand, K.H.; Derendorf, H. Ceftobiprole: A novel cephalosporin with activity against Gram-positive and Gram-negative pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Antimicrob. Agents 2009, 34, 1–7. [Google Scholar] [CrossRef]
- Fritsche, T.R.; Sader, H.S.; Jones, R.N. Antimicrobial activity of ceftobiprole, a novel anti–methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: Results from the SENTRY Antimicrobial Surveillance Program (2005–2006). Diagn. Microbiol. Infect. Dis. 2008, 61, 86–95. [Google Scholar] [CrossRef]
- Hebeisen, P.; Heinze-Krauss, I.; Angehrn, P.; Hohl, P.; Page, M.G.; Then, R.L. In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother. 2001, 45, 825–836. [Google Scholar] [CrossRef]
- Jones, R.N.; Deshpande, L.M.; Mutnick, A.H.; Biedenbach, D.J. In vitro evaluation of BAL9141, a novel parenteral cephalosporin active against oxacillin-resistant staphylococci. J. Antimicrob. Chemother. 2002, 50, 915–932. [Google Scholar] [CrossRef] [PubMed]
- Rouse, M.S.; Steckelberg, J.M.; Patel, R. In vitro activity of ceftobiprole, daptomycin, linezolid, and vancomycin against methicillin-resistant staphylococci associated with endocarditis and bone and joint infection. Diagn. Microbiol. Infect. Dis. 2007, 58, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.S.; Rodriguez, A.H.; Chuang, Y.-C.; Marjanek, Z.; Pareigis, A.J.; Reis, G.; Scheeren, T.W.; Sánchez, A.S.; Zhou, X.; Saulay, M. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin. Infect. Dis. 2014, 59, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Basilea Pharmaceutica Clinical Trial. Ceftobiprole in Hospital Acquired Pneumonia. ClinicalTrials.gov identifiers NCT00210964 and NCT00229008. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT00210964 (accessed on 1 March 2023).
- Nicholson, S.C.; Welte, T.; File, T.M., Jr.; Strauss, R.S.; Michiels, B.; Kaul, P.; Balis, D.; Arbit, D.; Amsler, K.; Noel, G.J. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int. J. Antimicrob. Agents 2012, 39, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Basilea Pharmaceutica Clinical Trial. Ceftobiprole in the Treatment of Patients with Community-Acquired Pneumonia. Clini-calTrials.gov identifier NCT00326287. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT00326287 (accessed on 1 March 2023).
- AVIR Pharma Inc. Zevtera Product Monograph; AVIR Pharma Inc.: Blainville, QC, Canada, 2021. [Google Scholar]
- Hamed, K.; Engelhardt, M.; Jones, M.E.; Saulay, M.; Holland, T.L.; Seifert, H.; Fowler, V.G., Jr. Ceftobiprole versus daptomycin in Staphylococcus aureus bacteremia: A novel protocol for a double-blind, Phase III trial. Future Microbiol. 2020, 15, 35–48. [Google Scholar] [CrossRef]
- Basilea Pharmaceutica ERADICATE Clinical Trial. Ceftobiprole in the Treatment of Patients with Staphylococcus aureus Bac-teremia. ClinicalTrials.gov identifier NCT03138733. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03138733 (accessed on 1 March 2023).
- Overcash, J.S.; Kim, C.; Keech, R.; Gumenchuk, I.; Ninov, B.; Gonzalez-Rojas, Y.; Waters, M.; Simeonov, S.; Engelhardt, M.; Saulay, M. Ceftobiprole compared with vancomycin plus aztreonam in the treatment of acute bacterial skin and skin structure infections: Results of a Phase 3, randomized, double-blind trial (TARGET). Clin. Infect. Dis. 2021, 73, e1507–e1517. [Google Scholar] [CrossRef]
- Basilea Pharmaceutica TARGET Clinical Trial. Ceftobiprole in the Treatment of Patients with Acute Bacterial Skin and Skin Structure Infections. ClinicalTrials.gov identifier NCT03137173. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03137173 (accessed on 1 March 2023).
- U.S. Food and Drug Administration. Subpart I Approval of New Drugs When Human Efficacy Studies Are Not Ethical of Feasible; 21 CFR 314.600-650; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2002.
- Ray, H.J.; Chu, P.; Wu, T.H.; Lyons, C.R.; Murthy, A.K.; Guentzel, M.N.; Klose, K.E.; Arulanandam, B.P. The Fischer 344 rat reflects human susceptibility to Francisella pulmonary challenge and provides a new platform for virulence and protection studies. PLoS ONE 2010, 5, e9952. [Google Scholar] [CrossRef]
- Wu, T.H.; Zsemlye, J.L.; Statom, G.L.; Hutt, J.A.; Schrader, R.M.; Scrymgeour, A.A.; Lyons, C.R. Vaccination of Fischer 344 rats against pulmonary infections by Francisella tularensis type A strains. Vaccine 2009, 27, 4684–4693. [Google Scholar] [CrossRef]
- Hutt, J.A.; Lovchik, J.A.; Dekonenko, A.; Hahn, A.C.; Wu, T.H. The natural history of pneumonic tularemia in female Fischer 344 rats after inhalational exposure to aerosolized Francisella tularensis subspecies tularensis strain SCHU S4. Am. J. Pathol. 2017, 187, 252–267. [Google Scholar] [CrossRef]
- Richards, M.I.; Barnes, K.B.; Smart, J.I.; Jones, M.; Harding, S.V. An Alternative MIC Method to Evaluate the In Vitro Activity of Beta-Lactam Antibiotics against Francisella tularensis. J. Bioterr. Biodef. 2023, 14, 322. [Google Scholar]
- Boisset, S.; Caspar, Y.; Sutera, V.; Maurin, M. New therapeutic approaches for treatment of tularaemia: A review. Front. Cell. Infect. Microbiol. 2014, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, R.B. Comparative deposition of inhaled aerosols in experimental animals and humans: A review. J. Toxicol. Environ. Health Part A Curr. Issues 1985, 15, 197–214. [Google Scholar] [CrossRef] [PubMed]
- Gelhaus, H.C.; Anderson, M.S.; Fisher, D.A.; Flavin, M.T.; Xu, Z.-Q.; Sanford, D.C. Efficacy of post exposure administration of doxycycline in a murine model of inhalational melioidosis. Sci. Rep. 2013, 3, 1146. [Google Scholar] [CrossRef] [PubMed]
- Guyton, A.C. Analysis of respiratory patterns in laboratory animals. Am. J. Physiol.-Leg. Content 1947, 150, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Udekwu, K.I.; Parrish, N.; Ankomah, P.; Baquero, F.; Levin, B.R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother. 2009, 63, 745–757. [Google Scholar] [CrossRef]
- Dennis, D.T.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Friedlander, A.M.; Hauer, J.; Layton, M. Tularemia as a biological weapon: Medical and public health management. JAMA 2001, 285, 2763–2773. [Google Scholar] [CrossRef]
Phase I Group | Number of Animals | Target Exposure Dose (CFUs/Animal) | Actual Exposure Dose (CFUs/Animal) | Group Mean Body Weight (g) |
---|---|---|---|---|
1 | 10 | 100 | 377 | 167.90 |
2 | 10 | 1000 | 3515 | 167.72 |
Organism | Sample | Starting Inoculum Density (CFUs/mL) | Ceftobiprole MIC (µg/mL) | Ciprofloxacin MIC (µg/mL) |
---|---|---|---|---|
F. tularensis Schu S4 | CDA | 2.06 × 106 | <0.03 | 0.03 |
F. tularensis Schu S4 | CDB | 1.53 × 106 | <0.03 | 0.016 |
S. aureus ATCC 29213 | CDA (QC organism) | 4.90 × 106 | 0.5 | 1 |
S. aureus ATCC 29213 | CDB (QC organism) | 1.38 × 107 | 0.25 | 1 |
CDA: Challenge Day A; CDB: Challenge Day B; QC: Quality Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hahn, M.M.; Triplett, C.A.; Anderson, M.S.; Smart, J.I.; Litherland, K.; Keech, S.; von Siebenthal, F.; Jones, M.; Phipps, A.J.; Henning, L.N. Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia. Antibiotics 2023, 12, 1337. https://doi.org/10.3390/antibiotics12081337
Hahn MM, Triplett CA, Anderson MS, Smart JI, Litherland K, Keech S, von Siebenthal F, Jones M, Phipps AJ, Henning LN. Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia. Antibiotics. 2023; 12(8):1337. https://doi.org/10.3390/antibiotics12081337
Chicago/Turabian StyleHahn, Mark M., Cheryl A. Triplett, Michael S. Anderson, Jennifer I. Smart, Karine Litherland, Stephen Keech, Franziska von Siebenthal, Mark Jones, Andrew J. Phipps, and Lisa N. Henning. 2023. "Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia" Antibiotics 12, no. 8: 1337. https://doi.org/10.3390/antibiotics12081337
APA StyleHahn, M. M., Triplett, C. A., Anderson, M. S., Smart, J. I., Litherland, K., Keech, S., von Siebenthal, F., Jones, M., Phipps, A. J., & Henning, L. N. (2023). Ceftobiprole Medocaril Is an Effective Post-Exposure Treatment in the Fischer 344 Rat Model of Pneumonic Tularemia. Antibiotics, 12(8), 1337. https://doi.org/10.3390/antibiotics12081337