Inhibition of Acinetobacter baumannii Biofilm Formation Using Different Treatments of Silica Nanoparticles
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Preparation
2.2. Amoxicillin Preparation
2.3. Nanoparticle Preparation
2.3.1. Nanoparticle Characterization
Scanning Electron Microscope
Silica Nanoparticles’ Cytotoxicity against Normal Cell Line
2.4. Determination of Minimal Biofilm Inhibitory Concentrations (MBICs) by Using Microtiter Plate Method
2.4.1. Microtiter Plate Biofilm Formation Assay
Evaluation of Different Media for Biofilm Formation
2.4.2. Microdilution Assay
2.4.3. Confirmation Step
2.5. Statistical Analysis
3. Results
3.1. Nanoparticle Characterization
3.1.1. Nanoparticle Morphology
3.1.2. Medium Acidty Confirmation Assay
3.1.3. Silica Nanoparticles Cytotoxicity against Normal Cells
3.2. Evaluation of Media for Biofilm Formation In Vitro
3.3. The Effect of Different Treatments on Biofilm by Scanning Optical Density Using Microtiter Plate
3.4. The Effects of Different Treatments on Biofilm Using Cell Culture Flask Tubes
3.5. Determination of Minimum Biofilm Inhibition Concentration (MBIC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lazo, G.; Abarca-Salazar, S.; Lovón, R.; Rojas, R.; Ballena-López, J.; Morales-Moreno, A.; Flores-Paredes, W.; Arenas-Ramírez, B.; Illescas, L.R. Antibiotic Consumption and Its Relationship with Bacterial Resistance Profiles in ESKAPE Pathogens in a Peruvian Hospital. Antibiotics 2021, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Flores-Paredes, W.; Luque, N.; Albornoz, R.; Rojas, N.; Espinoza, M.; Pons, M.J.; Ruiz, J. Evolution of Antimicrobial Resistance Levels of ESKAPE Microorganisms in a Peruvian Iv-level Hospital. Infect. Chemother. 2021, 53, 449–462. [Google Scholar] [CrossRef]
- Arbune, M.; Gurau, G.; Niculet, E.; Iancu, A.V.; Lupasteanu, G.; Fotea, S.; Tatu, A.L. Prevalence of Antibiotic Resistance of ESKAPE Pathogens over Five Years in an Infectious Diseases Hospital from South-east of Romania. Infect. Drug Resist. 2021, 14, 2369–2378. [Google Scholar] [CrossRef]
- Miquel, S.; Lagrafeuille, R.; Souweine, B.; Forestier, C. Anti-biofilm Activity as a Health Issue. Front. Microbiol. 2016, 7, 592. [Google Scholar] [CrossRef]
- Pandey, R.; Mishra, S.K.; Shrestha, A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Resist. 2021, 14, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Mekuria Shenkutie, A.; Yao, M.; Siu, G.K.H.; Wong, B.K.C.; Leung, P.H.M. Biofilm-induced Antibiotic Resistance in Clinical Acinetobacter baumannii Isolates. Antibiotics 2020, 9, 817. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Timsit, J.F. Managing Acinetobacter baumannii Infections. Curr. Opin. Infect. Dis. 2019, 32, 69–76. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the Mechanisms of Acinetobacter baumannii Virulence. Nat. Rev. Genet. 2018, 16, 91–102. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, Y.; Zhang, X.; Huang, B.; Bai, P.; Xu, C.; Liu, C. Decreased Biofilm Formation Ability of Acinetobacter baumannii After Spaceflight on China’s Shenzhou 11 Spacecraft. MicrobiologyOpen 2019, 8, e00763. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, K.; Jiang, M.; Memon, F.U.; Guo, L.; Zhang, G.; Si, H. Transcriptomic Analysis of Drug-resistance Acinetobacter baumannii Under the Stress Condition Caused by Litsea Cubeba L. Essential Oil via RNA Sequencing. Genes 2021, 12, 1003. [Google Scholar] [CrossRef] [PubMed]
- Sarshar, M.; Behzadi, P.; Scribano, D.; Palamara, A.T.; Ambrosi, C. Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021, 10, 387. [Google Scholar] [CrossRef] [PubMed]
- Rewak-Soroczyńska, J.; Paluch, E.; Siebert, A.; Szałkiewicz, K.; Obłąk, E. Biological Activity of Glycine and Alanine Derivatives of Quaternary Ammonium Salts (qass) Against Micro-organisms. Lett. Appl. Microbiol. 2019, 69, 212–220. [Google Scholar] [CrossRef]
- Singh, R.; Nadhe, S.; Wadhwani, S.; Shedbalkar, U.; Chopade, B.A. Nanoparticles for Control of Biofilms of Acinetobacter Species. Materials 2016, 9, 383. [Google Scholar] [CrossRef]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed]
- Abdulkareem, A.H.; Al Meani, S.A.L.; Ahmed, M.M.; Salih, R.M. Role of Potential Nanomateriales in Reducing Bacterial Resistance Against Antibiotics (A Review). Ann. Rom. Soc. Cell Biol. 2021, 25, 4023–4038. [Google Scholar]
- Muzammil, S.; Khurshid, M.; Nawaz, I.; Siddique, M.H.; Zubair, M.; Nisar, M.A.; Hayat, S. Aluminium Oxide Nanoparticles Inhibit EPS Production, Adhesion and Biofilm Formation by Multidrug Resistant Acinetobacter baumannii. J. Bioadhesion Biofilm Res. 2020, 36, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, X.; Tan, L.; Cui, Z.; Yang, X.; Yeung, K.W.K.; Wu, S. Construction of N-halamine Labeled Silica/zinc Oxide Hybrid Nanoparticles for Enhancing Antibacterial Ability of Ti Implants. Mater. Sci. Eng. C 2017, 76, 50–58. [Google Scholar] [CrossRef]
- Fang, L.; Zhou, H.; Cheng, L.; Wang, Y.; Liu, F.; Wang, S. The Application of Mesoporous Silica Nanoparticles as a Drug Delivery Vehicle in Oral Disease Treatment. Front. Cell. Infect. Microbiol. 2023, 13, 1124411. [Google Scholar] [CrossRef]
- Hetrick, E.M.; Shin, J.H.; Paul, H.S.; Schoenfisch, M.H. Anti-biofilm Efficacy of Nitric Oxide-releasing Silica Nanoparticles. Biomaterials 2009, 30, 2782–2789. [Google Scholar] [CrossRef]
- Mauline, L.; Gressier, M.; Roques, C.; Hammer, P.; Ribeiro, S.J.; Caiut, J.M.A.; Menu, M.J. Bifunctional Silica Nanoparticles for the Exploration of Biofilms of Pseudomonas aeruginosa. Biofouling 2013, 29, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Turetgen, I. Reduction of Microbial Biofilm Formation Using Hydrophobicnano-silica Coating on Cooling Tower Fill Material. Water SA 2015, 41, 295–299. [Google Scholar] [CrossRef]
- Turetgen, I. Reduction of Biofilm Formation on Cooling Tower Heat Exchangers Using Nano-silica Coating: Environmentally Sustainable Antifouling Coating Demonstrated on Stainless Steel Heat Exchanger Tubes. Johns. Matthey Technol. Rev. 2020, 64, 419–424. [Google Scholar] [CrossRef]
- Devlin, H.; Hiebner, D.; Barros, C.; Fulaz, S.; Quinn, L.; Vitale, S.; Casey, E. A High Throughput Method to Investigate Nanoparticle Entrapment Efficiencies in Biofilms. Colloids Surf. B Biointerfaces 2020, 193, 111123. [Google Scholar] [CrossRef] [PubMed]
- Scoffone, V.C.; Irudal, S.; AbuAlshaar, A.; Piazza, A.; Trespidi, G.; Barbieri, G.; Buroni, S. Bactericidal and Anti-biofilm Activity of the Ftsz Inhibitor C109 Against Acinetobacter baumannii. Antibiotics 2022, 11, 1571. [Google Scholar] [CrossRef]
- Natsheh, I.Y.; Alsaleh, M.M. Diverse Energy-Conserving Pathways in Microbes. AJSP 2021, 30, 725–735. [Google Scholar]
- Higgins, P.G.; Wisplinghoff, H.; Stefanik, D.; Seifert, H. In Vitro Activities of the Β-lactamase Inhibitors Clavulanic Acid, Sulbactam, and Tazobactam Alone or in Combination with Β-lactams Against Epidemiologically Characterized Multidrug-resistant Acinetobacter baumannii Strains. Antimicrob. Agents Chemother. 2004, 48, 1586–1592. [Google Scholar] [CrossRef]
- Sedlacek, M.J.; Walker, C. Antibiotic Resistance in an in Vitro Subgingival Biofilm Model. Oral Microbiol. Immunol. 2007, 22, 333–339. [Google Scholar] [CrossRef]
- Sunjuk, M.; Arar, H.; Mahmoud, W.F.; Majdalawi, M.; Krishan, M.M.; Salha, Y.A.; El-Eswed, B. Adsorption of Cationic and Anionic Organic Dyes on Sio2/cuo Composite. Desalination Water Treat. 2019, 169, 383–394. [Google Scholar] [CrossRef]
- Juengel, E.; Natsheh, I.; Najafi, R.; Rutz, J.; Tsaur, I.; Haferkamp, A.; Blaheta, R.A. Mechanisms Behind Temsirolimus Resistance Causing Reactivated Growth and Invasive Behavior of Bladder Cancer Cells in Vitro. Cancers 2019, 11, 777. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. JoVE 2011, 47, e2437. [Google Scholar]
- Stepanović, S.; Vuković, D.; Dakić, I.; Savić, B.; Švabić-Vlahović, M. A Modified Microtiter-plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced Antibacterial and Anti-biofilm Activities of Silver Nanoparticles Against Gram-negative and Gram-positive Bacteria. Nanoscale Res. Lett. 2014, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, M.M.; Shibli, R.A.; Al-Qadiri, H.M.; Tahtamouni, R.W.; Darwish, M.M.; Al-Qudah, T.S. Investigating the Antimicrobial Potential of In-vitro Grown Microshoots and Callus Cultures of Ammi Visnaga (L.) Lam. Jordan J. Biol. Sci. 2019, 12, 43–48. [Google Scholar]
- Chen, P.; Abercrombie, J.J.; Jeffrey, N.R.; Leung, K.P. An Improved Medium for Growing Staphylococcus Aureus Biofilm. J. Microbiol. Methods 2012, 90, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Barros, E.M.; Lemos, M.; Souto-Padrón, T.; Giambiagi-deMarval, M. Phenotypic and Genotypic Characterization of Biofilm Formation in Staphylococcus haemolyticus. Curr. Microbiol. 2015, 70, 829–834. [Google Scholar] [CrossRef]
- Crémet, L.; Corvec, S.; Batard, E.; Auger, M.; Lopez, I.; Pagniez, F.; Caroff, N. Comparison of Three Methods to Study Biofilm Formation by Clinical Strains of Escherichia Coli. Diagn. Microbiol. Infect. Dis. 2013, 75, 252–255. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Wijesinghe, G.; Dilhari, A.; Gayani, B.; Kottegoda, N.; Samaranayake, L.; Weerasekera, M. Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus. Med Princ. Pract. 2019, 28, 28–35. [Google Scholar] [CrossRef]
- Sudagidan, M.; Yildiz, G.; Onen, S.; Al, R.; Temiz, Ş.N.; Yurt, M.N.Z.; Ozalp, V.C. Targeted Mesoporous Silica Nanoparticles for Improved Inhibition of Disinfectant Resistant Listeria monocytogenes and Lower Environmental Pollution. J. Hazard. Mater. 2021, 418, 126364. [Google Scholar] [CrossRef]
- Tamanna, T.; Landersdorfer, C.B.; Ng, H.J.; Bulitta, J.B.; Wood, P.; Yu, A. Prolonged and Continuous Antibacterial and Anti-biofilm Activities of Thin Films Embedded with Gentamicin-loaded Mesoporous Silica Nanoparticles. Appl. Nanosci. 2018, 8, 1471–1482. [Google Scholar] [CrossRef]
- Balaure, P.C.; Boarca, B.; Popescu, R.C.; Savu, D.; Trusca, R.; Vasile, B.Ș.; Andronescu, E. Bioactive Mesoporous Silica Nanostructures with Anti-microbial and Anti-biofilm Properties. Int. J. Pharm. 2017, 531, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Ejileugha, C.; Ezealisiji, K.M.; Ezejiofor, A.N.; Orisakwe, O.E. Microbiologically Influenced Corrosion: Uncovering Mechanisms and Discovering Inhibitor—Metal and Metal Oxide Nanoparticles as Promising Biocorrosion Inhibitors. J. Bio- Tribo-Corrosion 2021, 7, 109. [Google Scholar] [CrossRef]
- Kaur, T.; Putatunda, C.; Vyas, A.; Kumar, G. Zinc Oxide Nanoparticles Inhibit Bacterial Biofilm Formation via Altering Cell Membrane Permeability. Prep. Biochem. Biotechnol. 2021, 51, 309–319. [Google Scholar] [CrossRef]
- Khan, M.F.; Husain, F.M.; Zia, Q.; Ahmad, E.; Jamal, A.; Alaidarous, M.; Ahmad, I. Anti-quorum Sensing and Anti-biofilm Activity of Zinc Oxide Nanospikes. ACS Omega 2020, 5, 32203–32215. [Google Scholar] [CrossRef] [PubMed]
- Shkodenko, L.; Kassirov, I.; Koshel, E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020, 8, 1545. [Google Scholar] [CrossRef]
- Kemung, H.M.; Tan, L.T.H.; Khaw, K.Y.; Ong, Y.S.; Chan, C.K.; Low, D.Y.S.; Goh, B.H. An Optimized Anti-adherence and Anti-biofilm Assay: Case Study of Zinc Oxide Nanoparticles Versus MRSA Biofilm. Prog. Microbes Mol. Biol. 2020, 3. [Google Scholar] [CrossRef]
- Catalano, E. Biophysical Interaction, Nanotoxicology Evaluation, and Biocompatibility and Biosafety of Metal Nanoparticles. arXiv 2021, arXiv:2108.05964. [Google Scholar]
- Medici, S.; Peana, M.; Pelucelli, A.; Zoroddu, M.A. An Updated Overview on Metal Nanoparticles Toxicity. Semin. Cancer Biol. 2021, 76, 17–26. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, M. Research Progress on Toxicity, Function, and Mechanism of Metal Oxide Nanoparticles on Vascular Endothelial Cells. J. Appl. Toxicol. 2021, 41, 683–700. [Google Scholar] [CrossRef]
- Sifonte, E.P.; Castro-Smirnov, F.A.; Jimenez, A.A.S.; Diez, H.R.G.; Martínez, F.G. Quantum Mechanics Descriptors in a Nano-qsar Model to Predict Metal Oxide Nanoparticles Toxicity in Human Keratinous Cells. J. Nanoparticle Res. 2021, 23, 161. [Google Scholar] [CrossRef]
- García-Torra, V.; Cano, A.; Espina, M.; Ettcheto, M.; Camins, A.; Barroso, E.; Souto, E.B. State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics 2021, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Roy, K. Assessment of Toxicity of Metal Oxide and Hydroxide Nanoparticles Using the QSAR Modeling Approach. Environ. Sci. Nano 2021, 8, 3395–3407. [Google Scholar] [CrossRef]
- Parsons, J.G.; Alcoutlabi, M.; Dearth, R.K. Metal Oxide Nanoparticle Toxicity in Aquatic Organisms: An Overview of Methods and Mechanisms; Springer: Berlin/Heidelberg, Germany, 2021; pp. 123–161. [Google Scholar]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Cho, M.H. Antimicrobial Effects of Silver Nanoparticles. Nanomed. Nanotechnol. Boil. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Luthfiah, A.; Deawati, Y.; Firdaus, M.L.; Rahayu, I.; Eddy, D.R. Silica from Natural Sources: A Review on the Extraction and Potential Application as a Supporting Photocatalytic Material for Antibacterial Activity. Sci. Technol. Indones. 2021, 6, 144–155. [Google Scholar] [CrossRef]
- Prado, M.; Silva, E.J.N.L.D.; Duque, T.M.; Zaia, A.A.; Ferraz, C.C.R.; Almeida, J.F.A.D.; Gomes, B.P.F.D.A. Antimicrobial and Cytotoxic Effects of Phosphoric Acid Solution Compared to Other Root Canal Irrigants. J. Appl. Oral Sci. 2015, 23, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, D.; Nag, M.; Sheikh, H.I.; Sarkar, T.; Edinur, H.A.; Pati, S.; Ray, R.R. Microbiologically-synthesized Nanoparticles and Their Role in Silencing the Biofilm Signaling Cascade. Front. Microbiol. 2021, 12, 636588. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsheh, I.Y.; Elkhader, M.T.; Al-Bakheit, A.A.; Alsaleh, M.M.; El-Eswed, B.I.; Hosein, N.F.; Albadawi, D.K. Inhibition of Acinetobacter baumannii Biofilm Formation Using Different Treatments of Silica Nanoparticles. Antibiotics 2023, 12, 1365. https://doi.org/10.3390/antibiotics12091365
Natsheh IY, Elkhader MT, Al-Bakheit AA, Alsaleh MM, El-Eswed BI, Hosein NF, Albadawi DK. Inhibition of Acinetobacter baumannii Biofilm Formation Using Different Treatments of Silica Nanoparticles. Antibiotics. 2023; 12(9):1365. https://doi.org/10.3390/antibiotics12091365
Chicago/Turabian StyleNatsheh, Iyad Y., Mallak T. Elkhader, Ala’a A. Al-Bakheit, Majd M. Alsaleh, Bassam I. El-Eswed, Nedaa F. Hosein, and Duaa K. Albadawi. 2023. "Inhibition of Acinetobacter baumannii Biofilm Formation Using Different Treatments of Silica Nanoparticles" Antibiotics 12, no. 9: 1365. https://doi.org/10.3390/antibiotics12091365
APA StyleNatsheh, I. Y., Elkhader, M. T., Al-Bakheit, A. A., Alsaleh, M. M., El-Eswed, B. I., Hosein, N. F., & Albadawi, D. K. (2023). Inhibition of Acinetobacter baumannii Biofilm Formation Using Different Treatments of Silica Nanoparticles. Antibiotics, 12(9), 1365. https://doi.org/10.3390/antibiotics12091365