Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections
Abstract
:1. Introduction
2. Results
2.1. Description of the Isolates
2.2. Beta-Lactamase Gene Carriage by Specimen Type
2.3. Carbapenemase, ESBL, and AmpC Genes Detected by Whole Genome Sequencing
2.4. Comparison of Phenotypic and Genotypic Resistance Profiles
2.5. Resistance to Newer Beta-Lactam/Beta-Lactamase Inhibitor Combinations
3. Discussion
4. Materials and Methods
4.1. Isolate Selection Criteria
4.2. Bacterial Identification and Antimicrobial Susceptibility Testing (AST)
4.3. Whole Genome Sequencing
4.4. PBP3 Sequence Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logan, L.K.; Weinstein, R.A. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Antibiotic Resistance Threats in the United States. Available online: http://www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 19 December 2022).
- Centers for Disease Control and Prevention; National Center for Emerging and Zoonotic Infectious Diseases; Division of Healthcare Quality Promotion. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022; Centers for Disease Control and Prevention: Atlanta, Georgia, 2022. [Google Scholar]
- Shrivastava, S.; Shrivastava, P.; Ramasamy, J. World Health Organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2018, 32, 76–77. [Google Scholar] [CrossRef]
- Livorsi, D.J.; Chorazy, M.L.; Schweizer, M.L.; Balkenende, E.C.; Blevins, A.E.; Nair, R.; Samore, M.H.; Nelson, R.E.; Khader, K.; Perencevich, E.N. A systematic review of the epidemiology of carbapenem-resistant Enterobacteriaceae in the United States. Antimicrob. Resist. Infect. Control 2018, 7, 55. [Google Scholar] [CrossRef]
- Asokan, G.V.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019, 34, 184–193. [Google Scholar] [CrossRef]
- Tamma, P.D.; Smith, T.T.; Adebayo, A.; Karaba, S.M.; Jacobs, E.; Wakefield, T.; Nguyen, K.; Whitfield, N.N.; Simner, P.J. Prevalence of blaCTX-M Genes in Gram-Negative Bloodstream Isolates across 66 Hospitals in the United States. J. Clin. Microbiol. 2021, 59, e00127-21. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Kimbrough, J.H.; DeVries, S.; Mendes, R.E.; Sader, H.S. Trends of β-Lactamase Occurrence Among Escherichia coli and Klebsiella pneumoniae in United States Hospitals During a 5-Year Period and Activity of Antimicrobial Agents against Isolates Stratified by β-Lactamase Type. Open Forum Infect. Dis. 2023, 10, ofad038. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Duncan, L.; Kimbrough, J.H.; Carvalhaes, C.G.; Castanheira, M. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam activities against multidrug-resistant Enterobacterales from United States Medical Centers (2018–2022). Diagn. Microbiol. Infect. Dis. 2023, 106, 115945. [Google Scholar] [CrossRef]
- Sader, H.S.; Castanheira, M.; Streit, J.M.; Flamm, R.K. Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bloodstream infections in United States medical centers (2015–2017). Diagn. Microbiol. Infect. Dis. 2019, 95, 114850. [Google Scholar] [CrossRef]
- Cummins, E.A.; Snaith, A.E.; McNally, A.; Hall, R.J. The role of potentiating mutations in the evolution of pandemic Escherichia coli clones. Eur. J. Clin. Microbiol. Infect. Dis. 2021. [Google Scholar] [CrossRef]
- Rada, A.M.; De La Cadena, E.; Agudelo, C.A.; Pallares, C.; Restrepo, E.; Correa, A.; Villegas, M.V.; Capataz, C. Genetic Diversity of Multidrug-Resistant Pseudomonas aeruginosa Isolates Carrying blaVIM-2 and blaKPC-2 Genes that Spread on Different Genetic Environment in Colombia. Front. Microbiol. 2021, 12, 663020. [Google Scholar] [CrossRef] [PubMed]
- Mitteregger, D.; Wessely, J.; Barišić, I.; Bedenić, B.; Kosak, D.; Kundi, M. A Variant Carbapenem Inactivation Method (CIM) for Acinetobacter baumannii Group with Shortened Time-to-Result: rCIM-A. Pathogens 2022, 11, 482. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing EUCAST: Clinical Breakpoints and Dosing of Antibiotics. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 19 June 2023).
- Mendonça, N.; Ferreira, E.; Louro, D.; ARSIP Participants; Caniça, M. Molecular epidemiology and antimicrobial susceptibility of extended- and broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Portugal. Int. J. Antimicrob. Agents 2009, 34, 29–37. [Google Scholar] [CrossRef]
- Legese, M.H.; Asrat, D.; Aseffa, A.; Hasan, B.; Mihret, A.; Swedberg, G. Molecular Epidemiology of Extended-Spectrum Beta-Lactamase and AmpC Producing Enterobacteriaceae among Sepsis Patients in Ethiopia: A Prospective Multicenter Study. Antibiotics 2022, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. Escherichia coli ST131: The quintessential example of an international multiresistant high-risk clone. Adv. Appl. Microbiol. 2015, 90, 109–154. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Chen, L. The Significance of Epidemic Plasmids in the Success of Multidrug-Resistant Drug Pandemic Extraintestinal Pathogenic Escherichia coli. Infect. Dis. Ther. 2023, 12, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Samudio, V.; Pimentel-Peralta, G.; Herrera, M.; Pecchio, M.; Quintero, J.; Landires, I. Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics 2022, 11, 1817. [Google Scholar] [CrossRef] [PubMed]
- Hamidian, M.; Nigro, S.J. Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii. Microb. Genom. 2019, 5, e000306. [Google Scholar] [CrossRef]
- Benanti, G.E.; Brown, A.R.T.; Shigle, T.L.; Tarrand, J.J.; Bhatti, M.M.; McDaneld, P.M.; Shelburne, S.A.; Aitken, S.L. Carbapenem versus Cefepime or Piperacillin-Tazobactam for Empiric Treatment of Bacteremia Due to Extended-Spectrum-β-Lactamase-Producing Escherichia coli in Patients with Hematologic Malignancy. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Altshuler, J.; Paris, D.; Fedorenko, M. Cefepime versus carbapenems for the treatment of urinary tract infections caused by extended-spectrum β-lactamase-producing enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 51, 155–158. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Yu, W.L.; Pfaller, M.A.; Winokur, P.L.; Jones, R.N. Cefepime MIC as a predictor of the extended-spectrum beta-lactamase type in Klebsiella pneumoniae, Taiwan. Emerg. Infect. Dis. 2002, 8, 522–524. [Google Scholar] [CrossRef]
- Tenover, F.C. Using Molecular Diagnostics to Develop Therapeutic Strategies for Carbapenem-Resistant Gram-Negative Infections. Front. Cell Infect. Microbiol. 2021, 11, 715821. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; McLeod, S.M.; Miller, A.A. Durlobactam, a Broad-Spectrum Serine β-lactamase Inhibitor, Restores Sulbactam Activity Against Acinetobacter Species. Clin. Infect. Dis. 2023, 76, S194–S201. [Google Scholar] [CrossRef]
- Reyes, J.; Komarow, L.; Chen, L.; Ge, L.; Hanson, B.M.; Cober, E.; Herc, E.; Alenazi, T.; Kaye, K.S.; Garcia-Diaz, J.; et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP): A prospective cohort study. Lancet Microbe 2023, 4, e159–e170. [Google Scholar] [CrossRef] [PubMed]
- Sellera, F.P.; Fernandes, M.R.; Moura, Q.; Souza, T.A.; Nascimento, C.L.; Cerdeira, L.; Lincopan, N. Draft genome sequence of an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST644 isolated from a footpad infection in a Magellanic penguin (Spheniscus magellanicus). J. Glob. Antimicrob. Resist. 2018, 12, 88–89. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-producing Pseudomonas aeruginosa—An emerging challenge. Emerg. Microbes Infect. 2022, 11, 811–814. [Google Scholar] [CrossRef]
- Gill, C.M.; Lasko, M.J.; Asempa, T.E.; Nicolau, D.P. Evaluation of the EDTA-Modified Carbapenem Inactivation Method (eCIM) for Detecting Metallo-β-lactamase-producing Pseudomonas aeruginosa. J. Clin. Microbiol. 2020, 58, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 14 March 2023).
- Wiskirchen, D.E.; Nordmann, P.; Crandon, J.L.; Nicolau, D.P. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2014, 58, 1671–1677. [Google Scholar] [CrossRef]
- Wiskirchen, D.E.; Nordmann, P.; Crandon, J.L.; Nicolau, D.P. Efficacy of humanized carbapenem exposures against New Delhi metallo-β-lactamase (NDM-1)-producing enterobacteriaceae in a murine infection model. Antimicrob. Agents Chemother. 2013, 57, 3936–3940. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, J.; Wu, S.; Yang, Y.; Yu, D.; Wang, X.; Wu, M. Characterization of the IncX3 Plasmid Producing blaNDM-7 from Klebsiella pneumoniae ST34. Front. Microbiol. 2020, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, Y.; Shen, M.; Huang, D.; Du, X.; Hu, Q.; Zhou, Y.; Wang, D.; Yu, Y. Dissemination of blaNDM-5 gene via an IncX3-type plasmid among non-clonal Escherichia coli in China. Antimicrob. Resist. Infect. Control 2018, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Carvalhaes, C.G.; Kimbrough, J.H.; Castanheira, M. Changing Epidemiology of Carbapenemases Among Carbapenem-Resistant Enterobacterales from United States Hospitals and the Activity of Aztreonam-Avibactam Against Contemporary Enterobacterales (2019–2021). Open Forum Infect. Dis. 2023, 10, ofad046. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Castanheira, M.; Kimbrough, J.H.; Kantro, V.; Mendes, R.E. Aztreonam/avibactam activity against a large collection of carbapenem-resistant Enterobacterales (CRE) collected in hospitals from Europe, Asia and Latin America (2019–2021). JAC Antimicrob. Resist. 2023, 5, dlad032. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information Reference Gene Catalog—Pathogen Detection. Available online: https://www.ncbi.nlm.nih.gov/pathogens/refgene/ (accessed on 8 June 2023).
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e0044722. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, X.; Wang, Y.; Yu, W.; Zhou, Y.; Chi, X.; Xiao, T.; Xiao, Y. Molecular mechanisms underlying bacterial resistance to ceftazidime/avibactam. WIREs Mech. Dis. 2022, 14, e1571. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Thirteenth Edition M2-A13; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Alm, R.A.; Johnstone, M.R.; Lahiri, S.D. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: Role of a novel insertion in PBP3. J. Antimicrob. Chemother. 2015, 70, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Mushtaq, S.; Vickers, A.; Woodford, N. Activity of aztreonam/avibactam against metallo-β-lactamase-producing Enterobacterales from the UK: Impact of penicillin-binding protein-3 inserts and CMY-42 β-lactamase in Escherichia coli. Int. J. Antimicrob. Agents 2023, 61, 106776. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, L.; Sun, S.; Yin, Y.; Wang, R.; Chen, F.; Wang, X.; Zhang, Y.; Hou, J.; Zhang, Y.; et al. Occurrence of High Levels of Cefiderocol Resistance in Carbapenem-Resistant Escherichia coli before Its Approval in China: A Report from China CRE-Network. Microbiol. Spectr. 2022, 10, e0267021. [Google Scholar] [CrossRef]
Blood Culture (N = 162) | Urine (N = 199) | All Isolates (N = 361) | |||||
---|---|---|---|---|---|---|---|
No. of Isolates | % | No. of Isolates | % | p-Value | No. of Isolates | % | |
Carbapenemase genes | 27 | 16.7% | 47 | 23.6% | 0.116 | 74 | 20.5% |
ESBL genes | 104 | 64.2% | 135 | 67.8% | 0.503 | 239 | 66.2% |
AmpC genes | 58 | 35.8% | 62 | 31.2% | 0.370 | 120 | 33.2% |
Other beta-lactamase genes detected 1 | 2 | 1.2% | 3 | 1.5% | 1.000 | 5 | 1.4% |
No beta-lactamase genes detected | 2 | 1.2% | 6 | 3.0% | 0.304 | 8 | 2.2% |
Sample Type | Organism by K-mer Spectra | MLST 1 | State | Carbapenemase Gene | AmpC Gene | ESBL Gene | ETP | IPM | MEM | Other Resistance Phenotypes | mCIM/eCIM Report |
---|---|---|---|---|---|---|---|---|---|---|---|
BC | Citrobacter freundii | ST98 | TN | KPC-2 | CMY-109 | None | R | R | S | ATM, CTX, CAZ, TZP | serine carbapenemase detected |
UC | Citrobacter freundii | ST415 | WI | KPC-2 | CMY-48 | SHV-12 | R | R | R | ATM, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Citrobacter freundii | ST344-like | WI | KPC-2 | CMY-108 | SHV-12 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Enterobacter asburiae | ST252 | CA | KPC-2 | ACT-3 | SHV-12 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Enterobacter cloacae | ST171 | NJ | KPC-3 | ACT-16 | None | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Enterobacter hormaechei | ST110 | CA | KPC-2 | ACT-15 | None | R | R | R | ATM, CTX, CAZ, CZA, CT, TZP | serine carbapenemase detected |
UC | Enterobacter hormaechei | ST1377 | NM | NDM-1 | ACT-7 | None | R | R | R | FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
UC | Escherichia coli | ST721-like | CA | OXA-48 | DHA-1 | CTX-M-27 | R | I | S | ATM, FEP, CTX, CAZ, ETP | serine carbapenemase detected |
UC | Escherichia coli | ST691-like | CA | KPC-2 | None | None | R | R | S | ATM, CTX, TZP | serine carbapenemase detected |
UC | Escherichia coli | ST44 | CA | NDM-5 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
BC | Escherichia coli | ST2 | CA | NDM-5 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
BC | Escherichia coli | ST221 | CA | OXA-48 | None | None | S | I | S | TZP | serine carbapenemase detected |
UC | Escherichia coli | ST721-like | CA | KPC-2 (truncated) | None | CTX-M-15 | S | S | S | ATM, FEP, CTX, CAZ | carbapenemase not detected |
UC | Escherichia coli | ST43/ST131 2 | GA | KPC-3 | None | None | S | I | S | ATM, CTX, CAZ, TZP | serine carbapenemase detected |
UC | Escherichia coli | ST33 | GA | NDM-1 | None | None | R | R | R | FEP, CTX, CAZ, CZA, CT, TZP | metallo beta-lactamase detected |
UC | Klebsiella aerogenes | ST3-like | GA | KPC-3 | None | None | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella aerogenes | ST3-like | GA | KPC-3 | None | None | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella michiganensis | ST59-like | CA | NDM-7 | None | OXY-2-8 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
BC | Klebsiella michiganensis | ST85 | WI | KPC-2 | None | OXY-1-7 | R | R | R | ATM, CTX, TZP | serine carbapenemase detected |
BC | Klebsiella michiganensis | ST311 | GA | KPC-3 | None | OXY-4-1, SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella oxytoca | ST180 | GA | KPC-3 | None | OXY-1-4 | S | R | S | ATM, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST15 | CA | NDM-1 | CMY-6 | CTX-M, SHV-106 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
UC | Klebsiella pneumoniae | ST101 | CA | OXA-48 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CT, MEV, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST11 | CA | KPC-2 | None | CTX-M-65, SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST258 | NJ | KPC-3 | None | SHV-12 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST412 | NJ | KPC-2 | None | SHV-187 | R | R | R | ATM, CTX, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST412 | NJ | KPC-2 | None | SHV-187 | R | R | R | ATM, CTX, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST258 | NJ | KPC-3 | None | SHV-12 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST258 | NJ | KPC-3 | None | None | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST1683-like | NJ | KPC-3 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST379 | GA | KPC-3 | None | SHV-187, TEM-168 (trunc) | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST469 | GA | KPC-3 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST16 | GA | NDM-5, OXA-181 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
UC | Klebsiella pneumoniae | ST219 | GA | KPC-3 | None | CTX-M-15, SHV-187 | R | R | S | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST13 | GA | KPC-3 | None | SHV-197 | R | R | R | ATM, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST219 | GA | KPC-3 | None | CTX-M-15, SHV-187 | R | R | S | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST16 | GA | NDM-5, OXA-181 | None | CTX-M-15, SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
UC | Klebsiella pneumoniae | ST258 | NY | KPC-3 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST348 | NY | KPC-4 | None | SHV-187 | R | I | S | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST307 | NY | KPC-3 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST258 | CA | KPC-3 | None | SHV-187, TEM-168 (trunc) | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST405 | TN | VIM-1 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta-lactamase detected |
BC | Klebsiella pneumoniae | ST405 | TN | VIM-1 | None | CTX-M-15, SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo-beta lactamase detected |
BC | Klebsiella pneumoniae | ST405 | TN | VIM-1 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CZA, CT, MEV, TZP | metallo beta lactamase detected |
BC | Klebsiella pneumoniae | ST152 | IL | KPC-3 | None | CTX-M-15 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST258 | WI | KPC-3 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST258 | WI | KPC-3 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST258 | GA | KPC-3 | None | SHV-12 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST13 | GA | KPC-3 | None | CTX-M-15, SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Klebsiella pneumoniae | ST16 | GA | OXA-181 | None | CTX-M-15, SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
BC | Klebsiella pneumoniae | ST1199 | GA | KPC-3 | None | SHV-187 | R | R | R | ATM, FEP, CTX, CAZ, CT, TZP | serine carbapenemase detected |
UC | Raoultella ornithinolytica | N/A | NM | OXA-181 | None | None | R | R | I | CTX, TZP | serine carbapenemase detected |
BC | Serratia marcescens | N/A | CA | SME-2 | SRT-1 | None | R | N/R | R | ATM, CTX, CAZ, MEM | serine carbapenemase detected |
BC | Serratia marcescens | N/A | TN | VIM-1 | SRT-1 | None | I | R | I | FEP, CTX, CAZ, CZA, CT, TZP | metallo beta lactamase detected |
Sample Type | Organism by K-mer Spectra | MLST 1 | State | Carbapenemase Gene | AmpC Gene | ESBL Gene | Imipenem Interpretation (BMD) | Meropenem Interpretation (BMD) | Other Resistance Phenotypes | mCIM/eCIM Report |
---|---|---|---|---|---|---|---|---|---|---|
UC | Acinetobacter baumannii | ST2 | CA | OXA-23, OXA-66 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST2 | CA | OXA-237, OXA-66 | ADC-25 | None | I | R | CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST2 | CA | OXA-237, OXA-66 | ADC-25 | None | R | R | CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST235 | NJ | OXA-71 | ADC-25 | SHV-12 | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
UC | Acinetobacter baumannii | ST2 | GA | OXA-23 | ADC-25 | None | R | R | FEP, TZP | carbapenemase not detected |
UC | Acinetobacter baumannii | ST2 | GA | OXA-23, OXA-66 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
UC | Acinetobacter baumannii | ST2 | GA | OXA-80 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST2 | GA | OXA-23, OXA-66 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
UC | Acinetobacter baumannii | ST499 | NY | OXA-23, OXA-95 | ADC-25 | None | R | R | None | carbapenemase not detected |
UC | Acinetobacter baumannii | ST2 | NY | OXA-23, OXA-82 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
UC | Acinetobacter baumannii | ST2 | NY | OXA-407 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
UC | Acinetobacter baumannii | ST2 | NY | OXA-23, OXA-82 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST203 | NM | OXA-78 | ADC-25 | None | S | S | CTX (I) | carbapenemase not detected |
UC | Acinetobacter baumannii | ST258 | CA | OXA-23, OXA-66 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST2 | TN | OXA-23, OXA-66 | ADC-25 | None | R | R | FEP, CTX, CAZ, TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST1525-like | TN | OXA-24, OXA-317 | ADC-25 | None | R | R | TZP | carbapenemase not detected |
BC | Acinetobacter baumannii | ST2 | IL | OXA-24, OXA-66 | ADC-25 | None | R | R | CTX, CAZ, TZP | carbapenemase not detected |
UC | Pseudomonas aeruginosa | ST644 | CA | IMP-62, NDM-1 | PDC-430 | PME-1 | R | R | ATM, FEP, CAZ, CZA, CT, TZP | serine carbapenemase detected |
BC | Pseudomonas aeruginosa | ST357 | CA | NDM-1 | PDC-11 | VEB-1 | R | R | ATM, FEP, CAZ, CZA, CT, TZP | metallo beta-lactamase detected |
BC | Pseudomonas aeruginosa | ST167 | CA | IMP-15 | PDC-445 | None | R | R | FEP, CAZ, CZA, CT, TZP | metallo beta lactamase detected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tickler, I.A.; Kawa, D.; Obradovich, A.E.; Fang, F.C.; Tenover, F.C.; the Healthcare Associated Infections Consortium. Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections. Antibiotics 2023, 12, 1386. https://doi.org/10.3390/antibiotics12091386
Tickler IA, Kawa D, Obradovich AE, Fang FC, Tenover FC, the Healthcare Associated Infections Consortium. Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections. Antibiotics. 2023; 12(9):1386. https://doi.org/10.3390/antibiotics12091386
Chicago/Turabian StyleTickler, Isabella A., Diane Kawa, Anne E. Obradovich, Ferric C. Fang, Fred C. Tenover, and the Healthcare Associated Infections Consortium. 2023. "Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections" Antibiotics 12, no. 9: 1386. https://doi.org/10.3390/antibiotics12091386
APA StyleTickler, I. A., Kawa, D., Obradovich, A. E., Fang, F. C., Tenover, F. C., & the Healthcare Associated Infections Consortium. (2023). Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections. Antibiotics, 12(9), 1386. https://doi.org/10.3390/antibiotics12091386