Design, Synthesis, Antimicrobial Properties, and Molecular Docking of Novel Furan-Derived Chalcones and Their 3,5-Diaryl-∆2-pyrazoline Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.3. Docking Study
3. Materials and Methods
3.1. Materials
3.2. Chemistry
3.2.1. General Procedure A: Synthesis of 5-Aryl-furan-2-carboxaldehyde Derivatives (1a–d)
3.2.2. General Procedure B: Synthesis of Chalcone Compounds (2a–h)
3.2.3. General Procedure C: Synthesis of 3,5-Diaryl-∆2-pyrazoline Derivatives (3a–h)
3.3. Spectral Data of All Synthesized Compounds (1a–d, 2a–h, and 3a–h)
3.4. Antimicrobial Studies
3.4.1. Evaluation of Antimicrobial Activity
3.4.2. Estimation of Minimal Inhibitory Concentration (MIC)
3.5. Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Gelalcha, B.D.; Kerro Dego, O. Extended-spectrum beta-lactamases producing enterobacteriaceae in the USA dairy cattle farms and implications for public health. Antibiotics 2022, 11, 1313. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, S.; Amaro, A.; Brouwer, M.S.M.; Clemente, L.; Ribeiro Duarte, A.S.; Kaesbohrer, A.; Karpíšková, R.; Lopez-Chavarrias, V.; Morris, D.; Prendergast, D.; et al. Building an international one health strain level database to characterise the epidemiology of AMR threats: ESBL-AmpC producing E. coli as an example-challenges and perspectives. Antibiotics 2023, 12, 552. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.; Painter, C.; Teerawattananon, Y. A protocol for a systematic literature review of economic evaluation studies of interventions to address antimicrobial resistance. Syst. Rev. 2021, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Karaman, R. Design and synthesis of novel antimicrobial agents. Antibiotics 2023, 12, 628. [Google Scholar] [CrossRef]
- Lomazzi, M.; Moore, M.; Johnson, A.; Balasegaram, M.; Borisch, B. Antimicrobial resistance—moving forward? BMC Public Health 2019, 19, 858. [Google Scholar] [CrossRef]
- Anteneh, Y.S.; Yang, Q.; Brown, M.H.; Franco, C.M.M. Antimicrobial activities of marine sponge-associated bacteria. Microorganisms 2021, 9, 171. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Melfi, F.; Carradori, S.; Angeli, A.; D’Agostino, I. Nature as a source and inspiration for human monoamine oxidase B (hMAO-B) inhibition: A review of the recent advances in chemical modification of natural compounds. Expert Opin. Drug Discov. 2023, 18, 851–879. [Google Scholar] [CrossRef]
- Wang, S.; Li, C.; Zhang, L.; Sun, B.; Cui, Y.; Sang, F. Isolation and biological activity of natural chalcones based on antibacterial mechanism classification. Bioorganic Med. Chem. 2023, 93, 117454. [Google Scholar] [CrossRef]
- Da Silva, L.; Donato, I.A.; Gonçalves, C.A.C.; Scherf, J.R.; Dos Santos, H.S.; Mori, E.; Coutinho, H.D.M.; da Cunha, F.A.B. Antibacterial potential of chalcones and its derivatives against Staphylococcus aureus. 3 Biotech 2023, 13, 1. [Google Scholar] [CrossRef]
- Satokata, A.A.C.; Souza, J.H.; Silva, L.L.O.; Santiago, M.B.; Ramos, S.B.; Assis, L.R.; Theodoro, R.D.S.; Oliveira, L.R.E.; Regasini, L.O.; Martins, C.H.G. Chalcones with potential antibacterial and antibiofilm activities against periodontopathogenic bacteria. Anaerobe 2022, 76, 102588. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Cenci, A.; Gonçalves, L.; Thedy, M.E.; Justino, A.; Braga, A.; Meier, L. Chalcone derivatives as antibacterial agents: An updated overview. Curr. Med. Chem. 2023, 30, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Michalkova, R.; Kello, M.; Cizmarikova, M.; Bardelcikova, A.; Mirossay, L.; Mojzis, J. Chalcones and gastrointestinal cancers: Experimental evidence. Int. J. Mol. Sci. 2023, 24, 5964. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lv, J.; Cheng, S.; Jing, T.; Meng, T.; Huo, D.; Ma, X.; Wen, R. Recent progresses in chalcone derivatives as potential anticancer agents. Anti-Cancer Agents Med. Chem. 2023, 23, 1265–1283. [Google Scholar] [CrossRef] [PubMed]
- Birsa, M.L.; Sarbu, L.G. Hydroxy chalcones and analogs with chemopreventive properties. Int. J. Mol. Sci. 2023, 24, 10667. [Google Scholar] [CrossRef] [PubMed]
- Moreira, B.O.; Vilar, V.L.S.; de Almeida, R.N.S.; Morbeck, L.L.B.; Andrade, B.S.; Barros, R.G.M.; Neves, B.M.; de Carvalho, A.L.; Cruz, M.P.; Yatsuda, R.; et al. New dimer and trimer of chalcone derivatives from anti-inflammatory and antinociceptive extracts of Schinopsis brasiliensis roots. J. Ethnopharmacol. 2022, 289, 115089. [Google Scholar] [CrossRef]
- Hung, N.Q.; Hong Anh, N.T.; Khang, N.S.; Huong, N.T.T.; Luyenb, N.T.; Hau, D.V.; Dat, N.T. Undescribed chalcone and stilbene constituents from Lysimachia baviensis and their anti-inflammatory effect. Nat. Prod. Res. 2023, 37, 1138–1145. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Saini, P.; Kumar, S. Synthesis and Biological Evaluation of Some New Chalcone derivatives as anti-inflammatory agents. Curr. Drug Discov. Technol. 2023, 20, e130622205910. [Google Scholar]
- Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 2021, 29, 403–419. [Google Scholar] [CrossRef]
- Pérez-González, A.; Castañeda-Arriaga, R.; Guzmán-López, E.G.; Hernández-Ayala, L.F.; Galano, A. Chalcone derivatives with a high potential as multifunctional antioxidant neuroprotectors. ACS Omega 2022, 7, 38254–38268. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Vashistha, V.K.; Das, D.K. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review. Free. Radic. Res. 2022, 56, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Evranos AksÖz, B.; GÜrpinar, S.S.; Eryilmaz, M. Antimicrobial activities of some pyrazoline and hydrazone derivatives. Turk. J. Pharm. Sci. 2020, 17, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.H.; Abdula, A.M.; Tomi, I.H.R.; Al-Daraji, A.H.R.; Baqi, Y. Synthesis, antimicrobial evaluation and docking study of novel 3,5-disubstituted-2-isoxazoline and 1,3,5-trisubstituted-2-pyrazoline derivatives. Med. Chem. 2021, 17, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Ravindar, L.; Hasbullah, S.A.; Rakesh, K.P.; Hassan, N.I. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2023, 183, 106365. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.S.; Shen, B.N.; Zhang, Z.; Luo, S.; Ruan, B.F. Discovery of anticancer agents from 2-pyrazoline-based compounds. Curr. Med. Chem. 2021, 28, 940–962. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Arif, R.; Khan, F.I.; Maurya, V.; Singh, R.; Faizan, M.I.; Yasmeen, S.; Dar, S.H.; Alam, R.; Sahu, A.; et al. Rahisuddin, Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies. Bioorganic Chem. 2021, 108, 104665. [Google Scholar] [CrossRef] [PubMed]
- Hosseini Nasab, N.; Azimian, F.; Shim, R.S.; Eom, Y.S.; Shah, F.H.; Kim, S.J. Synthesis, anticancer evaluation, and molecular docking studies of thiazolyl-pyrazoline derivatives. Bioorganic Med. Chem. Lett. 2023, 80, 129105. [Google Scholar] [CrossRef]
- Raauf, A.M.R.; Omar, T.N.; Mahdi, M.F.; Fadhil, H.R. Synthesis, molecular docking and anti-inflammatory evaluation of new trisubstituted pyrazoline derivatives bearing benzenesulfonamide moiety. Nat. Prod. Res. 2022, 38, 253–260. [Google Scholar] [CrossRef]
- Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules 2021, 26, 3439. [Google Scholar] [CrossRef]
- Ragab, F.A.E.; Mohammed, E.I.; Abdel Jaleel, G.A.; Selim, A.; Nissan, Y.M. Synthesis of hydroxybenzofuranyl-pyrazolyl and hydroxyphenyl-pyrazolyl chalcones and their corresponding pyrazoline derivatives as COX inhibitors, anti-inflammatory and gastroprotective agents. Chem. Pharm. Bull. 2020, 68, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wei, C.; Shen, Z.; He, H.; Yang, X.; Shi, S.; Hu, D.; Song, B. Splicing indoles and 4,5-dihydro-1H-pyrazoline structure gave birth to novel antiviral agents: Design, synthesis, and mechanism study. J. Agric. Food Chem. 2023, 71, 7239–7249. [Google Scholar] [CrossRef] [PubMed]
- Ameur, M.; Sekkoum, K.; Gonazles, F.; Comez-Carpintero, J.; Menendez, C.; Belboukhari, N.; Aboul-Enein, H.Y. Enantioseparation and antioxidant activity of novel diarylpyrazoline derivatives. Chirality 2022, 34, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, J.; Nowak, M.G.; Wojciechowski, M.; Milewski, S.; Skwarecki, A.S. Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics—Synthesis and properties. J. Enzym. Inhib. Med. Chem. 2022, 37, 1928–1956. [Google Scholar] [CrossRef] [PubMed]
- Mouilleron, S.; Badet-Denisot, M.A.; Badet, B.; Golinelli-Pimpaneau, B. Dynamics of glucosamine-6-phosphate synthase catalysis. Arch. Biochem. Biophys. 2011, 505, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bearne, S.L.; Blouin, C. Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis. J. Biol. Chem. 2000, 275, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Tomi, I.H.R.; Al-Daraji, A.H.R.; Abdula, A.M.; Al-Marjani, M.F. Synthesis, antimicrobial and docking study of three novel 2,4,5-triarylimidazole derivatives. J. Saudi Chem. Soc. 2016, 20, S509–S516. [Google Scholar] [CrossRef]
- Puterová, Z.; Sterk, H.; Krutošíková, A. Reaction of substituted furan-2-carboxaldehydes and furo[b]pyrrole type aldehydes with hippuric acid. Molecules 2004, 9, 11–21. [Google Scholar] [CrossRef]
- Abbood, A.F.; Abdula, A.M.; Mohsen, G.L.; Baqi, Y. Synthesis and antimicrobial activity of new benzimidazole derivatives bearing five-membered heterocyclic moieties. Al-Mustansiriyah J. Sci. 2021, 32, 26–33. [Google Scholar] [CrossRef]
- Salman, G.A.; Mohammed, H.; Abdula, A.M.; Mageed, Z.N. Comparative study on conventional and ultrasound irradiation promoted synthesis of 2,3-disubstitutedquinoxaline derivatives. Al-Mustansiriyah J. Sci. 2018, 28, 141–150. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health 2016, 32, 246–250. [Google Scholar] [CrossRef] [PubMed]
Diameter of Inhibition Zone (mm), (MIC μg/mL) a | |||||||
---|---|---|---|---|---|---|---|
Compd. | Gram-Positive Bacteria | Gram-Negative Bacteria | Fungi | ||||
Staphylococcus aureus | Staphylococcus epidermidis | Escherichia coli | Klebsiella pneumoniae | Candida albicans | |||
2a | 15 | (256) a | 10 | 12 | (512) a | 12 | 14 |
2b | 13 | (256) a | 11 | 12 | 10 | 14 | |
2c | 16 | (256) a | – | 10 | (1024) a | 10 | – |
2d | – | 12 | 12 | 12 | 15 | ||
2e | 17 | – | 11 | 11 | 8 | ||
2f | 16 | 11 | 11 | 11 | 10 | ||
2g | – | – | – | – | – | ||
2h | 17 | 12 | 12 | 12 | 10 | ||
3a | – | – | 9 | 9 | – | ||
3b | – | – | 9 | 9 | – | ||
3c | – | – | - | 9 | – | ||
3d | – | 10 | 9 | 9 | 9 | ||
3e | – | – | – | – | – | ||
3f | – | – | – | – | – | ||
3g | – | – | – | 10 | – | ||
3h | – | – | – | – | – | ||
Amoxicilline | 32 | 27 | 20 | 18 | n.d. | ||
Floconazol | n.d. | n.d. | n.d. | n.d. | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdi, I.S.; Abdula, A.M.; Jassim, A.M.N.; Baqi, Y. Design, Synthesis, Antimicrobial Properties, and Molecular Docking of Novel Furan-Derived Chalcones and Their 3,5-Diaryl-∆2-pyrazoline Derivatives. Antibiotics 2024, 13, 21. https://doi.org/10.3390/antibiotics13010021
Mahdi IS, Abdula AM, Jassim AMN, Baqi Y. Design, Synthesis, Antimicrobial Properties, and Molecular Docking of Novel Furan-Derived Chalcones and Their 3,5-Diaryl-∆2-pyrazoline Derivatives. Antibiotics. 2024; 13(1):21. https://doi.org/10.3390/antibiotics13010021
Chicago/Turabian StyleMahdi, Inas S., Ahmed Mutanabbi Abdula, Abdulkadir M. Noori Jassim, and Younis Baqi. 2024. "Design, Synthesis, Antimicrobial Properties, and Molecular Docking of Novel Furan-Derived Chalcones and Their 3,5-Diaryl-∆2-pyrazoline Derivatives" Antibiotics 13, no. 1: 21. https://doi.org/10.3390/antibiotics13010021
APA StyleMahdi, I. S., Abdula, A. M., Jassim, A. M. N., & Baqi, Y. (2024). Design, Synthesis, Antimicrobial Properties, and Molecular Docking of Novel Furan-Derived Chalcones and Their 3,5-Diaryl-∆2-pyrazoline Derivatives. Antibiotics, 13(1), 21. https://doi.org/10.3390/antibiotics13010021