Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020–2022
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Resistance Rate
2.2. Multidrug Resistance (MDR) and Antimicrobial Resistance Patterns
3. Discussion
4. Materials and Methods
4.1. Isolation and Identification of E. coli
4.2. Antimicrobial Susceptibility Assessment
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szmolka, A.; Nagy, B. Multidrug Resistant Commensal Escherichia coli in Animals and Its Impact for Public Health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef] [PubMed]
- Mauldin, P.D.; Salgado, C.D.; Hansen, I.S.; Durup, D.T.; Bosso, J.A. Attributable Hospital Cost and Length of Stay Associated with Health Care-Associated Infections Caused by Antibiotic-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2010, 54, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, S.; O’Dea, M.; Barton, M.; Kirkwood, R.; Lee, T.; Abraham, S. Development and Transmission of Antimicrobial Resistance among Gram-Negative Bacteria in Animals and Their Public Health Impact. Essays Biochem. 2017, 61, 23–35. [Google Scholar] [PubMed]
- Hata, A.; Fujitani, N.; Ono, F.; Yoshikawa, Y. Surveillance of Antimicrobial-Resistant Escherichia coli in Sheltered Dogs in the Kanto Region of Japan. Sci. Rep. 2022, 12, 773. [Google Scholar] [CrossRef] [PubMed]
- Akhtardanesh, B.; Ghanbarpour, R.; Ganjalikhani, S.; Gazanfari, P. Determination of Antibiotic Resistance Genes in Relation to Phylogenetic Background in Escherichia coli Isolates from Fecal Samples of Healthy Pet Cats in Kerman City. Vet. Res. Forum Int. Q. J. 2016, 7, 301–308. [Google Scholar]
- Bourne, J.A.; Chong, W.L.; Gordon, D.M. Genetic Structure, Antimicrobial Resistance and Frequency of Human Associated Escherichia coli Sequence Types among Faecal Isolates from Healthy Dogs and Cats Living in Canberra, Australia. PLoS ONE 2019, 14, e0212867. [Google Scholar] [CrossRef]
- De Graef, E.M.; Decostere, A.; Devriese, L.A.; Haesebrouck, F. Antibiotic Resistance among Fecal Indicator Bacteria from Healthy Individually Owned and Kennel Dogs. Microb. Drug Resist. 2004, 10, 65–69. [Google Scholar] [CrossRef]
- Costa, D.; Poeta, P.; Sáenz, Y.; Coelho, A.C.; Matos, M.; Vinué, L.; Rodrigues, J.; Torres, C. Prevalence of Antimicrobial Resistance and Resistance Genes in Faecal Escherichia coli Isolates Recovered from Healthy Pets. Vet. Microbiol. 2008, 127, 97–105. [Google Scholar] [CrossRef]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of Antimicrobial Resistant Escherichia coli in Dogs: Prevalence, Associated Risk Factors and Molecular Characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef]
- Murphy, C.; Reid-Smith, R.J.; Prescott, J.F.; Bonnett, B.N.; Poppe, C.; Boerlin, P.; Weese, J.S.; Janecko, N.; McEwen, S.A. Occurrence of Antimicrobial Resistant Bacteria in Healthy Dogs and Cats Presented to Private Veterinary Hospitals in Southern Ontario: A Preliminary Study. Can. Vet. J. 2009, 50, 1047. [Google Scholar]
- Jackson, C.R.; Davis, J.A.; Frye, J.G.; Barrett, J.B.; Hiott, L.M. Diversity of Plasmids and Antimicrobial Resistance Genes in Multidrug-Resistant Escherichia coli Isolated from Healthy Companion Animals. Zoonoses Public Health 2015, 62, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial Resistance: A Global Emerging Threat to Public Health Systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Puvača, N.; de Llanos Frutos, R. Antimicrobial Resistance in Escherichia coli Strains Isolated from Humans and Pet Animals. Antibiotics 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Belas, A.; Menezes, J.; Gama, L.T.; Pomba, C.; Consortium*, P.-R. Sharing of Clinically Important Antimicrobial Resistance Genes by Companion Animals and Their Human Household Members. Microb. Drug Resist. 2020, 26, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Song, W.; Park, H.-M.; Oh, J.-Y.; Chae, J.-C.; Jeong, S.; Jeong, S.H. Molecular Characterization of Fecal Extended-Spectrum β-Lactamase-and AmpC β-Lactamase-Producing Escherichia coli from Healthy Companion Animals and Cohabiting Humans in South Korea. Front. Microbiol. 2020, 11, 674. [Google Scholar] [CrossRef]
- Jung, W.K.; Shin, S.; Park, Y.K.; Noh, S.M.; Shin, S.R.; Yoo, H.S.; Park, S.C.; Park, Y.H.; Park, K.T. Distribution and Antimicrobial Resistance Profiles of Bacterial Species in Stray Dogs, Hospital-Admitted Dogs, and Veterinary Staff in South Korea. Prev. Vet. Med. 2020, 184, 105151. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Hu, Y.S.; Shin, S.; Lim, S.K.; Yang, S.J.; Park, Y.H.; Park, K.T. Mechanisms of Quinolone Resistance in Escherichiacoli Isolated from Companion Animals, Pet-Owners, and Non-Pet-Owners. J. Vet. Sci. 2017, 18, 449–456. [Google Scholar] [CrossRef]
- Vieira, Y.C.; da Silva Marques, A.D.S.; Poll, P.S.E.M.; Santana, A.P.; Murata, L.S.; Perecmanis, S. Detection of Enterotoxin and Adhesin Genes of Escherichia coli Strains Isolated from Feces of Healthy Dogs. Acta Vet. Bras. 2020, 14, 16–20. [Google Scholar] [CrossRef]
- Furuya, Y.; Matsuda, M.; Harada, S.; Kumakawa, M.; Shirakawa, T.; Uchiyama, M.; Akama, R.; Ozawa, M.; Kawanishi, M.; Shimazaki, Y. Nationwide Monitoring of Antimicrobial-Resistant Escherichia coli and Enterococcus Spp. Isolated From Diseased and Healthy Dogs and Cats in Japan. Front. Vet. Sci. 2022, 9, 916461. [Google Scholar] [CrossRef]
- Xu, Z.-Q.; Flavin, M.T.; Flavin, J. Combating Multidrug-Resistant Gram-Negative Bacterial Infections. Expert Opin. Investig. Drugs 2014, 23, 163–182. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated from Cats and Dogs from the Iberian Peninsula. Front. Microbiol. 2021, 11, 621597. [Google Scholar] [CrossRef] [PubMed]
- Ratti, G.; Facchin, A.; Stranieri, A.; Giordano, A.; Paltrinieri, S.; Scarpa, P.; Maragno, D.; Gazzonis, A.; Penati, M.; Luzzago, C. Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats. Antibiotics 2023, 12, 1249. [Google Scholar] [CrossRef] [PubMed]
- Thungrat, K.; Price, S.B.; Carpenter, D.M.; Boothe, D.M. Antimicrobial Susceptibility Patterns of Clinical Escherichia coli Isolates from Dogs and Cats in the United States: January 2008 through January 2013. Vet. Microbiol. 2015, 179, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.C.; Barbosa, A.V.; Arais, L.R.; Ribeiro, P.F.; Carneiro, V.C.; Cerqueira, A.M.F. Resistance Patterns, ESBL Genes, and Genetic Relatedness of Escherichia coli from Dogs and Owners. Braz. J. Microbiol. 2016, 47, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Niina, A.; Nakai, Y.; Kataoka, Y.; Takahashi, T. Prevalence of Antimicrobial Resistance in Relation to Virulence Genes and Phylogenetic Origins among Urogenital Escherichia coli Isolates from Dogs and Cats in Japan. Am. J. Vet. Res. 2012, 73, 409–417. [Google Scholar] [CrossRef]
- Cho, J.-K.; Kim, J.-M.; Kim, H.-D.; Kim, K.-H. Antimicrobial-Resistant Escherichia coli Isolated from Dogs and Cats at Animal Hospitals in Daegu. Korean J. Vet. Serv. 2017, 40, 193–200. [Google Scholar]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of Urinary Bacterial Cultures and Antibiotic Susceptibility Testing of Dogs and Cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef]
- Galarce, N.; Arriagada, G.; Sánchez, F.; Escobar, B.; Miranda, M.; Matus, S.; Vilches, R.; Varela, C.; Zelaya, C.; Peralta, J.; et al. Phenotypic and Genotypic Antimicrobial Resistance in Escherichia coli Strains Isolated from Household Dogs in Chile. Front. Vet. Sci. 2023, 10, 1233127. [Google Scholar] [CrossRef]
- Awosile, B.B.; McClure, J.T.; Saab, M.E.; Heider, L.C. Antimicrobial Resistance in Bacteria Isolated from Cats and Dogs from the Atlantic Provinces, Canada from 1994-2013. Can. Vet. J. La Rev. Vet. Can. 2018, 59, 885–893. [Google Scholar]
- Marchetti, L.; Buldain, D.; Gortari Castillo, L.; Buchamer, A.; Chirino-Trejo, M.; Mestorino, N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. Int. J. Microbiol. 2021, 2021, 6664557. [Google Scholar] [CrossRef]
- Falodun, O.I.; Afolabi, M.C.; Rabiu, A.G. Detection of Extended Spectrum β-Lactamase (ESBL) Genes in Escherichia coli Isolated from Fecal Samples of Apparently Healthy Dogs in Ibadan, Nigeria. Anim. Gene 2022, 26, 200133. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Chatterjee, S. Fluoroquinolone Antibiotics: Occurrence, Mode of Action, Resistance, Environmental Detection, and Remediation–A Comprehensive Review. Environ. Pollut. 2022, 315, 120440. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, H.; Li, Y.; Hao, C. Association between Virulence Profile and Fluoroquinolone Resistance in Escherichia coli Isolated from Dogs and Cats in China. J. Infect. Dev. Ctries. 2017, 11, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.K.; Shin, S.; Park, Y.K.; Lim, S.-K.; Moon, D.-C.; Park, K.T.; Park, Y.H. Distribution and Antimicrobial Resistance Profiles of Bacterial Species in Stray Cats, Hospital-Admitted Cats, and Veterinary Staff in South Korea. BMC Vet. Res. 2020, 16, 109. [Google Scholar] [CrossRef] [PubMed]
- Silley, P.; Stephan, B.; Greife, H.A.; Pridmore, A. Comparative Activity of Pradofloxacin against Anaerobic Bacteria Isolated from Dogs and Cats. J. Antimicrob. Chemother. 2007, 60, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Albarracin, B.; Altier, C.; Gröhn, Y.T.; Cazer, C. Antimicrobial Resistance Trends among Canine Escherichia coli Isolated at a New York Veterinary Diagnostic Laboratory between 2007 and 2020. Prev. Vet. Med. 2022, 208, 105767. [Google Scholar] [CrossRef]
- KuKanich, K.; Lubbers, B.; Salgado, B. Amoxicillin and Amoxicillin-clavulanate Resistance in Urinary Escherichia coli Antibiograms of Cats and Dogs from the Midwestern United States. J. Vet. Intern. Med. 2020, 34, 227–231. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Davies, R.H.; Threlfall, E.J. Mechanisms of Quinolone Resistance in Escherichia coli and Salmonella: Recent Developments. Int. J. Antimicrob. Agents 2005, 25, 358–373. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; Mikulska, M.; Viscoli, C. Recent Advances in the Pharmacological Management of Infections Due to Multidrug-Resistant Gram-Negative Bacteria. Expert Rev. Clin. Pharmacol. 2018, 11, 1219–1236. [Google Scholar] [CrossRef]
- Hong, J.S.; Song, W.; Jeong, S.H. Molecular Characteristics of NDM-5-Producing Escherichia coli from a Cat and a Dog in South Korea. Microb. Drug Resist. 2020, 26, 1005–1008. [Google Scholar] [CrossRef] [PubMed]
- Ekakoro, J.E.; Hendrix, G.K.; Guptill, L.F.; Ruple, A. Antimicrobial Susceptibility and Risk Factors for Resistance among Escherichia coli Isolated from Canine Specimens Submitted to a Diagnostic Laboratory in Indiana, 2010–2019. PLoS ONE 2022, 17, e0263949. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, H.; Li, Y.; Hao, C. High Prevalence of β-Lactamase and Plasmid-Mediated Quinolone Resistance Genes in Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Dogs in Shaanxi, China. Front. Microbiol. 2016, 7, 1843. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ma, S.; Chen, S.; Schwarz, S.; Cao, Y.; Dang, X.; Zhai, W.; Zou, Z.; Shen, J.; Lyu, Y. Low Prevalence of Colistin-Resistant Escherichia coli from Companion Animals, China, 2018–2021. One Health Adv. 2023, 1, 14. [Google Scholar] [CrossRef]
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Simmen, S.; Zurfluh, K.; Nüesch-Inderbinen, M.; Schmitt, S. Investigation for the Colistin Resistance Genes Mcr-1 and Mcr-2 in Clinical Enterobacteriaceae Isolates from Cats and Dogs in Switzerland. ARC J. Anim. Vet. Sci. 2016, 2, 26–29. [Google Scholar]
- Karahutová, L.; Mandelík, R.; Bujňáková, D. Antibiotic Resistant and Biofilm-Associated Escherichia coli Isolates from Diarrheic and Healthy Dogs. Microorganisms 2021, 9, 1334. [Google Scholar] [CrossRef]
- Moon, D.C.; Mechesso, A.F.; Kang, H.Y.; Kim, S.-J.; Choi, J.-H.; Kim, M.H.; Song, H.-J.; Yoon, S.-S.; Lim, S.-K. First Report of an Escherichia coli Strain Carrying the Colistin Resistance Determinant Mcr-1 from a Dog in South Korea. Antibiotics 2020, 9, 768. [Google Scholar] [CrossRef]
- Gaire, T.N.; Scott, H.M.; Sellers, L.; Nagaraja, T.G.; Volkova, V. V Age Dependence of Antimicrobial Resistance among Fecal Bacteria in Animals: A Scoping Review. Front. Vet. Sci. 2021, 7, 622495. [Google Scholar] [CrossRef]
- Garcês, A.; Lopes, R.; Silva, A.; Sampaio, F.; Duque, D.; Brilhante-Simões, P. Bacterial Isolates from Urinary Tract Infection in Dogs and Cats in Portugal, and Their Antibiotic Susceptibility Pattern: A Retrospective Study of 5 Years (2017–2021). Antibiotics 2022, 11, 1520. [Google Scholar] [CrossRef]
- Stenske, K.A.; Bemis, D.A.; Gillespie, B.E.; D’Souza, D.H.; Oliver, S.P.; Draughon, F.A.; Matteson, K.J.; Bartges, J.W. Comparison of Clonal Relatedness and Antimicrobial Susceptibility of Fecal Escherichia coli from Healthy Dogs and Their Owners. Am. J. Vet. Res. 2009, 70, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ji, X.; Liang, B.; Jiang, B.; Li, Y.; Yuan, T.; Zhu, L.; Liu, J.; Guo, X.; Sun, Y. Antimicrobial Resistance and Prevalence of Extended Spectrum β-Lactamase-Producing Escherichia coli from Dogs and Cats in Northeastern China from 2012 to 2021. Antibiotics 2022, 11, 1506. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, B.W.; Boothe, D.M.; Oyarzabal, O.A.; Smaha, T. Antimicrobial Resistance Profiles and Clonal Relatedness of Canine and Feline Escherichia coli Pathogens Expressing Multidrug Resistance in the United States. J. Vet. Intern. Med. 2010, 24, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Mbelle, N.M.; Feldman, C.; Osei Sekyere, J.; Maningi, N.E.; Modipane, L.; Essack, S.Y. The Resistome, Mobilome, Virulome and Phylogenomics of Multidrug-Resistant Escherichia coli Clinical Isolates from Pretoria, South Africa. Sci. Rep. 2019, 9, 16457. [Google Scholar] [CrossRef]
- Exner, M.; Bhattacharya, S.; Christiansen, B.; Gebel, J.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Kramer, A.; Larson, E. Antibiotic Resistance: What Is so Special about Multidrug-Resistant Gram-Negative Bacteria? GMS Hyg. Infect. Control 2017, 12, Doc05. [Google Scholar]
- Nam, H.-M.; Lee, H.-S.; Byun, J.-W.; Yoon, S.-S.; Jung, S.-C.; Joo, Y.-S.; Lim, S.-K. Prevalence of Antimicrobial Resistance in Fecal Escherichia coli Isolates from Stray Pet Dogs and Hospitalized Pet Dogs in Korea. Microb. Drug Resist. 2010, 16, 75–79. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; TwentySeventh Informational Supplement, M100-S25; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
% (Resistant Isolates) | ||||
---|---|---|---|---|
Antimicrobials | Dogs (n = 637) | Cats (n = 206) | Total (n = 843) | p-Value |
Amikacin | 0.6 (4) | 0 (0) | 0.5 (4) | 0.2547 |
Amoxicillin/clavulanic acid | 7.2 (46) | 3.9 (8) | 6.4 (54) | 0.0891 |
Ampicillin | 42.4 (270) | 25.7 (53) | 38.3 (323) | <0.0001 |
Cefalexin | 74.4 (474) | 51.9 (107) | 68.9 (581) | <0.0001 |
Cefazolin | 20.4 (130) | 13.6 (28) | 18.7 (158) | 0.0293 |
Cefovecin | 16.2 (103) | 9.7 (20) | 14.6 (123) | 0.0223 |
Cefpodoxime | 16.5 (105) | 9.7 (20) | 14.8 (125) | 0.0173 |
Ceftazidime | 6.0 (38) | 4.9 (10) | 5.7 (48) | 0.5502 |
Chloramphenicol | 13.2 (84) | 7.8 (16) | 11.9 (100) | 0.0365 |
Colistin | 0.2 (1) | 0 (0) | 0.1 (1) | 0.5698 |
Doxycycline | 15.9 (101) | 11.7 (24) | 14.8 (125) | 0.1401 |
Enrofloxacin | 16.2 (103) | 6.3 (13) | 13.8 (116) | 0.0003 |
Gentamicin | 8.3 (53) | 4.4 (9) | 7.4 (62) | 0.0590 |
Imipenem | 0.2 (1) | 0 (0) | 0.1 (1) | 0.5698 |
Marbofloxacin | 16.2 (103) | 6.3 (13) | 13.8 (116) | 0.0003 |
Orbifloxacin | 17.4 (111) | 7.3 (15) | 14.9 (126) | 0.0003 |
Piperacillin/tazobactam | 0.6 (4) | 0 (0) | 0.5 (4) | 0.2547 |
Pradofloxacin | 15.7 (100) | 6.3 (13) | 13.4 (113) | 0.0005 |
Tetracycline | 25.6 (163) | 15.5 (32) | 23.1 (195) | 0.0028 |
Trimethoprim/sulfamethoxazole | 17.3 (110) | 6.3 (13) | 14.6 (123) | 0.0001 |
MDR | 34.9 (222) | 20.9 (43) | 42.3 (357) | <0.0001 |
Antimicrobials | Resistance % (Isolates) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dogs (n = 637) | Cats (n = 206) | ||||||||||||
1 Year: Puppy and Juvenile (n = 146) | 2–5 Years: Mature Adult (n = 196) | 6–10 Years: Senior (n = 206) | ≥11 Years: Geriatric (n = 87) | Unknown (n = 2) | Total | p-Value | ≤1 Year: Kitten (n = 75) | 2–6 Years: Junior and Adults (n = 98) | 7–10 Years: Mature (n = 26) | ≥11 Years: Senior (n = 7) | Total | p-Value | |
Amikacin | 0.7 (1) | 0.5 (1) | 0 (0) | 2.3 (2) | 0 (0) | 0.6 (4) | 0.2629 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | – |
Amoxicillin/clavulanic acid | 6.8 (10) | 4.1 (8) | 8.7 (18) | 11.5 (10) | 0 (0) | 7.2 (46) | 0.1890 | 1.3 (1) | 5.1 (5) | 7.7 (2) | 0 (0) | 3.9 (8) | 0.3500 |
Ampicillin | 44.5 (65) | 40.8 (80) | 43.2 (89) | 41. 4 (36) | 0 (0) | 42.4 (270) | 0.7312 | 25.3 (19) | 25.5 (25) | 34.6 (9) | 0 (0) | 25.7 (53) | 0.3236 |
Cefalexin | 79.5 (116) | 69.4 (136) | 77.7 (160) | 71.3 (62) | 0 (0) | 74.4 (474) | 0.0173 | 50.7 (38) | 56.1 (55) | 46.2 (12) | 28.6 (2) | 51.9 (107) | 0.4596 |
Cefazolin | 20.5 (30) | 16.8 (33) | 24.3 (50) | 19.5 (17) | 0 (0) | 20.4 (130) | 0.4094 | 8.0 (6) | 16.3 (16) | 23.1 (6) | 0 (0) | 14.6 (30) | 0.1273 |
Cefovecin | 15.1 (22) | 14.3 (28) | 18.9 (39) | 16.1 (14) | 0 (0) | 16.2 (103) | 0.7027 | 6.7 (5) | 10.2 (10) | 19.2 (5) | 0 (0) | 9.7 (20) | 0.2374 |
Cefpodoxime | 15.1 (22) | 14.3 (28) | 19.9 (41) | 16.1 (14) | 0 (0) | 16.5 (105) | 0.5507 | 6.7 (5) | 10.2 (10) | 19.2 (5) | 0 (0) | 9.7 (20) | 0.2374 |
Ceftazidime | 8.2 (12) | 5.1 (10) | 6.3 (13) | 3.4 (3) | 0 (0) | 6.0 (38) | 0.6049 | 4.0 (3) | 4.1 (4) | 11.5 (3) | 0 (0) | 4.9 (10) | 0.3782 |
Chloramphenicol | 16.4 (24) | 13.8 (27) | 11.2 (23) | 10.3 (9) | 50.0 (1) | 13.2 (84) | 0.2758 | 8.0 (6) | 7.1 (7) | 11.5 (3) | 0 (0) | 7.8 (16) | 0.7654 |
Colistin | 0.7 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0.2 (1) | 0.5001 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | – |
Doxycycline | 22.6 (33) | 15.3 (30) | 13.6 (28) | 11.5 (10) | 0 (0) | 15.9 (101) | 0.1147 | 13.3 (10) | 12.2 (12) | 7.7 (2) | 0 (0) | 11.7 (24) | 0.6734 |
Enrofloxacin | 13.7 (20) | 12.8 (25) | 18.0 (37) | 24.1 (21) | 0 (0) | 16.2 (103) | 0.1214 | 9.3 (7) | 4.1 (4) | 7.7 (2) | 0 (0) | 6.3 (13) | 0.4734 |
Gentamicin | 8.2 (12) | 4.1 (8) | 9.7 (20) | 14.9 (13) | 0 (0) | 8.3 (53) | 0.0350 | 6.7 (5) | 1.0 (1) | 11.5 (3) | 0 (0) | 4.4 (9) | 0.0688 |
Imipenem | 0 (0) | 0 (0) | 0 (0) | 1.1 (1) | 0 (0) | 0.2 (1) | 0.1762 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | – |
Marbofloxacin | 13.7 (20) | 12.8 (25) | 18.0 (37) | 24.1 (21) | 0 (0) | 16.2 (103) | 0.1214 | 9.3 (7) | 4.1 (4) | 7.7 (2) | 0 (0) | 6.3 (13) | 0.4734 |
Orbifloxacin | 15.1 (22) | 13.3 (26) | 19.4 (40) | 26.4 (23) | 0 (0) | 17.4 (111) | 0.0655 | 10.7 (8) | 5.1 (5) | 7.7 (2) | 0 (0) | 7.3 (15) | 0.4768 |
Piperacillin/tazobactam | 0 (0) | 1.0 (2) | 0.5 (1) | 1.1 (1) | 0 (0) | 0.6 (4) | 0.7621 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | – |
Pradofloxacin | 13.7 (20) | 12.2 (24) | 18.0 (37) | 21.8 (19) | 0 (0) | 15.7 (100) | 0.2109 | 9.3 (7) | 4.1 (4) | 7.7 (2) | 0 (0) | 6.3 (13) | 0.4734 |
Tetracycline | 30.1 (44) | 27.6 (54) | 22.3 (46) | 21.8 (19) | 0 (0) | 25.6 (163) | 0.3486 | 20.0 (15) | 14.3 (14) | 11.5 (3) | 0 (0) | 15.5 (32) | 0.4183 |
Trimethoprim/sulfamethoxazole | 23.3 (34) | 17.3 (34) | 15.0 (31) | 12.6 (11) | 0 (0) | 17.3 (110) | 0.1900 | 12.0 (9) | 3.1 (3) | 3.8 (1) | 0 (0) | 6.3 (13) | 0.0862 |
MDR | 36.3 (53) | 32.1 (63) | 37.9 (78) | 32.2 (28) | 0 (0) | 34.9 (222) | 0.5708 | 18.7 (14) | 20.4 (20) | 34.6 (9) | 0 (0) | 20.9 (43) | 0.1696 |
No. of Antimicrobials | % (No. of Resistant Isolates) | Most Common Pattern (No. of Isolates) |
---|---|---|
No resistance | 14.9% (95) | – |
Resistance 1 agent | 34.7% (221) | LEX (n = 203) |
Resistance 2 agents | 9.3% (59) | AMP LEX (n = 34) |
Resistance 3 agents | 6.4% (41) | LEX DOX TET (n = 10) |
Resistance 4 agents | 5.5% (35) | AMP LEX DOX TET (n = 7) |
Resistance 5 agents | 7.2% (46) | AMP LEX CFZ VEC CPD (n = 14) |
Resistance 6 agents | 5.0% (32) | AMC AMP LEX CFZ VEC CPD (n = 8) |
Resistance 7 agents | 3.5% (22) | AMC AMP LEX CFZ VEC CPD CAZ (n = 6) |
Resistance 8 agents | 2.2% (14) | AMC AMP LEX CFZ VEC CPD CAZ SXT (n = 2) AMP LEX CHL ENO MAR ORB PRA TET (n = 2) |
Resistance 9 agents | 3.6% (23) | AMP LEX CFZ VEC CPD ENO MAR ORB PRA (n = 5) |
Resistance 10 agents | 1.7% (11) | AMP LEX CFZ VEC CPD ENO MAR ORB PRA SXT (n = 4) |
Resistance 11 agents | 0.6% (4) | AMC AMP LEX CFZ VEC CPD CAZ ENO MAR ORB PRA (n = 2) |
Resistance 12 agents | 2.0% (13) | AMP LEX CFZ VEC CPD DOX ENO MAR ORB PRA TET SXT (n = 3) |
Resistance 13 agents | 0.8% (5) | AMP LEX CFZ VEC CPD CHL DOX ENO MAR ORB PRA TET SXT (n = 2) |
Resistance 14 agents | 1.3% (8) | AMP LEX CFZ VEC CPD CAZ CHL DOX ENO MAR ORB PRA TET SXT (n = 3) |
Resistance 15 agents | 1.3% (8) | AMC AMP LEX CFZ VEC CPD CAZ CHL DOX ENO MAR ORB PRA TET SXT (n = 4) |
No. of Antimicrobials | % (No. of Resistant Isolates) | Most Common Pattern (No. of Isolates) |
---|---|---|
No resistance | 42.2% (87) | – |
Resistance 1 agent | 29.6% (61) | LEX (n = 58) |
Resistance 2 agents | 2.9% (6) | AMP LEX (n = 4) |
Resistance 3 agents | 5.8% (12) | AMP LEX CFZ (n = 3) |
Resistance 4 agents | 3.4% (7) | AMP LEX DOX TET (n = 4) |
Resistance 5 agents | 3.9% (8) | AMP LEX CFZ VEC CPD (n = 2) AMP LEX CHL DOX TET (n = 2) |
Resistance 6 agents | 2.9% (6) | AMP LEX CFZ CHL DOX TET (n = 3) |
Resistance 7 agents | 2.9% (6) | AMC AMP LEX CFZ VEC CPD CAZ (n = 4) |
Resistance 8 agents | 1.0% (2) | AMC AMP LEX CFZ VEC CPD DOX TET (n = 1) AMP LEX CFZ VEC CPD GEN TET SXT (n = 1) |
Resistance 9 agents | 1.5% (3) | AMP LEX CFZ VEC CPD ENO MAR ORB PRA (n = 2) |
Resistance 10 agents | 1.0% (2) | AMP LEX DOX ENO GEN MAR ORB PRA TET SXT (n = 1) AMP LEX CFZ VEC CPD CAZ DOX ORB TET SXT (n = 1) |
Resistance 11 agents | 1.0% (2) | AMP LEX CFZ VEC CPD CAZ ENO GEN MAR ORB PRA (n = 1) AMP LEX CFZ VEC CPD DOX ENO MAR ORB PRA TET (n = 1) |
Resistance 12 agents | 0.5% (1) | AMP LEX CFZ VEC CPD CHL DOX ENO MAR ORB PRA TET (n = 1) |
Resistance 14 agents | 1.5% (3) | AMP LEX CFZ VEC CPD CAZ DOX ENO GEN MAR ORB PRA TET SXT (n = 2) |
Year | Dogs | Cats | ||
---|---|---|---|---|
Animal Hospitals | Isolates | Animal Hospitals | Isolates | |
2020 | 22 | 193 | 16 | 67 |
2021 | 25 | 181 | 15 | 71 |
2022 | 27 | 263 | 20 | 68 |
Total | 74 | 637 | 51 | 206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, B.-Y.; Ali, M.S.; Kwon, D.-H.; Heo, Y.-E.; Hwang, Y.-J.; Kim, J.-I.; Lee, Y.J.; Yoon, S.-S.; Moon, D.-C.; Lim, S.-K. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020–2022. Antibiotics 2024, 13, 27. https://doi.org/10.3390/antibiotics13010027
Moon B-Y, Ali MS, Kwon D-H, Heo Y-E, Hwang Y-J, Kim J-I, Lee YJ, Yoon S-S, Moon D-C, Lim S-K. Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020–2022. Antibiotics. 2024; 13(1):27. https://doi.org/10.3390/antibiotics13010027
Chicago/Turabian StyleMoon, Bo-Youn, Md. Sekendar Ali, Dong-Hyeon Kwon, Ye-Eun Heo, Yu-Jeong Hwang, Ji-In Kim, Yun Jin Lee, Soon-Seek Yoon, Dong-Chan Moon, and Suk-Kyung Lim. 2024. "Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020–2022" Antibiotics 13, no. 1: 27. https://doi.org/10.3390/antibiotics13010027
APA StyleMoon, B. -Y., Ali, M. S., Kwon, D. -H., Heo, Y. -E., Hwang, Y. -J., Kim, J. -I., Lee, Y. J., Yoon, S. -S., Moon, D. -C., & Lim, S. -K. (2024). Antimicrobial Resistance in Escherichia coli Isolated from Healthy Dogs and Cats in South Korea, 2020–2022. Antibiotics, 13(1), 27. https://doi.org/10.3390/antibiotics13010027