CLSM-Guided Imaging for Quantifying Endodontic Disinfection
Abstract
:1. Introduction
2. Results
2.1. Tooth Preparation and Pretreatment
2.2. Assessment of Sclerosis Grading (SCG)
2.3. Results of Specimen Inoculation and Quantification of Bacterial Invasion Depth
2.4. Quantification of Treatment Efficacy
3. Discussion
4. Materials and Methods
4.1. Tooth Selection and Classification
4.2. Preparation and Pretreatment Protocols
4.3. Overflow Model (Process A)
4.4. Centrifugation Model (Process B)
4.5. Grouping and Treatment
- Control: No treatment.
- Conventional rinsing: Samples were irrigated with the help of a 27-G side-vented needle (Covidien, Dublin, Ireland) with 2 mL EDTA (17%) for 60 s, followed by 5 mL NaOCl (3%) for 60 s and 5 mL physiological NaCl for 60 s in order to dilute NaOCl traces.
- Rinsing with sonic activation (EDDY): Samples were irrigated with the help of the same needle with 2 mL EDTA (17%) for 60 s as under (2), but followed by 1 mL NaOCl (3%) for 15 s, sonic activation (5000–6000 Hz) with EDDY for 30 s, irrigation again with 1 mL NaOCl (3%) for 15 s, repetition of sonic activation, irrigation again with 3 mL NaOCl (3%) for 30 s, and finally 5 mL of physiological NaCl for 60 s in order to dilute NaOCl traces. To avoid contamination, the rinsing needles and EDDY tips were changed between the samples.
4.6. Preparation of Samples for Evaluation
4.7. Assessment of Sclerosis Grading (SCG)
4.8. Confocal Laser Microscopy Evaluation and Assessment of Treatment
- The colonization/penetration depth of the living bacteria (green fluorescence) was measured to ensure the presence of E. faecalis and to quantify how deeply the bacteria were invading the dentinal tubules.
- The area of dead bacteria (red fluorescence) and/or diffusion depth of released DNA/RNA (also red) was measured to evaluate the penetration depth of the rinsing solution.
4.9. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hülsmann, M. Endodontie: 20 Tabellen; Georg Thieme Verlag: Leipzig, Germany, 2008; p. 265. [Google Scholar]
- Tabassum, S.; Khan, F.R. Failure of Endodontic Treatment: The Usual Suspects. Eur. J. Dent. 2016, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.N.R.; Henry, S.; Cano, V.; Vera, J. Microbial Status of Apical Root Canal System of Human Mandibular First Molars with Primary Apical Periodontitis after “One-Visit” Endodontic Treatment. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 2005, 99, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Vatkar, N.A.; Hegde, V.; Sathe, S. Vitality of Enterococcus Faecalis inside Dentinal Tubules after Five Root Canal Disinfection Methods. J. Conserv. Dent. 2016, 19, 445. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, J.-S.; Falk, W.; Frankenberger, R.; Braun, A. Impact of Adjunctive Laser Irradiation on the Bacterial Load of Dental Root Canals: A Randomized Controlled Clinical Trial. Antibiotics 2021, 10, 1557. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F.; Machado, A.G.; Silveira, R.M.; Lopes, H.P.; Uzeda, M. Evaluation of the Effectiveness of Sodium Hypochlorite Used with Three Irrigation Methods in the Elimination of Enterococcus faecalis from the Root Canal, in Vitro. Int. Endod. J. 1997, 30, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Clegg, M.S.; Vertucci, F.J.; Walker, C.; Belanger, M.; Britto, L.R. The Effect of Exposure to Irrigant Solutions on Apical Dentin Biofilms in Vitro. J. Endod. 2006, 32, 434–437. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Ørstavik, D. In Vitro Infection and Disinfection of Dentinal Tubules. J. Dent. Res. 1987, 66, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chen, B.; Qiu, J.; He, W.; Lv, H.; Qu, T.; Yu, Q.; Tian, Y. Bactericidal Effect of Er:YAG Laser Combined with Sodium Hypochlorite Irrigation against Enterococcus Faecalis Deep inside Dentinal Tubules in Experimentally Infected Root Canals. J. Med. Microbiol. 2016, 65, 176–187. [Google Scholar] [CrossRef]
- Berutti, E.; Marini, R.; Angeretti, A. Penetration Ability of Different Irrigants into Dentinal Tubules. J. Endod. 1997, 23, 725–727. [Google Scholar] [CrossRef]
- Sundqvist, G.; Figdor, D.; Persson, S.; Sjögren, U. Microbiologic Analysis of Teeth with Failed Endodontic Treatment and the Outcome of Conservative Re-Treatment. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod. 1998, 85, 86–93. [Google Scholar] [CrossRef]
- Dioguardi, M.; Di Gioia, G.; Illuzzi, G.; Arena, C.; Caponio, V.C.A.; Caloro, G.A.; Zhurakivska, K.; Adipietro, I.; Troiano, G.; Lo Muzio, L. Inspection of the Microbiota in Endodontic Lesions. Dent. J. 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Zargar, N.; Marashi, M.A.; Ashraf, H.; Hakopian, R.; Beigi, P. Identification of Microorganisms in Persistent/Secondary Endodontic Infections with Respect to Clinical and Radiographic Findings: Bacterial Culture and Molecular Detection. Iran. J. Microbiol. 2019, 11, 120. [Google Scholar] [CrossRef]
- Siqueira, J.F.; Antunes, H.S.; Rôç, I.N.; Rachid, C.T.C.C.; Alves, F.R.F. Microbiome in the Apical Root Canal System of Teeth with Post-Treatment Apical Periodontitis. PLoS ONE 2016, 11, e0162887. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, Z.; Shen, Y.; Haapasalo, M. A New Noninvasive Model to Study the Effectiveness of Dentin Disinfection by Using Confocal Laser Scanning Microscopy. J. Endod. 2011, 37, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Stojicic, S.; Haapasalo, M. Bacterial Viability in Starved and Revitalized Biofilms: Comparison of Viability Staining and Direct Culture. J. Endod. 2010, 36, 1820–1823. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M.; Jenkinson, H.F. Invasion of Dentinal Tubules by Oral Bacteria. Crit. Rev. Oral. Biol. Med. 2002, 13, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Dymock, D.; Weightman, A.J.; Scully, C.; Wade, W.G. Molecular Analysis of Microflora Associated with Dentoalveolar Abscesses. J. Clin. Microbiol. 1996, 34, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Tsesis, I.; Elbahary, S.; Venezia, N.B.; Rosen, E. Bacterial Colonization in the Apical Part of Extracted Human Teeth Following Root-End Resection and Filling: A Confocal Laser Scanning Microscopy Study. Clin. Oral. Investig. 2018, 22, 267–274. [Google Scholar] [CrossRef]
- Galler, K.M.; Grubmüller, V.; Schlichting, R.; Widbiller, M.; Eidt, A.; Schuller, C.; Wölflick, M.; Hiller, K.A.; Buchalla, W. Penetration Depth of Irrigants into Root Dentine after Sonic, Ultrasonic and Photoacoustic Activation. Int. Endod. J. 2019, 52, 1210–1217. [Google Scholar] [CrossRef]
- Zapata, R.O.; Bramante, C.M.; de Moraes, I.G.; Bernardineli, N.; Gasparoto, T.H.; Graeff, M.S.Z.; Campanelli, A.P.; Garcia, R.B. Confocal Laser Scanning Microscopy Is Appropriate to Detect Viability of Enterococcus Faecalis in Infected Dentin. J. Endod. 2008, 34, 1198–1201. [Google Scholar] [CrossRef]
- Parmar, D.; Hauman, C.H.J.; Leichter, J.W.; Mcnaughton, A.; Tompkins, G.R. Bacterial Localization and Viability Assessment in Human Ex Vivo Dentinal Tubules by Fluorescence Confocal Laser Scanning Microscopy. Int. Endod. J. 2011, 44, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Nagayoshi, M.; Kitamura, C.; Fukuizumi, T.; Nishihara, T.; Terashita, M. Antimicrobial Effect of Ozonated Water on Bacteria Invading Dentinal Tubules. J. Endod. 2004, 30, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.H.; da Rosa, R.A.; de Figueiredo, J.A.P.; Duarte, M.A.H.; Pereira, J.R.; Só, M.V.R. Final Irrigation Protocols May Affect Intraradicular Dentin Ultrastructure. Clin. Oral. Investig. 2017, 21, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.P.C.; Knowles, J.C.; Ng, Y.L.; Shelton, J.; Gulabivala, K. Effect of Sodium Hypochlorite on Mechanical Properties of Dentine and Tooth Surface Strain. Int. Endod. J. 2001, 34, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.S.; Huang, X.Q.; Griffin, B.; Bergeron, B.R.; Pashley, D.H.; Niu, L.N.; Tay, F.R. Primum Non Nocere-The Effects of Sodium Hypochlorite on Dentin as Used in Endodontics. Acta Biomater. 2017, 61, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Slutzky-Goldberg, I.; Maree, M.; Liberman, R.; Heling, I. Effect of Sodium Hypochlorite on Dentin Microhardness. J. Endod. 2004, 30, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Enterococcus faecalis—A Mechanism for Its Role in Endodontic Failure. Int. Endod. J. 2001, 34, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Mjör, I.A.; Nordahl, I. The Density and Branching of Dentinal Tubules in Human Teeth. Arch. Oral. Biol. 1996, 41, 401–412. [Google Scholar] [CrossRef]
- Preethee, T.; Kandaswamy, D.; Arathi, G.; Hannah, R. Bactericidal Effect of the 908 Nm Diode Laser on Enterococcus Faecalis in Infected Root Canals. J. Conserv. Dent. 2012, 15, 46. [Google Scholar] [CrossRef]
- Reese, S.; Guggenheim, B. A Novel TEM Contrasting Technique for Extracellular Polysaccharides in in Vitro Biofilms. Microsc. Res. Tech. 2007, 70, 816–822. [Google Scholar] [CrossRef]
- Solheim, T. Dental Root Translucency as an Indicator of Age. Scand. J. Dent. Res. 1989, 97, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Vasiliadis, L.; Darling, A.I.; Levers, B.G.H. The Amount and Distribution of Sclerotic Human Root Dentine. Arch. Oral. Biol. 1983, 28, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.A.; Chandler, N.P.; Hauman, C.; Siddiqui, A.Y.; Tompkins, G.R. The Butterfly Effect: An Investigation of Sectioned Roots. J. Endod. 2013, 39, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.A.; He, L.H.; Chandler, N.P. Investigation of Dentin Hardness in Roots Exhibiting the Butterfly Effect. J. Endod. 2014, 40, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Sodvadiya, U.B.; Bhat, G.S.; Shetty, A.; Hegde, M.N.; Shetty, P. The “Butterfly Effect” and Its Correlation to the Direction of the Fracture Line in Root Dentin. J. Endod. 2021, 47, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.S.S.; Ghani, N.R.N.A.; Noorani, T.Y. The Existence of Butterfly Effect and Its Impact on the Dentinal Microhardness and Crack Formation after Root Canal Instrumentation. Odontology 2021, 109, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, P.; Schmidt-Emrich, S.; Maniura-Weber, K.; Ren, Q. Critical Aspects of Using Bacterial Cell Viability Assays with the Fluorophores SYTO9 and Propidium Iodide. BMC Microbiol. 2015, 15, 36. [Google Scholar] [CrossRef]
Control | Position | SCG | |||||||
---|---|---|---|---|---|---|---|---|---|
Coronal | Medial | Apical | 0 | 1 | 2 | 3 | |||
All | 440 | ||||||||
Position | Coronal | 680 | |||||||
Medial | 380 | ||||||||
Apical | 270 | ||||||||
SCG | 0 | 400 | 520 | 410 | 270 | ||||
1 | 680 | 900 | 370 | 210 | |||||
2 | 440 | 520 | 430 | 410 | |||||
3 | 110 | 170 | 120 | 80 | |||||
Experiment | B-Pr2 | 400 | 520 | 410 | 270 | 400 | |||
A-Pr2 | 480 | 770 | 380 | 280 | 790 | 420 | 100 | ||
A-Pr1 | 420 | 650 | 360 | 250 | 580 | 460 | 110 |
Pr1 (with NaOCl) | Pr2 (without NaOCl) | ||||||
---|---|---|---|---|---|---|---|
Irrigation/Activation | mL | s | Irrigation/Activation | mL | s | ||
0. | NaOCl between every file | 1 | 15 | 0. | NaCl between every file | 1 | 15 |
1. | NaOCl (5%) 40 °C | 5 | 60 | ||||
2. | Ultrapure water | 5 | 60 | 1. | Ultrapure water | 5 | 60 |
3. | EDTA (17%) | 5 | 60 | 2. | EDTA (17%) | 5 | 60 |
4. | Activation with EDDY | 30 | 3. | Activation with EDDY | 30 | ||
5. | Ultrapure water | 5 | 60 | 4. | Ultrapure water | 5 | 60 |
6. | NaOCl (5%), RT | 5 | 60 | ||||
7. | Activation with EDDY | 30 | |||||
8. | Resting phase * | 30 | |||||
9. | Activation with EDDY | 30 | |||||
10. | Ultrapure water | 5 | 60 |
Group | N * | SCG (n) ** | Pretreatment | Inoculation Process and Model | Treatment |
---|---|---|---|---|---|
G1 | 30 | SCG1 (10), SCG2 (13), SCG3 (7) | Pr1 | A overflow | Control |
G2 | 27 | SCG1 (7), SCG2 (13), SCG3 (7) | Pr1 | A overflow | Conventional rinsing |
G3 | 30 | SCG1 (12), SCG2 (7), SCG3 (11) | Pr1 | A overflow | Sonic activation of rinsing (EDDY) |
G4 | 30 | SCG1 (9), SCG2 (16), SCG3 (5) | Pr2 | A overflow | Control |
G5 | 30 | SCG1 (13), SCG2 (10), SCG3 (7) | Pr2 | A overflow | Conventional rinsing |
G6 | 30 | SCG1 (12), SCG2 (10), SCG3 (8) | Pr2 | A overflow | Sonic activation of rinsing (EDDY) |
G7 | 12 | SCG0 (12) | Pr2 | B centrifugation | Control |
G8 | 12 | SCG0 (12) | Pr2 | B centrifugation | Conventional rinsing |
G9 | 12 | SCG0 (12) | Pr2 | B centrifugation | Sonic activation of rinsing (EDDY) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattern, R.; Ernst, S.; Böcher, S.; Braun, A.; Wenzler, J.-S.; Conrads, G. CLSM-Guided Imaging for Quantifying Endodontic Disinfection. Antibiotics 2024, 13, 54. https://doi.org/10.3390/antibiotics13010054
Mattern R, Ernst S, Böcher S, Braun A, Wenzler J-S, Conrads G. CLSM-Guided Imaging for Quantifying Endodontic Disinfection. Antibiotics. 2024; 13(1):54. https://doi.org/10.3390/antibiotics13010054
Chicago/Turabian StyleMattern, Rebecca, Sabrina Ernst, Sarah Böcher, Andreas Braun, Johannes-Simon Wenzler, and Georg Conrads. 2024. "CLSM-Guided Imaging for Quantifying Endodontic Disinfection" Antibiotics 13, no. 1: 54. https://doi.org/10.3390/antibiotics13010054
APA StyleMattern, R., Ernst, S., Böcher, S., Braun, A., Wenzler, J. -S., & Conrads, G. (2024). CLSM-Guided Imaging for Quantifying Endodontic Disinfection. Antibiotics, 13(1), 54. https://doi.org/10.3390/antibiotics13010054