Optimized Antibiotic Management of Critically Ill Patients with Severe Pneumonia Following Multiplex Polymerase Chain Reaction Testing: A Prospective Clinical Exploratory Trial
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Microbiological Testing of the Lower Respiratory Tract Samples
4.3. Measured Outcomes
4.4. Data Handling and Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-associated pneumonia in adults: A narrative review. Int. Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Torres, A.; Nagavci, B.; Aliberti, S.; Antonelli, M.; Bassetti, M.; Bos, L.D.; Chalmers, J.D.; Derde, L.; de Waele, J.; et al. ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med. 2023, 49, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
- Teshome, B.F.; Vouri, S.M.; Hampton, N.; Kollef, M.H.; Micek, S.T. Duration of Exposure to Antipseudomonal β-Lactam Antibiotics in the Critically Ill and Development of New Resistance. Pharmacotherapy 2019, 39, 261–270. [Google Scholar] [CrossRef]
- Crémet, L.; Gaborit, B.; Bouras, M.; Drumel, T.; Guillotin, F.; Poulain, C.; Persyn, E.; Lakhal, K.; Rozec, B.; Vibet, M.A.; et al. Evaluation of the FilmArray® Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. Front. Microbiol. 2020, 11, 2080. [Google Scholar] [CrossRef]
- Enne, V.I.; Aydin, A.; Baldan, R.; Owen, D.R.; Richardson, H.; Ricciardi, F.; Russell, C.; Nomamiukor-Ikeji, B.O.; Swart, A.M.; High, J.; et al. Multicentre evaluation of two multiplex PCR platforms for the rapid microbiological investigation of nosocomial pneumonia in UK ICUs: The INHALE WP1 study. Thorax 2022, 77, 1220–1228. [Google Scholar] [CrossRef]
- Buchan, B.W.; Windham, S.; Balada-Llasat, J.M.; Leber, A.; Harrington, A.; Relich, R.; Murphy, C.; Dien Bard, J.; Naccache, S.; Ronen, S.; et al. Practical Comparison of the BioFire FilmArray Pneumonia Panel to Routine Diagnostic Methods and Potential Impact on Antimicrobial Stewardship in Adult Hospitalized Patients with Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, e00135-20. [Google Scholar] [CrossRef]
- Guillotin, F.; Poulain, C.; Gaborit, B.; Bouras, M.; Cinotti, R.; Lakhal, K.; Vourc’h, M.; Rozec, B.; Asehnoune, K.; Vibet, M.A.; et al. Potential Impact of Rapid Multiplex PCR on Antimicrobial Therapy Guidance for Ventilated Hospital-Acquired Pneumonia in Critically Ill Patients, A Prospective Observational Clinical and Economic Study. Front. Cell Infect. Microbiol. 2022, 12, 804611. [Google Scholar] [CrossRef]
- Monard, C.; Pehlivan, J.; Auger, G.; Alviset, S.; Tran Dinh, A.; Duquaire, P.; Gastli, N.; d’Humières, C.; Maamar, A.; Boibieux, A.; et al. Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. Crit. Care 2020, 24, 434. [Google Scholar] [CrossRef]
- Stafylaki, D.; Maraki, S.; Vaporidi, K.; Georgopoulos, D.; Kontoyiannis, D.P.; Kofteridis, D.P.; Chamilos, G. Impact of Molecular Syndromic Diagnosis of Severe Pneumonia in the Management of Critically Ill Patients. Microbiol. Spectr. 2022, 10, e0161622. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Kadri, S.S.; Dekker, J.P.; Danner, R.L.; Chen, H.C.; Fram, D.; Zhang, F.; Wang, R.; Klompas, M.; CDC Prevention Epicenters Program. Prevalence of Antibiotic-Resistant Pathogens in Culture-Proven Sepsis and Outcomes Associated With Inadequate and Broad-Spectrum Empiric Antibiotic Use. JAMA Netw. Open 2020, 3, e202899. [Google Scholar] [CrossRef] [PubMed]
- Cartuliares, M.B.; Rosenvinge, F.S.; Mogensen, C.B.; Skovsted, T.A.; Andersen, S.L.; Østergaard, C.; Pedersen, A.K.; Skjøt-Arkil, H. Evaluation of point-of-care multiplex polymerase chain reaction in guiding antibiotic treatment of patients acutely admitted with suspected community-acquired pneumonia in Denmark: A multicentre randomised controlled trial. PLoS Med. 2023, 20, e1004314. [Google Scholar] [CrossRef] [PubMed]
- Martinot, M.; Greigert, V.; Gravier, S.; Klein, S.; Eyriey, M.; Pachart, A.; Kaiser, J.D.; Zadeh, M.M.; De Briel, D.; Gottwalles, Y.; et al. Positive Impact of a Point-of-Care Molecular Influenza Test in the Emergency Department During the 2017-2018 Seasonal Influenza Epidemic. Open Forum. Infect. Dis. 2019, 6, ofz312. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.W.; Beard, K.R.; Brendish, N.J.; Malachira, A.K.; Mills, S.; Chan, C.; Poole, S.; Ewings, S.; Cortes, N.; Nyimbili, E.; et al. Clinical impact of a routine, molecular, point-of-care, test-and-treat strategy for influenza in adults admitted to hospital (FluPOC): A multicentre, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 419–429. [Google Scholar] [CrossRef]
- Webber, D.M.; Wallace, M.A.; Burnham, C.A.; Anderson, N.W. Evaluation of the BioFire FilmArray Pneumonia Panel for Detection of Viral and Bacterial Pathogens in Lower Respiratory Tract Specimens in the Setting of a Tertiary Care Academic Medical Center. J. Clin. Microbiol. 2020, 58, e00343-20. [Google Scholar] [CrossRef]
- Gastli, N.; Loubinoux, J.; Daragon, M.; Lavigne, J.P.; Saint-Sardos, P.; Pailhoriès, H.; Lemarié, C.; Benmansour, H.; d’Humières, C.; Broutin, L.; et al. Multicentric evaluation of BioFire FilmArray Pneumonia Panel for rapid bacteriological documentation of pneumonia. Clin. Microbiol. Infect. 2021, 27, 1308–1314. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef]
- Pliakos, E.E.; Andreatos, N.; Shehadeh, F.; Ziakas, P.D.; Mylonakis, E. The Cost-Effectiveness of Rapid Diagnostic Testing for the Diagnosis of Bloodstream Infections with or without Antimicrobial Stewardship. Clin. Microbiol. Rev. 2018, 31, e00095-17. [Google Scholar] [CrossRef]
- Banerjee, R.; Teng, C.B.; Cunningham, S.A.; Ihde, S.M.; Steckelberg, J.M.; Moriarty, J.P.; Shah, N.D.; Mandrekar, J.N.; Patel, R. Randomized Trial of Rapid Multiplex Polymerase Chain Reaction-Based Blood Culture Identification and Susceptibility Testing. Clin. Infect. Dis. 2015, 61, 1071–1080. [Google Scholar] [CrossRef]
- Moy, A.C.; Kimmoun, A.; Merkling, T.; Berçot, B.; Caméléna, F.; Poncin, T.; Deniau, B.; Mebazaa, A.; Dudoignon, E.; Dépret, F.; et al. Performance evaluation of a PCR panel (FilmArray® Pneumonia Plus) for detection of respiratory bacterial pathogens in respiratory specimens: A systematic review and meta-analysis. Anaesth. Crit. Care Pain. Med. 2023, 42, 101300. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.; Chetty, Y.; Cooper, B.S.; Virk, M.; Glass, S.K.; Letters, A.; Kelly, P.A.; Sudhanva, M.; Jeyaratnam, D. Multiplex PCR point of care testing versus routine, laboratory-based testing in the treatment of adults with respiratory tract infections: A quasi-randomised study assessing impact on length of stay and antimicrobial use. BMC Infect. Dis. 2017, 17, 671. [Google Scholar] [CrossRef] [PubMed]
- Timbrook, T.T.; Wigmosta, T.B.; Hemmert, R.B.; Dimas, J.B.; Krause, A.; Spinali, S.; Thelen, M.; Tongio, I.; Tissier, J.L. Measuring clinical outcomes of highly multiplex molecular diagnostics for respiratory infections: A systematic review and conceptual framework. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e9. [Google Scholar] [CrossRef] [PubMed]
- High, J.; Enne, V.I.; Barber, J.A.; Brealey, D.; Turner, D.A.; Horne, R.; Peters, M.; Dhesi, Z.; Wagner, A.P.; Pandolfo, A.M.; et al. INHALE: The impact of using FilmArray Pneumonia Panel molecular diagnostics for hospital-acquired and ventilator-associated pneumonia on antimicrobial stewardship and patient outcomes in UK Critical Care-study protocol for a multicentre randomised controlled trial. Trials 2021, 22, 680. [Google Scholar] [CrossRef]
- Serigstad, S.; Ritz, C.; Faurholt-Jepsen, D.; Markussen, D.; Ebbesen, M.H.; Kommedal, Ø.; Bjørneklett, R.O.; Heggelund, L.; Clark, T.W.; van Werkhoven, C.H.; et al. Impact of rapid molecular testing on diagnosis, treatment and management of community-acquired pneumonia in Norway: A pragmatic randomised controlled trial (CAPNOR). Trials 2022, 23, 622. [Google Scholar] [CrossRef]
CPs (n = 35) | IPs (n = 50) | Total (n = 85) | p-Value | |
---|---|---|---|---|
Patient characteristics | ||||
Age, years, mean ± SD | 64.4 ± 16.2 | 61.4 ± 14.5 | 62.6 ± 15.2 | 0.2646 |
Male/female sex | 23/12 | 31/19 | 54/31 | 0.7262 |
APACHE II score, mean ± SD | 17.5 ± 8.9 | 17.9 ± 7.5 | 17.7 ± 8.1 | 0.6711 |
SOFA score, mean ± SD | 6.5 ± 3.9 | 7.2 ± 3.8 | 6.9 ± 3.8 | 0.2930 |
Comorbidities | ||||
Active malignancy | 7 (20) | 8 (16) | 15 (17.6) | 0.6340 |
Cardiovascular disorder | 12 (34.3) | 28 (56) | 40 (47.1) | 0.0484 |
Chronic lung disease | 8 (22.9) | 10 (20) | 18 (21.2) | 0.7510 |
Diabetes | 6 (17.1) | 11 (22) | 17 (20) | 0.5817 |
Neutrophil count <500/μL | 0 | 3 (6) | 3 (3.5) | 0.1401 |
Organ transplant | 1 (2.9) | 2 (4) | 3 (3.5) | 0.7787 |
Final diagnosis | ||||
Community-acquired pneumonia | 18 (51.4) | 24 (48) | 42 (49.4) | 0.7557 |
Hospital-acquired pneumonia | 4 (11.4) | 7 (14) | 11 (12.9) | 0.7281 |
Ventilation-acquired pneumonia | 6 (17.1) | 6 (12) | 12 (14.1) | 0.5028 |
No pneumonia | 7 (20) | 13 (26) | 20 (23.5) | 0.5210 |
Microbiological source | ||||
Bacterial | 22 (78.6) | 23 (62.2) | 45 (52.9) | 0.1254 |
Viral | 2 (7.1) | 5 (13.5) | 7 (8.2) | 0.4793 |
Mycotic | 0 | 1 (2.7) | 1 (1.2) | 0.4068 |
Unknown | 2 (7.1) | 5 (13.5) | 7 (8.2) | 0.4793 |
Bacterial + viral | 2 (7.1) | 3 (8.1) | 5 (5.9) | 0.9561 |
FA-PNEU | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
IP Patient | Age | Sexe | Final Diagnosis | Sample Type | Source | Identification | Bin (Copies/mL) | FA-PNEU Resistance Genes | Empirical Antimicrobial Treatment | Antimicrobial Treatment Following FA-PNEU Results |
Escalation | ||||||||||
IP21 | 73 | Male | CAP | ETA | Bacterial | Pseudomonas aeruginosa | 106 | – | ceftriaxone | ceftazidime |
IP34 | 59 | Female | CAP | ETA | Viral & bacterial | Haemophilus influenzae–Influenza A | ≥107 | NA | ceftriaxone | ceftriaxone + oseltamivir |
IP7 | 68 | Male | HAP | ETA | Bacterial | Pseudomonas aeruginosa | ≥107 | – | ceftriaxone | ceftazidime |
IP23 | 79 | Male | VAP | ETA | Bacterial | Pseudomonas aeruginosa | 106 | NA | none | ceftazidime |
IP39 | 58 | Male | VAP | BAL | Bacterial | Staphylococcus aureus | ≥107 | NA | none | flucloxacillin |
IP40 | 61 | Female | VAP | BAL | Bacterial | Enterobacter cloacae complex | 104 | NDM | meropenem + amikacin | colistin + amikacin |
IP46 | 59 | Male | VAP | ETA | Bacterial | Staphylococcus aureus | ≥107 | mecA/C | none | vancomycin |
De-escalation | ||||||||||
IP11 | 68 | Male | CAP | ETA | Bacterial | Klebsiella pneumoniae–Streptococcus agalactiae | ≥107 & ≥107 | – | ceftriaxone | amoxicillin-clavulanic acid |
IP17 | 66 | Male | CAP | Sputum | Bacterial | Streptoccocus pneumoniae | 106 | – | ceftriaxone | penicillin |
IP24 | 41 | Male | CAP | Sputum | Bacterial | Streptococcus pyogenes | ≥107 | NA | amoxicillin-clavulanic acid | cefuroxime |
IP32 | 57 | Female | CAP | ETA | Viral & bacterial | Haemophilus influenzae–hMPV | 104 | NA | ceftriaxone | cefuroxime |
IP38 | 58 | Male | CAP | ETA | Viral | Influenza A | NA | NA | piperacillin-tazobactam + oseltamivir | oseltamivir |
IP4 | 47 | Female | CAP | Sputum | Bacterial | Haemophilus influenzae | ≥107 | NA | ceftriaxone | cefuroxime |
IP48 | 86 | Male | CAP | ETA | Bacterial | Staphylococcus aureus | ≥107 | – | ceftriaxone | flucloxacillin |
IP49 | 75 | Male | CAP | Sputum | Bacterial | Staphylococcus aureus | ≥107 | – | piperacillin-tazobactam | flucloxacillin |
IP51 | 60 | Male | CAP | ETA | Bacterial | Streptococcus pneumoniae | ≥107 | NA | ceftriaxone | cefuroxime |
IP14 | 29 | Male | VAP | ETA | Bacterial | Proteus mirabilis–Escherichia coli | ≥107 & 106 | NA | temocillin | cefuroxime |
Regimen switch | ||||||||||
IP31 | 59 | Male | CAP | Sputum | Viral | Influenza A | NA | NA | ceftriaxone | oseltamivir |
IP8 | 76 | Male | HAP | ETA | Bacterial | Klebsiella aerogenes–Pseudomonas aeruginosa | ≥107 & ≥107 | CTX-M | ceftriaxone | ciprofloxacin |
IP10 | 62 | Female | HAP | BAL | Mycosis * | – | NA | NA | ceftazidime | trimethoprim-sulfamethoxazole |
Antimicrobial stop | ||||||||||
IP2 | 56 | Male | No | Sputum | NA | – | NA | NA | ceftriaxone | none |
IP12 | 73 | Female | No | Sputum | NA | – | NA | NA | ceftriaxone | none |
IP18 | 79 | Male | No | ETA | NA | – | NA | NA | cefuroxime | none |
IP20 | 87 | Female | No | Sputum | NA | – | NA | NA | ceftriaxone | none |
IP33 | 89 | Male | No | ETA | NA | – | NA | NA | cefuroxime | none |
IP42 | 50 | Female | No | Sputum | NA | – | NA | NA | amoxicillin-clavulanic acid | none |
IP47 | 28 | Male | No | ETA | NA | – | NA | NA | ceftriaxone | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verroken, A.; Favresse, J.; Anantharajah, A.; Rodriguez-Villalobos, H.; Wittebole, X.; Laterre, P.-F. Optimized Antibiotic Management of Critically Ill Patients with Severe Pneumonia Following Multiplex Polymerase Chain Reaction Testing: A Prospective Clinical Exploratory Trial. Antibiotics 2024, 13, 67. https://doi.org/10.3390/antibiotics13010067
Verroken A, Favresse J, Anantharajah A, Rodriguez-Villalobos H, Wittebole X, Laterre P-F. Optimized Antibiotic Management of Critically Ill Patients with Severe Pneumonia Following Multiplex Polymerase Chain Reaction Testing: A Prospective Clinical Exploratory Trial. Antibiotics. 2024; 13(1):67. https://doi.org/10.3390/antibiotics13010067
Chicago/Turabian StyleVerroken, Alexia, Julien Favresse, Ahalieyah Anantharajah, Hector Rodriguez-Villalobos, Xavier Wittebole, and Pierre-François Laterre. 2024. "Optimized Antibiotic Management of Critically Ill Patients with Severe Pneumonia Following Multiplex Polymerase Chain Reaction Testing: A Prospective Clinical Exploratory Trial" Antibiotics 13, no. 1: 67. https://doi.org/10.3390/antibiotics13010067
APA StyleVerroken, A., Favresse, J., Anantharajah, A., Rodriguez-Villalobos, H., Wittebole, X., & Laterre, P. -F. (2024). Optimized Antibiotic Management of Critically Ill Patients with Severe Pneumonia Following Multiplex Polymerase Chain Reaction Testing: A Prospective Clinical Exploratory Trial. Antibiotics, 13(1), 67. https://doi.org/10.3390/antibiotics13010067