In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Phenotypic Carbapenemase Detection
2.3. PCR, Sequencing, MLST Typing
2.4. Susceptibility Testing
2.5. Statistical Analysis
3. Results
3.1. Bacterial Isolates
3.2. Phenotypic Carbapenemase Detection
3.3. PCR, Sequencing, MLST Typing
3.4. Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. 2022. Available online: https://www.ecdc.europa.eu/en/news-events/eaad-2022-launch (accessed on 10 December 2023).
- Center for Disease Control and Prevention, Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 10 December 2023).
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER-antimicrobial-resistance.pdf (accessed on 10 December 2023).
- European Centre for Disease Prevention and Control Surveillance Atlas of Infectious Disease. Available online: http://atlas.ecdc.europa.eu/public/index.aspx (accessed on 10 December 2023).
- Taggar, G.; Rehman, M.A.; Boerlin, P.; Diarra, M.S. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics 2020, 9, 693. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stoeva, T.; Schneider, I.; Boyanova, L.; Popova, V.; Dacheva, D.; Kaneva, R.; Bauernfeind, A.; Mitev, V.; Mitov, I. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria. Apmis 2015, 123, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stoeva, T.; Boyanova, L.; Stankova, P.; Schneider, I.; Keuleyan, E.; Mihova, K.; Murdjeva, M.; Sredkova, M.; Lesseva, M.; et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals—Interregional spread of ST11 NDM-1-producing K. pneumoniae. Infect. Genet. Evol. 2019, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Strateva, T.V.; Sirakov, I.; Stoeva, T.J.; Stratev, A.; Peykov, S. Phenotypic and Molecular Characteristics of Carbapenem-Resistant Acinetobacter baumannii Isolates from Bulgarian Intensive Care Unit Patients. Microorganisms 2023, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Almyroudi, M.P.; Abdul-Aziz, M.H.; Blot, S.; Paramythiotou, E.; Tsigou, E.; Koulenti, D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics 2023, 12, 761. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, J.K.; Kitchel, B.; Zhu, W.; Anderson, K.F.; Clark, N.C.; Ferraro, M.J.; Savard, P.; Humphries, R.M.; Kallen, A.J.; Limbago, B.M. New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg. Infect. Dis. 2013, 19, 870–878. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation for MICs and Zone Diameters: Version 13.1, Valid from 2023; EUCAST: Basel, Switzerland, 2023; Available online: http://www.eucast.org/clinical_breakpoints/ (accessed on 21 April 2023).
- US Food and Drug Administration (FDA). Breakpoints; Tigecycline. Available online: https://www.fda.gov/drugs/development-resources/tigecycline-injection-products (accessed on 25 September 2023).
- US Food and Drug Administration (FDA). Breakpoints; Eravacycline. Available online: https://www.fda.gov/drugs/development-resources/eravacycline-injection-products (accessed on 25 September 2023).
- US Food and Drug Administration (FDA). Breakpoints; Plazomicin. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf (accessed on 23 April 2023).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Studentova, V.; Dobiasova, H.; Hedlova, D.; Dolejska, M.; Papagiannitsis, C.C.; Hrabak, J. Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 2015, 59, 1325–1328. [Google Scholar] [CrossRef]
- Baraniak, A.; Izdebski, R.; Fiett, J.; Gawryszewska, I.; Bojarska, K.; Herda, M.; Literacka, E.; Żabicka, D.; Tomczak, H.; Pewińska, N.; et al. NDM-producing Enterobacteriaceae in Poland, 2012–2014: Inter-regional outbreak of Klebsiella pneumoniae ST11 and sporadic cases. J. Antimicrob. Chemother. 2016, 71, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Voulgari, E.; Gartzonika, C.; Vrioni, G.; Politi, L.; Priavali, E.; Levidiotou-Stefanou, S.; Tsakris, A. The Balkan region: NDM-1-producing Klebsiella pneumoniae ST11 clonal strain causing outbreaks in Greece. J. Antimicrob. Chemother. 2014, 69, 2091–2097. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 2014, 20, 821–830. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Reuter, S.; Harris, S.R.; Glasner, C.; Feltwell, T.; Argimon, S.; Abudahab, K.; Goater, R.; Giani, T.; Errico, G.; et al. Epidemic of carbapenem- resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat. Microbiol. 2019, 4, 1919–1929. [Google Scholar] [CrossRef]
- Izdebski, R.; Sitkiewicz, M.; Urbanowicz, P.; Krawczyk, M.; Brisse, S.; Gniadkowski, M. Genomic background of the Klebsiella pneumoniae NDM-1 outbreak in Poland, 2012–2018. J. Antimicrob. Chemother. 2020, 75, 3156–3162. [Google Scholar] [CrossRef]
- Novais, A.; Ferraz, R.V.; Viana, M.; da Costa, P.M.; Peixe, L. NDM-1 Introduction in Portugal through a ST11 KL105 Klebsiella pneumoniae Widespread in Europe. Antibiotics 2022, 11, 92. [Google Scholar] [CrossRef]
- Duan, Q.; Wang, Q.; Sun, S.; Cui, Q.; Ding, Q.; Wang, R.; Wang, H. ST11 Carbapenem-Resistant Klebsiella pneumoniae Clone Harboring blaNDM Replaced a blaKPC Clone in a Tertiary Hospital in China. Antibiotics 2022, 11, 1373. [Google Scholar] [CrossRef] [PubMed]
- Maraki, S.; Mavromanolaki, V.E.; Magkafouraki, E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Scoulica, E. Epidemiology and in vitro activity of ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, eravacycline, plazomicin, and comparators against Greek carbapenemase-producing Klebsiella pneumoniae isolates. Infection 2022, 50, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Schneider, I.; Keuleyan, E.; Ivanova, D.; Lesseva, M.; Stoeva, T.; Sredkova, M.; Bauernfeind, A.; Mitov, I. Dissemination of a Multidrug-Resistant VIM-1- and CMY-99-Producing Proteus mirabilis Clone in Bulgaria. Microb. Drug Resist. 2017, 23, 345–350. [Google Scholar] [CrossRef]
- Roe, C.C.; Vazquez, A.J.; Esposito, E.P.; Zarrilli, R.; Sahl, J.W. Diversity, virulence, and antimicrobial resistance in isolates from the newly emerging Klebsiella pneumoniae ST101 lineage. Front. Microbiol. 2019, 10, 542. [Google Scholar] [CrossRef] [PubMed]
- Loconsole, D.; Accogli, M.; De Robertis, A.L.; Capozzi, L.; Bianco, A.; Morea, A.; Mallamaci, R.; Quarto, M.; Parisi, A.; Chironna, M. Emerging high-risk ST101 and ST307 carbapenem-resistant Klebsiella pneumoniae clones from bloodstream infections in Southern Italy. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, S.; Tada, T.; Watanabe, S.; Tohya, M.; Hishinuma, T.; Uchida, H.; Kuwahara-Arai, K.; Mya, S.; Zan, K.N.; Kirikae, T.; et al. Emergence and Spread of Carbapenem-Resistant and Aminoglycoside-Panresistant Enterobacter cloacae Complex Isolates Coproducing NDM-Type Metallo-β-Lactamase and 16S rRNA Methylase in Myanmar. mSphere 2020, 5, e00054-20. [Google Scholar] [CrossRef] [PubMed]
- Moubareck, C.A.; Mouftah, S.F.; Pál, T.; Ghazawi, A.; Halat, D.H.; Nabi, A.; AlSharhan, M.A.; AlDeesi, Z.O.; Peters, C.C.; Celiloglu, H.; et al. Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates. Int. J. Antimicrob. Agents 2018, 52, 90–95. [Google Scholar] [CrossRef]
- Otter, J.A.; Doumith, M.; Davies, F.; Mookerjee, S.; Dyakova, E.; Gilchrist, M.; Brannigan, E.T.; Bamford, K.; Galletly, T.; Donaldson, H.; et al. Emergence and clonal spread of colistin resistance due to multiple mutational mechanisms in carbapenemase-producing Klebsiella pneumoniae in London. Sci. Rep. 2017, 7, 12711. [Google Scholar] [CrossRef]
- Cai, W.; Kang, J.; Ma, Y.; Yin, D.; Song, Y.; Liu, Y.; Duan, J. Molecular Epidemiology of Carbapenem Resistant Klebsiella Pneumoniae in Northern China: Clinical Characteristics, Antimicrobial Resistance, Virulence and Geographic Distribution. Infect. Drug Resist. 2023, 16, 7289–7304. [Google Scholar] [CrossRef]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin a novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef]
- Martins, A.F.; Bail, L.; Ito, C.A.S.; da Silva Nogueira, K.; Dalmolin, T.V.; Martins, A.S.; Rocha, J.L.L.; Serio, A.W.; Tuon, F.F. Antimicrobial activity of plazomicin against Enterobacteriaceae-producing carbapenemases from 50 Brazilian medical centers. Diagn. Microbiol. Infect. Dis. 2018, 90, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kashikar, A.; Bush, K. In vitro activity of plazomicin against beta-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE). J. Antimicrob. Chemother. 2017, 72, 2792–2795. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Avial, I.; Pena, I.; Picazo, J.J.; Rodríguez-Avial, C.; Culebras, E. In vitro activity of the next-generation aminoglycoside plazomicin alone and in combination with colistin, meropenem, fosfomycin or tigecycline against carbapenemase-producing Enterobacteriaceae strains. Int. J. Antimicrob. Agents 2015, 46, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Woosley, L.N.; Serio, A.W.; Krause, K.M.; Flamm, R.K. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J. Antimicrob. Chemother. 2018, 73, 3346–3354. [Google Scholar] [CrossRef]
- Product Information. Zemdri (Plazomicin); Achaogen: South San Francisco, CA, USA, 2018. [Google Scholar]
- Blanchard, L.S.; Van Belkum, A.; Dechaume, D.; Armstrong, T.P.; Emery, C.L.; Ying, Y.X.; Kresken, M.; Pompilio, M.; Halimi, D.; Zambardi, G. Multicenter Clinical Evaluation of ETEST Plazomicin (PLZ) for Susceptibility Testing of Enterobacterales. J. Clin. Microbiol. 2022, 60, e0183121. [Google Scholar] [CrossRef]
- Denervaud-Tendon, V.; Poirel, L.E.; Connolly, L.; Krause, K.M.; Nordmann, P. Plazomicin activity against polymyxin-resistant Enterobacteriaceae, including MCR-1-producing isolates. J. Antimicrob. Chemother. 2017, 72, 2787–2791. [Google Scholar] [CrossRef]
- Taylor, E.; Sriskandan, S.; Woodford, N.; Hopkins, K.L. High prevalence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. Int. J. Antimicrob. Agents 2018, 52, 278–282. [Google Scholar] [CrossRef]
- Galimand, M.; Sabtcheva, S.; Courvalin, P.; Lambert, T. Worldwide disseminated armA aminoglycoside resistance methylase gene is borne by composite transposon Tn1548. Antimicrob. Agents Chemother. 2005, 49, 2949–2953. [Google Scholar] [CrossRef]
- Teo, J.Q.; Chang, H.Y.; Tan, S.H.; Tang, C.Y.; Ong, R.T.; Ko, K.K.K.; Chung, S.J.; Tan, T.T.; Kwa, A.L. Comparative Activities of Novel Therapeutic Agents against Molecularly Characterized Clinical Carbapenem-Resistant Enterobacterales Isolates. Microbiol. Spectr. 2023, 11, e0100223. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Product Information Tigecycline. Available online: https://www.medicines.org.uk/emc/files/pil.9232.pdf (accessed on 16 December 2023).
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Walkty, A.; Gin, A.S.; et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Hsu, C.K.; Shih, S.C.; Weng, T.S.; Tang, H.J.; Lai, C.C. Comparing novel antibiotics and carbapenems for complicated intra-abdominal infections: A systematic review and meta-analysis of randomized controlled trials. Int. J. Antimicrob. Agents 2023, 62, 106844. [Google Scholar] [CrossRef] [PubMed]
- Brauncajs, M.; Bielec, F.; Macieja, A.; Pastuszak-Lewandoska, D. In Vitro Activity of Eravacycline against Carbapenemase-Producing Gram-Negative Bacilli Clinical Isolates in Central Poland. Biomedicines 2023, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Grossman, T.H.; O’Brien, W.; Kerstein, K.O.; Sutcliffe, J.A. Eravacycline (TP-434) is active in vitro against biofilms formed by uropathogenic Escherichia coli. Antimicrob. Agents Chemother. 2015, 59, 2446–2449. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; Stone, G.G. Assessment of the in vitro activity of ceftazidime/avibactam against a global collection of multidrug-resistant Klebsiella spp. from the INFORM surveillance pro-gramme (2015–2017). Int. J. Antimicrob. Agents 2020, 56, 106111. [Google Scholar] [CrossRef]
- Spiliopoulou, I.; Kazmierczak, K.; Stone, G.G. In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015–2017). J. Antimicrob. Chemother. 2020, 75, 384–391. [Google Scholar] [CrossRef]
- Romina, P.E.; Lucía, A.; Leticia, C.; Federica, F.; Pablo, Á.; Verónica, S.; Antonio, G.; Inés, B.; Rafael, V. In vitro effectiveness of ceftazidime-avibactam in combination with aztreonam on carbapenemase-producing Enterobacterales. J. Glob. Antimicrob. Resist. 2023, 35, 62–66. [Google Scholar] [CrossRef]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef]
- Gijón, D.; García-Castillo, J.; Fernández-López, M.C.; Bou, G.; Siller, M.; Calvo-Montes, J.; Pitart, C.; Vila, J.; Torno, N.; Gimeno, C.; et al. In vitro activity of cefiderocol and other newly approved antimicrobials against multi-drug resistant Gram-negative pathogens recovered in intensive care units in Spain and Portugal. Rev. Esp. Quimioter. 2023, gijon26oct2023. [Google Scholar]
- Piccica, M.; Spinicci, M.; Botta, A.; Bianco, V.; Lagi, F.; Graziani, L.; Faragona, A.; Parrella, R.; Giani, T.; Bartolini, A.; et al. Cefiderocol use for the treatment of infections by carbapenem-resistant Gram-negative bacteria: An Italian multicentre real-life experience. J. Antimicrob. Chemother. 2023, 78, 2752–2761. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Malisova, L.; Vrbova, I.; Pomorska, K.; Jakubu, V.; Zemlickova, H. In Vitro Activity of Cefiderocol Against Carbapenem-Resistant Enterobacterales and Pseudomonas aeruginosa. Microb. Drug Resist. 2023, 29, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Vatansever, C.; Özer, B.; Çınar, G.; Aslan, A.T.; Falconer, C.; Bauer, M.J.; Forde, B.; Şimşek, F.; Tülek, N.; et al. Higher rates of cefiderocol resistance among NDM producing Klebsiella bloodstream isolates applying EUCAST over CLSI breakpoints. Infect. Dis. 2023, 55, 607–613. [Google Scholar] [CrossRef]
- Quirino, A.; Cicino, C.; Scaglione, V.; Marascio, N.; Serapide, F.; Scarlata, G.G.M.; Lionello, R.; Divenuto, F.; La Gamba, V.; Pavia, G.; et al. In vitro Activity of Cefiderocol Against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Single Center Experience. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023043. [Google Scholar] [PubMed]
- Bonnin, R.A.; Emeraud, C.; Jousset, A.B.; Naas, T.; Dortet, L. Comparison of disk diffusion, MIC test strip and broth microdilution methods for cefiderocol susceptibility testing on carbapenem-resistant Enterobacterales. Clin. Microbiol. Infect. 2022, 28, 1156.e1–1156.e5. [Google Scholar] [CrossRef]
Hospital Designation | Hospital, City | Beds (n) | Bacterial Isolates (n) | ||||
---|---|---|---|---|---|---|---|
bla Genes | Total | ||||||
blaKPC-2 | blaNDM-1 | blaVIM-1 | blaOXA-48 | ||||
Sof-1 | Medical institute, Ministry of the Interior, Sofia | 310 | 3 | 15 | 4 | 22 | |
Sof-3 | University Multiprofile Hospital for active treatment (UMHAT) “Ivan Rilski”, Sofia | 395 | 1 | 15 | 3 | 19 | |
VR | UMHAT “St Marina”, Varna | 1250 | 11 | 4 | 0 | 1 | 16 |
PL | UMHAT “Georgi Stranski”, Pleven | 1000 | 5 | 1 | 1 | 7 | |
Total | 15 | 39 | 5 | 5 | 64 |
Bacterial Species | K. pneumoniae n = 54 ST Types | P. mirabilis n = 5 | C. freundii n = 2 | E. cloacae n = 1 | P. stuartii n = 2 | |
---|---|---|---|---|---|---|
Genotypes | ||||||
blaNDM-1 + blaCTX-M-3/-15 + blaCMY-4 | ST11n=20 ST307n=2 | |||||
blaNDM-1 + blaCTX-M-3/-15 | ST11n=12 | |||||
blaNDM-1 + blaCMY-4 | ST11n=2 | |||||
blaNDM-1 | ST11n=3 | |||||
blaKPC-2 | ST258n=4 | |||||
blaKPC-2 + blaCTX-M-15/-3 | ST340n=8 ST34n=1 | 2 | ||||
blaOXA-48 + blaCTX-M-15 | ST101n=4 | 1 (ST200) | ||||
blaVIM-1 + blaCMY-99 | - | 3 | 2 |
Antimicrobial Agents (n *) | Result Interpretation | KPC-/OXA-48 Producers (n = 19) | NDM-/VIM Producers (n = 45) | p Value | ||
---|---|---|---|---|---|---|
R % | I % | S % | S% (number) | S % (number) | ||
Disk diffusion method | ||||||
Amoxicillin/Clavulanic acid, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Piperacillin/Tazobactam, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Cefotaxime, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Ceftazidime, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Cefepime, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Cefoxitin, n = 64 | 96.9 | 0 | 3.1 | 10.5% (2) | 0 | |
Imipenem, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Meropenem, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Tobramycin, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Gentamicin, n = 64 | 64.1 | 0 | 35.9 | 10.5% (2) | 46.7% (21) | 0.009 |
Amikacin, n = 64 | 79.7 | 0 | 20.3 | 47.3% (9) | 8.9% (4) | 0.001 |
Ciprofloxacin, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Levofloxacin, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Trimethoprim/Sulfamethoxazole, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Ceftazidime/avibactam, n = 64 | 65.6 | 0 | 34.4 | 94.7% (18) | 6.7% (3) | 0.0001 |
Cefiderocol, n = 64/EUCAST | 62.5 | 0 | 37.5 | 26.3% (5) | 42.2% (19) | |
Cefiderocol, n = 64/CLSI | 10.9 | 17.1 | 71.8 | 31.6% (6) | 88.9% (40) | 0.0001 |
MIC determination | ||||||
Fosfomycin, n = 64 | 67.0 | 0 | 32.8 | 52.6% (10) | 24.4% (11) | 0.04 |
Colistin **, n = 59 | 20.3 | 0 | 79.7 | 84.2% (16) | 77.5% (31) | |
Tigecycline **, n = 59 | 16.9 | 0 | 83.1 | 84.2% (16) | 82.5% (33) | |
Eravacycline **, n = 59 | 23.7 | 0 | 76.3 | 89.5% (17) | 70.0% (28) | 0.03 |
Plazomicin, n = 64 | 6.4 | 3.0 | 90.6 | 89.5% (17) | 91.1% (41) | |
Meropenem/vaborbactam, n = 64 | 73.3 | 0 | 26.7% | 73.7% (14) | 6.7% (3) | 0.0001 |
Imipenem, n = 64 | 100.0 | 0 | 0 | 0 | 0 | |
Meropenem, n = 64 | 95.3 | 4.7 | 0 | 15.8% (3) | 0 |
Antibiotics | MIC mg/L | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.25 | 0.38 | 0.5 | 0.75 | 1 | 1.5 | 2 | 4 | 6 | 8 | 12 | 16 | 24 | 32 | 48 | 64 | 128 | >256 | MIC50 | MIC90 | |
Tigecycline * | 2 | 1 | 10 | 23 | 11 | 2 | 10 | 1 | 4 | |||||||||||
Eravacycline * | 17 | 17 | 11 | 4 | 2 | 6 | 1 | 0.38 | 1.5 | |||||||||||
Fosfomycin | 2 | 5 | 5 | 9 | 4 | 11 | 28 | 64 | ≥256 | |||||||||||
Plazomicin | 6 | 19 | 25 | 4 | 2 | 2 | 6 | 0.5 | 4 | |||||||||||
Meropenem/ Vaborbactam 1 | 9 | 3 | 2 | 1 | 2 | 5 | 4 | 7 | 5 | 5 | 8 | 5 | 6 | 24 | 128 | |||||
Colistin * | 34 | 8 | 4 | 1 | 2 | 3 | 7 χ | 0.25 | ≥16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markovska, R.; Stankova, P.; Stoeva, T.; Keuleyan, E.; Mihova, K.; Boyanova, L. In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria. Antibiotics 2024, 13, 81. https://doi.org/10.3390/antibiotics13010081
Markovska R, Stankova P, Stoeva T, Keuleyan E, Mihova K, Boyanova L. In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria. Antibiotics. 2024; 13(1):81. https://doi.org/10.3390/antibiotics13010081
Chicago/Turabian StyleMarkovska, Rumyana, Petya Stankova, Temenuga Stoeva, Emma Keuleyan, Kalina Mihova, and Lyudmila Boyanova. 2024. "In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria" Antibiotics 13, no. 1: 81. https://doi.org/10.3390/antibiotics13010081
APA StyleMarkovska, R., Stankova, P., Stoeva, T., Keuleyan, E., Mihova, K., & Boyanova, L. (2024). In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria. Antibiotics, 13(1), 81. https://doi.org/10.3390/antibiotics13010081