Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characteristics of M. tuberculosis Isolates
2.2. Evaluation of M. tuberculosis Families
2.3. Beijing Genotype Clusters in Kazakhstan
2.4. Determination of Mutations in katG, fabG-inhA, oxyR-ahpC and rpoB Genes of M. tuberculosis Clinical Isolates
3. Discussion
4. Materials and Methods
4.1. Clinical Isolates of M. tuberculosis and DST
4.2. Genotyping
4.3. Detection of Mutations in Drug-Resistant Genes
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van Soolingen, D.; Qian, L.; de Haas, P.E.; Douglas, J.T.; Traore, H.; Portaels, F.; Qing, H.Z.; Enkhsaikan, D.; Nymadawa, P.; van Embden, J.D. Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J. Clin. Microbiol. 1995, 33, 3234–3238. [Google Scholar] [CrossRef] [PubMed]
- Wiens, K.E.; Woyczynski, L.P.; Ledesma, J.R.; Ross, J.M.; Zenteno-Cuevas, R.; Goodridge, A.; Ullah, I.; Mathema, B.; Djoba Siawaya, J.F.; Biehl, M.H.; et al. Global variation in bacterial strains that cause tuberculosis disease: A systematic review and meta-analysis. BMC Med. 2018, 16, 196. [Google Scholar] [CrossRef] [PubMed]
- Merker, M.; Blin, C.; Mona, S.; Duforet-Frebourg, N.; Lecher, S.; Willery, E.; Blum, M.G.; Rüsch-Gerdes, S.; Mokrousov, I.; Aleksic, E.; et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat. Genet. 2015, 47, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Glynn, J.R.; Whiteley, J.; Bifani, P.J.; Kremer, K.; van Soolingen, D. Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: A systematic review. Emerg. Infect. Dis. 2002, 8, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Munsiff, S.S.; Nivin, B.; Sacajiu, G.; Mathema, B.; Bifani, P.; Kreiswirth, B.N. Persistence of a highly resistant strain of tuberculosis in New York city during 1990–1999. J. Infect. Dis. 2003, 188, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Norheim, G.; Seterelv, S.; Arnesen, T.M.; Mengshoel, A.T.; Tønjum, T.; Rønning, J.O.; Eldholm, V. Tuberculosis outbreak in an educational institution in Norway. J. Clin. Microbiol. 2017, 55, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Genestet, C.; Tatai, C.; Berland, J.L.; Claude, J.B.; Westeel, E.; Hodille, E.; Fredenucci, I.; Rasigade, J.P.; Ponsoda, M.; Jacomo, V.; et al. Prospective Whole-Genome Sequencing in Tuberculosis Outbreak Investigation, France, 2017–2018. Emerg. Infect. Dis. 2019, 25, 589–592. [Google Scholar] [CrossRef]
- Zaw, M.T.; Emran, N.A.; Lin, Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in Mycobacterium tuberculosis. J. Infect. Public Health 2018, 11, 605–610. [Google Scholar] [CrossRef]
- Kabir, S.; Junaid, K.; Rehman, A. Variations in rifampicin and isoniazid resistance associated genetic mutations among drug naïve and recurrence cases of pulmonary tuberculosis. Int. J. Infect. Dis. 2021, 103, 56–61. [Google Scholar] [CrossRef]
- Miotto, P.; Zhang, Y.; Cirillo, D.M.; Yam, W.C. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 2018, 23, 1098–1113. [Google Scholar] [CrossRef]
- Parwati, I.; Alisjahbana, B.; Apriani, L.; Soetikno, R.D.; Ottenhoff, T.H.; van der Zanden, A.G.; van der Meer, J.; van Soolingen, D.; van Crevel, R. Mycobacterium tuberculosis Beijing genotype is an independent risk factor for tuberculosis treatment failure in Indonesia. J. Infect. Dis. 2010, 201, 553e7. [Google Scholar] [CrossRef] [PubMed]
- Lan, N.T.; Lien, H.T.; Tung, L.B.; Borgdorff, M.W.; Kremer, K.; van Soolingen, D. Mycobacterium tuberculosis Beijing genotype and risk for treatment failure and relapse. Vietnam. Emerg. Infect. Dis. 2003, 9, 1633e5. [Google Scholar] [CrossRef] [PubMed]
- Mourik, B.C.; de Steenwinkel, J.E.M.; de Knegt, G.J.; Huizinga, R.; Verbon, A.; Ottenhoff, T.H.M.; van Soolingen, D.; Leenen, P.J.M. Mycobacterium tuberculosis clinical isolates of the Beijing and East-African Indian lineage induce fundamentally different host responses in mice compared to H37Rv. Sci. Rep. 2019, 9, 19922. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Hang, N.T.; Lien, L.T.; Thuong, P.H.; Hung, N.V.; Hoang, N.P.; Cuong, V.C.; Hijikata, M.; Sakurada, S.; Keicho, N. Mycobacterium tuberculosis strains spreading in Hanoi, Vietnam: Beijing sublineages, genotypes, drug susceptibility patterns, and host factors. Tuberculosis 2014, 94, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Millán-Lou, M.I.; Alonso, H.; Gavín, P.; Hernández-Febles, M.; Campos-Herrero, M.I.; Copado, R.; Cañas, F.; Kremer, K.; Caminero, J.A.; Martín, C.; et al. Rapid test for identification of a highly transmissible Mycobacterium tuberculosis Beijing strain of sub-Saharan origin. J. Clin. Microbiol. 2012, 50, 516–518. [Google Scholar]
- Mokrousov, I. Insights into the origin, emergence and current spread of a successful Russian clone of Mycobacterium tuberculosis. Clin. Microbiol. Rev. 2013, 26, 342–360. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention Control. Molecular Typing for Surveillance of Multidrug-Resistant Tuberculosis in the EU/EA; European Centre for Disease Prevention Control: Stockholm, Sweden, 2016. [Google Scholar]
- Yin, Q.Q.; Liu, H.C.; Jiao, W.W.; Li, Q.J.; Han, R.; Tian, J.L.; Liu, Z.G.; Zhao, X.Q.; Li, Y.J.; Wan, K.L.; et al. Evolutionary History and Ongoing Transmission of Phylogenetic Sublineages of Mycobacterium tuberculosis Beijing Genotype in China. Sci. Rep. 2016, 6, 34353. [Google Scholar] [CrossRef]
- Mokrousov, I.; Vyazovaya, A.; Pasechnik, O.; Gerasimova, A.; Dymova, M.; Chernyaeva, E.; Tatarintseva, M.; Stasenko, V. Early ancient sublineages of Mycobacterium tuberculosis Beijing genotype: Unexpected clues from phylogenomics of the pathogen and human history. Clin. Microbiol. Infect. 2019, 25, 1039.e1–1039.e6. [Google Scholar] [CrossRef]
- Akhmetova, A.; Kozhamkulov, U.; Bismilda, V.; Chingissova, L.; Abildaev, T.; Dymova, M.; Filipenko, M.; Ramanculov, E. Mutations in the pncA and rpsA genes among 77 Mycobacterium tuberculosis isolates in Kazakhstan. Int. J. Tuberc. Lung Dis. 2015, 19, 179–184. [Google Scholar] [CrossRef]
- Hillemann, D.; Kubica, T.; Agzamova, R.; Venera, B.; Rüsch-Gerdes, S.; Niemann, S. Rifampicin and isoniazid resistance mutations in Mycobacterium tuberculosis strains isolated from patients in Kazakhstan. Int. J. Tuberc. Lung Dis. 2005, 9, 1161–1167. [Google Scholar]
- Akhmetova, A.; Akilzhanova, A.; Bismilda, V.; Chingissova, L.; Kozhamkulov, U. Use of 15 MIRU-VNTR genotyping for discriminating M.tuberculosis clinical isolates from Kazakhstan. Georgian Med. News 2021, 316–317, 129–135. [Google Scholar]
- Skiba, Y.; Mokrousov, I.; Ismagulova, G.; Maltseva, E.; Yurkevich, N.; Bismilda, V.; Chingissova, L.; Abildaev, T.; Aitkhozhina, N. Molecular snapshot of Mycobacterium tuberculosis population in Kazakhstan: A country-wide study. Tuberculosis 2015, 95, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Daniyarov, A.; Molkenov, A.; Rakhimova, S.; Akhmetova, A.; Nurkina, Z.; Yerezhepov, D.; Chingissova, L.; Bismilda, V.; Toxanbaeva, B.; Akilzhanova, A.; et al. Whole genome sequence data of Mycobacterium tuberculosis XDR strain, isolated from patient in Kazakhstan. Data Brief. 2020, 33, 106416. [Google Scholar] [CrossRef] [PubMed]
- Daniyarov, A.; Akhmetova, A.; Rakhimova, S.; Abilova, Z.; Yerezhepov, D.; Chingissova, L.; Bismilda, V.; Takenov, N.; Akilzhanova, A.; Kairov, U.; et al. Whole-Genome Sequence-Based Characterization of Pre-XDR M. tuberculosis Clinical Isolates Collected in Kazakhstan. Diagnostics 2023, 13, 2005. [Google Scholar] [CrossRef]
- Auganova, D.; Atavliyeva, S.; Amirgazin, A.; Akisheva, A.; Tsepke, A.; Tarlykov, P. Genomic Characterization of Drug-Resistant Mycobacterium tuberculosis L2/Beijing Isolates from Astana, Kazakhstan. Antibiotics 2023, 12, 1523. [Google Scholar] [CrossRef] [PubMed]
- Vyazovaya, A.; Mokrousov, I.; Solovieva, N.; Mushkin, A.; Manicheva, O.; Vishnevsky, B.; Zhuravlev, V.; Narvskaya, O. Tuberculous spondylitis in Russia and prominent role of multidrug-resistant clone Mycobacterium tuberculosis Beijing B0/W148. Antimicrob. Agents Chemother. 2015, 59, 2349–2357. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Tuberculosis Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Tsolaki, A.G.; Gagneux, S.; Pym, A.S.; Goguet de la Salmoniere, Y.O.; Kreiswirth, B.N.; Van Soolingen, D.; Small, P.M. Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J. Clin. Microbiol. 2005, 43, 3185–3191. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Tao, B.; Liu, Q.; Li, Z.; Song, H.; Tian, D.; Wu, J.; Wu, Z.; Zhan, M.; Lu, W.; et al. A Prospective Cohort Study on the Prevalent and Recurrent Tuberculosis Isolates Using the MIRU-VNTR Typing. Front. Med. 2021, 8, 685368. [Google Scholar] [CrossRef]
- Engström, A.; Antonenka, U.; Kadyrov, A.; Kalmambetova, G.; Kranzer, K.; Merker, M.; Kabirov, O.; Parpieva, N.; Rajabov, A.; Sahalchyk, E.; et al. Population structure of drug-resistant Mycobacterium tuberculosis in Central Asia. BMC Infect. Dis. 2019, 19, 908. [Google Scholar] [CrossRef]
- Vyazovaya, A.; Gerasimova, A.; Mudarisova, R.; Terentieva, D.; Solovieva, N.; Zhuravlev, V.; Mokrousov, I. Genetic Diversity and Primary Drug Resistance of Mycobacterium tuberculosis Beijing Genotype Strains in Northwestern Russia. Microorganisms 2023, 11, 255. [Google Scholar] [CrossRef]
- MIRU-VNTRplus Database. Available online: https://www.miru-vntrplus.org/MIRU/index.faces (accessed on 1 June 2023).
- Tarlykov, P.; Atavliyeva, S.; Alenova, A.; Ramankulov, Y. Genomic analysis of Latin American-Mediterranean family of Mycobacterium tuberculosis clinical strains from Kazakhstan. Memórias Inst. Oswaldo Cruz 2020, 115, e200215. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Abe, C.; Lin, T.P.; Yu, M.C.; Cho, S.N.; Wang, S.; Douglas, J.T. rpoB genotypes of Mycobacterium tuberculosis Beijing family isolates from East Asian countries. J. Clin. Microbiol. 2002, 40, 1091–1094. [Google Scholar] [CrossRef] [PubMed]
- Rando-Segura, A.; Aznar, M.; Moreno, M.M.; Espasa Soley, M.; Sulleiro Igual, E.; Bocanegra Garcia, C.; Gil Olivas, E.; Nindia Eugénio, A.; Escartin Huesca, C.; Zacarias, A.; et al. Molecular characterization of rpoB gene mutations in isolates from tuberculosis patients in Cubal, Republic of Angola. BMC Infect Dis. 2021, 21, 1056. [Google Scholar] [CrossRef] [PubMed]
- Sani, A.T.; Ashna, H.; Kaffash, A.; Khaledi, A.; Ghazvini, K. Mutations of rpob Gene Associated with Rifampin Resistance among Mycobacterium Tuberculosis Isolated in Tuberculosis Regional Reference Laboratory in Northeast of Iran during 2015–2016. Ethiop. J. Health Sci. 2018, 28, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Eddabra, R.; Neffa, M. Mutations Associated with Rifampicin Resistance in Mycobacterium tuberculosis Isolates from Moroccan Patients: Systematic Review. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 5185896. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Abe, C.; Takahashi, M. Mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis strains isolated mostly in Asian countries and their rapid detection by line probe assay. J Clin Microbiol. 1999, 37, 2663–2666. [Google Scholar] [CrossRef]
- Torres, J.N.; Paul, L.V.; Rodwell, T.C.; Victor, T.C.; Amallraja, A.M.; Elghraoui, A.; Goodmanson, A.P.; Ramirez-Busby, S.M.; Chawla, A.; Zadorozhny, V.; et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerg. Microbes Infect. 2015, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Daniyarov, A.; Molkenov, A.; Rakhimova, S.; Akhmetova, A.; Yerezhepov, D.; Chingissova, L.; Bismilda, V.; Toksanbayeva, B.; Rakisheva, A.; Akilzhanova, A.; et al. Genomic Analysis of Multidrug-Resistant Mycobacterium tuberculosis Strains from Patients in Kazakhstan. Front Genet. 2021, 12, 683515. [Google Scholar] [CrossRef]
- Siu, G.K.H.; Zhang, Y.; Lau, T.C.; Lau, R.W.; Ho, P.L.; Yew, W.W.; Tsui, S.K.; Cheng, V.C.; Yuen, K.Y.; Yam, W.C. Mutations outside the rifampicin resistance-determining region associated with rifampicin resistance in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2011, 66, 730–733. [Google Scholar] [CrossRef]
- Bemer-Melchior, P.; Bryskier, A.; Drugeon, H.B. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J. Antimicrob. Chemother. 2000, 46, 571–576. [Google Scholar] [CrossRef]
- Mokrousov, I.; Vyazovaya, A.; Zhuravlev, V.; Otten, T.; Millet, J.; Jiao, W.W.; Shen, A.D.; Rastogi, N.; Vishnevsky, B.; Narvskaya, O. Real-time PCR assay for rapid detection of epidemiologically and clinically significant Mycobacterium tuberculosis Beijing genotype isolates. J. Clin. Microbiol. 2014, 52, 1691–1693. [Google Scholar] [CrossRef] [PubMed]
- Supply, P.; Allix, C.; Lesjean, S.; Cardoso-Oelemann, M.; Rüsch-Gerdes, S.; Willery, E.; Savine, E.; de Haas, P.; van Deutekom, H.; Roring, S.; et al. Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J. Clin. Microbiol. 2006, 44, 4498–4510. [Google Scholar] [CrossRef] [PubMed]
- Tsolaki, A.G.; Hirsh, A.E.; DeRiemer, K.; Enciso, J.A.; Wong, M.Z.; Hannan, M.; de la Salmoniere, Y.O.G.; Aman, K.; Kato-Maeda, M.; Small, P.M. Functional and evolutionary genomics of Mycobacterium tuberculosis: Insights from genomic deletions in 100 strains. Proc. Natl. Acad. Sci. USA 2004, 101, 4865–4870. [Google Scholar] [CrossRef] [PubMed]
- Aktas, E.; Durmaz, R.; Yang, D.; Yang, Z. Molecular characterization of isoniazid and rifampin resistance of Mycobacterium tuberculosis clinical isolates from Malatya, Turkey. Microb. Drug Resist. 2005, 11, 94–99. [Google Scholar] [CrossRef]
- Odds Ratio Calculator; Version 22.009; MedCalc Software Ltd.: Ostend, Belgium, 2023; Available online: https://www.medcalc.org/calc/odds_ratio.php (accessed on 18 July 2023).
MLVA MtbC 15-9 Types | 24 MIRU-VNTR Profile | Multidrug-Resistant Isolates (%) | Mono-/Poly-Resistant Isolates (%) | Drug-Resistant Isolates (%) | Susceptible Isolates (%) | Total (%) |
---|---|---|---|---|---|---|
94-32 | 244233352644425153353823 | 79 (48.5) | 40 (24.5) | 119 (73) | 44 (27) | 163 (63.4) |
99-32 | 244233352644425153353723 | 3 (30) | 2 (20) | 5 (50) | 5 (50) | 10 (3.8) |
11427-32 | 244233352644425153353523 | 1 (50) | 1 (50) | 2 (100) | 0 | 2 (0.8) |
9344-32 | 245233352644425153353823 | 2 (100) | 0 | 2 (100) | 0 | 2 (0.8) |
97-32 | 244233332644425153353823 | 1 (20) | 1 (20) | 2 (40) | 3 (60) | 5 (1.9) |
9343-32 | 244234352644425153353823 | 0 | 1 (50) | 1 (50) | 1 (50) | 2 (0.8) |
1068-32 | 244233352644425143353823 | 1 (50) | 0 | 1 (50) | 1 (50) | 2 (0.8) |
1048-32 | 244233352644425173353823 | 0 | 3 (100) | 3 (100) | 0 | 3 (1.2) |
94-15 | 244233352644425153353822 | 1 (16.66) | 1 (16.66) | 2 (33.3) | 4 (66.7) | 6 (2.3) |
94-33 | 244233352644425153353824 | 1 (9.1) | 4 (36.4) | 5 (45.5) | 6 (54.5) | 11 (4.3) |
95-33 | 244233352634425153353824 | 1 (50) | 1 (50) | 2 (100) | 0 | 2 (0.8) |
7308-32 | 244232352644425153353823 | 1 (33.3) | 0 | 1 (33.3) | 2 (66.7) | 3 (1.2) |
809-32 | 244232352634425153353823 | 0 | 1 (50) | 1 (50) | 1 (50) | 2 (0.8) |
9342-32 | 244235352644425153353823 | 1 (50) | 1 (50) | 2 (100) | 0 | 2 (0.8) |
95-32 | 244233352634425153353823 | 5 (71.4) | 2 (28.6) | 7 (100) | 0 | 7 (2.7) |
1075-32 | 244233352644425163353723 | 2 (66.7) | 1 (33.3) | 3 (100) | 0 | 3 (1.2) |
96-32 | 244233362644425153353823 | 1 (14.2) | 3 (42.9) | 4 (57.1) | 3 (42.9) | 7 (2.7) |
96-145 | 244233361644425153353823 | 4 (66.7) | 2 (33.3) | 6 (100) | 0 | 6 (2.3) |
7553-145 | 244233361644425153343823 | 2 (66.7) | 1 (33.3) | 3 (100) | 0 | 3 (1.2) |
94-554 | 244233351644425153353824 | 1 (50) | 1 (50) | 2 (100) | 0 | 2 (0.8) |
94-145 | 244233351644425153353823 | 1 (50) | 1 (50) | 2 (100) | 0 | 2 (0.8) |
100-32 | 244233352644425173353723 | 4 (40) | 4 (40) | 8 (80) | 2 (20) | 10 (3.8) |
?-32 | 244232352544425153343823 | 0 | 0 | 0 | 2 (100) | 2 (0.8) |
Total | 112 (43.6) | 71 (27.6) | 183 (71.2) | 74 (28.8) | 257 (100) |
Genotypes/Beijing Clusters | Resistant TB | Susceptible TB | OR | 95% CI | p | MDR | Other DR | OR | 95% CI | p |
---|---|---|---|---|---|---|---|---|---|---|
Beijing Non-Beijing | 224 (69.1%) 76 (35.2%) | 100 (30.9%) 140 (64.8%) | - | - | p < 0.0001 * | 132 (59%) 25 (32.9%) | 92 (41%) 51 (67.1%) | - | - | p < 0.0001 * |
94-32 Other Beijing | 119 (73%) 105 (65.2%) | 44 (27%) 56 (34.8%) | - | - | p = 0.149 | 79 (66.4%) 53 (50.5%) | 40 (33.6%) 52 (49.5%) | - | - | p = 0.021 * |
100-32 Other Beijing | 8 (80%) 216 (68.8%) | 2 (20%) 98 (31.2) | 1.8148 | 0.3784–8.7040 | p = 0.4562 | 4 (50%) 128 (59.3%) | 4 (50%) 88 (40.7%) | 0.6875 | 0.1675–2.8223 | p = 0.6031 |
99-32 Other Beijing | 5 (50%) 219 (69.7%) | 5 (50%) 95 (30.3%) | 0.4338 | 0.1227–1.5336 | p = 0.1949 | 3 (60%) 129 (58.9%) | 2 (40%) 90 (41.1%) | 1.0465 | 0.1714–6.3906 | p = 0.9607 |
94-33 Other Beijing | 5 (45.5%) 219 (70%) | 6 (54.5%) 94 (30%) | 0.3577 | 0.1065–1.2009 | p = 0.0962 | 1 (20%) 131 (59.8%) | 4 (80%) 88 (40.2%) | 0.1679 | 0.0185–1.5277 | p = 0.1132 |
Rifampicin | Number of Isolates | Ser531Leu Mutation | Isoniazid | Number of Isolates | Ser315Thr Mutation | ||
---|---|---|---|---|---|---|---|
Yes | No | Yes | No | ||||
Resistant isolates | 175 (100%) | 153 (87.4%) | 22 (12.6%) | Resistant isolates | 228 (100%) | 220 (96.5%) | 8 (3.5%) |
Susceptible isolates | 365 (100%) | 8 (2.2%) | 357 (97.8%) | Susceptible isolates | 312 (100%) | 13 (4.2%) | 299 (95.8%) |
Total: | 540 (100%) | 161 (29.8%) | 379 (70.2%) | Total: | 540 (100%) | 233 (43.1%) | 307 (56.9%) |
Rifampicin | rpoB Gene | Mutation | Number of Isolates |
---|---|---|---|
Resistant isolates | 526 codon | His526Leu His526Tyr His526Pro | 9 (5.1%) 1 (0.6%) 1 (0.6%) |
531 codon | Ser531Phe Ser531Trp | 1 (0.6%) 1 (0.6%) | |
533 codon | Leu533Pro | 2 (1.1%) | |
no mutation | no mutation | 7 (4%) | |
Total: | 22 (12.6%) | ||
Susceptible isolates | 531 codon | Ser531Leu | 8 (2.2%) |
Total: | 8 (2.2%) |
Genotypes/Beijing Clusters | Ser531Leu | Other Mutations | OR | 95% CI | p | Ser315Thr | Other Mutations | OR | 95% CI | p |
---|---|---|---|---|---|---|---|---|---|---|
Beijing Non-Beijing | 144 (96.6%) 18 (64.3%) | 5 (3.4%) 10 (35.7%) | 16.0000 | 4.9161–52.0740 | p < 0.0001 * | 194 (99.5%) 39 (97.5%) | 1 (0.5%) 1 (2.5%) | 4.9744 | 0.3046–81.2405 | p = 0.2603 |
94-32 Other Beijing | 85 (97.7%) 59 (95.2%) | 2 (2.3%) 3 (4.8%) | 2.1610 | 0.3502–13.3347 | p = 0.4066 | 106 (99.1%) 88 (100%) | 1 (0.9%) 0 | 0.4011 | 0.0161–9.9701 | p = 0.5774 |
100-32 Other Beijing | 4 (80%) 140 (97.2%) | 1 (20%) 4 (2.8%) | 0.1143 | 0.0103–1.2676 | p = 0.0773 | 9 (100%) 185 (99.5%) | 0 1 (0.5%) | 0.1536 | 0.0059–4.0279 | p = 0.2610 |
99-32 Other Beijing | 3 (100%) 141 (96.6%) | 0 5 (3.4%) | 0.2721 | 0.0125–5.9394 | p = 0.4080 | 4 (100%) 190 (99.5%) | 0 1 (0.5%) | 0.0709 | 0.0025–1.9886 | p = 0.1197 |
94-33 Other Beijing | 3 (100%) 141 (96.6%) | 0 5 (3.4%) | 0.2721 | 0.0125–5.9394 | p = 0.4080 | 6 (100%) 188 (99.5%) | 0 1 (0.5%) | 0.1034 | 0.0038–2.7902 | p = 0.1771 |
Isoniazid | Genes | Mutation | Number of Isolates |
---|---|---|---|
Resistant isolates | fabG-inhA | 15 C-T | 2 (0.9%) |
No mutation | No mutation | 6 (2.6%) | |
Total: | 8 (3.5%) | ||
Susceptible isolates | katG | Ser315Thr | 13 (4.2%) |
Total: | 13 (4.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmetova, A.; Bismilda, V.; Chingissova, L.; Filipenko, M.; Akilzhanova, A.; Kozhamkulov, U. Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan. Antibiotics 2024, 13, 9. https://doi.org/10.3390/antibiotics13010009
Akhmetova A, Bismilda V, Chingissova L, Filipenko M, Akilzhanova A, Kozhamkulov U. Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan. Antibiotics. 2024; 13(1):9. https://doi.org/10.3390/antibiotics13010009
Chicago/Turabian StyleAkhmetova, Ainur, Venera Bismilda, Lyailya Chingissova, Maxim Filipenko, Ainur Akilzhanova, and Ulan Kozhamkulov. 2024. "Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan" Antibiotics 13, no. 1: 9. https://doi.org/10.3390/antibiotics13010009
APA StyleAkhmetova, A., Bismilda, V., Chingissova, L., Filipenko, M., Akilzhanova, A., & Kozhamkulov, U. (2024). Prevalence of Beijing Central Asian/Russian Cluster 94-32 among Multidrug-Resistant M. tuberculosis in Kazakhstan. Antibiotics, 13(1), 9. https://doi.org/10.3390/antibiotics13010009