How Restrictive Legislation Influences Antimicrobial Susceptibility in Selected Bacterial Isolates from the Canine Vagina
Abstract
:1. Introduction
2. Results
2.1. E. coli
2.2. Beta-Hemolytic Streptococci
2.3. Staph. Intermedius Group
3. Discussion
4. Materials and Methods
4.1. Bacteriological Examination
4.2. Antimicrobial Susceptibility Testing
4.3. Descriptive Data Analysis and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleming, A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report. 2022. Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 28 December 2023).
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Cain, C.L. Antimicrobial Resistance in Staphylococci in Small Animals. Vet. Clin. N. Am. Small Anim. Pract. 2013, 43, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Wieler, L.H.; Ewers, C.; Guenther, S.; Walther, B.; Lübke-Becker, A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int. J. Med. Microbiol. 2011, 301, 635–641. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; Van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Kvaale, M.K.; Grave, K.; Kristoffersen, A.B.; Norström, M. The prescription rate of antibacterial agents in dogs in Norway—Geographical patterns and trends during the period 2004–2008. J. Vet. Pharmacol. Ther. 2012, 36, 285–291. [Google Scholar] [CrossRef]
- Schnepf, A.; Kramer, S.; Wagels, R.; Volk, H.A.; Kreienbrock, L. Evaluation of Antimicrobial Usage in Dogs and Cats at a Veterinary Teaching Hospital in Germany in 2017 and 2018. Front. Vet. Sci. 2021, 8, 689018. [Google Scholar] [CrossRef]
- WHO. WHO’s List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; World Health Organization, WHO: Geneva, Switzerland, 2024; Available online: https://cdn.who.int/media/docs/default-source/gcp/who-mia-list-2024-lv.pdf (accessed on 21 June 2024).
- Allerton, F.; Prior, C.; Bagcigil, A.F.; Broens, E.; Callens, B.; Damborg, P.; Dewulf, J.; Filippitzi, M.-E.; Carmo, L.P.; Gómez-Raja, J.; et al. Overview and Evaluation of Existing Guidelines for Rational Antimicrobial Use in Small-Animal Veterinary Practice in Europe. Antibiotics 2021, 10, 409. [Google Scholar] [CrossRef]
- European Comission. Commission Implementing Regulation (EU) 2022/1255; European Comission: Brussels, Belgium, 2018; Available online: http://data.europa.eu/eli/reg_impl/2022/1255/oj (accessed on 1 July 2024).
- Bundesministerium für Ernährung und Landwirtschaft. Verordnung über tierärztliche Hausapotheken (TÄHAV). Bundesministerium für Justiz. 2018. Available online: https://www.gesetze-im-internet.de/t_hav/__12c.html (accessed on 4 April 2024).
- Moerer, M.; Merle, R.; Bäumer, W. A Cross-Sectional Study of Veterinarians in Germany on the Impact of the TÄHAV Amendment 2018 on Antimicrobial Use and Development of Antimicrobial Resistance in Dogs and Cats. Antibiotics 2022, 11, 484. [Google Scholar] [CrossRef]
- Moerer, M.; Lübke-Becker, A.; Bethe, A.; Merle, R.; Bäumer, W. Occurrence of Antimicrobial Resistance in Canine and Feline Bacterial Pathogens in Germany under the Impact of the TÄHAV Amendment in 2018. Antibiotics 2023, 12, 1193. [Google Scholar] [CrossRef]
- Bjurström, L.; Linde-Forsberg, C. Long-term study of aerobic bacteria of the genital tract in breeding bitches. Am. J. Vet. Res. 1992, 53, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Allen, W.E.; Dagnall, G.J.R. Some observations on the aerobis bacterial flora of the genital tract of the dog and bitch. J. small Anim. Pract. 1982, 23, 325–335. [Google Scholar] [CrossRef]
- Jeschke, T. Erhebungen zur Situation der Caninen Reproduktionsmedizin bei Tierärzten und Züchtern: Ein Beitrag zur Erhebung des Status quo und zur Verbesserung der Lehre auf Diesem Gebiet; Universitätsbibliothek: Gießen, Germany, 2008. [Google Scholar]
- Leps, A.S.; Klein, B.; Schneider, M.; Meyer, C.; Šoba, A.; Simon, C.; Dyachenko, V.; Siesenop, U.; Verspohl, J.; Goericke-Pesch, S. The Canine Vaginal Flora: A Large-Cohort Retrospective Study. Vet. Sci. 2024, 11, 55. [Google Scholar] [CrossRef] [PubMed]
- Baba, E.; Hata, H.; Fukata, T.; Arakawa, A. Vaginal and uterine microflora of adult dogs. Am. J. Vet. Res. 1983, 44, 606–609. [Google Scholar] [PubMed]
- Golińska, E.; Sowińska, N.; Tomusiak-Plebanek, A.; Szydło, M.; Witka, N.; Lenarczyk, J.; Strus, M. The vaginal microflora changes in various stages of the estrous cycle of healthy female dogs and the ones with genital tract infections. BMC Vet. Res. 2021, 17, 1–8. [Google Scholar] [CrossRef]
- Groppetti, D.; Pecile, A.; Barbero, C.; Martino, P. Vaginal bacterial flora and cytology in proestrous bitches: Role on fertility. Theriogenology 2012, 77, 1549–1556. [Google Scholar] [CrossRef]
- Hirsh, D.C.; Wiger, N. The bacterial flora of the normal canine vagina compared with that of vaginal exudates. J. Small Anim. Pract. 1977, 18, 25–30. [Google Scholar] [CrossRef]
- Jagódka, D.; Kaczorek-Łukowska, E.; Graczyk, R.; Socha, P. Vaginal aerobic bacteria of healthy bitches and those with fertility problems. Pol. J. Vet. Sci. 2023, 26, 733–739. [Google Scholar] [CrossRef]
- Maksimović, A.; Filipović, S.; Rifatbegović, M.; Maksimović, Z.; Beširović, H. Vaginal and uterine bacteria of healthy bitches during different stages of their reproductive cycle. Vet. Rec. 2012, 171, 375. [Google Scholar] [CrossRef]
- Noguchi, K.; Tsukumi, K.; Urano, T. Qualitative and quantitative differences in normal vaginal flora of conventionally reared mice, rats, hamsters, rabbits, and dogs. Comp. Med. 2003, 53, 404–412. [Google Scholar] [PubMed]
- Olson, P.N.; Mather, E.C. Canine vaginal and uterine bacterial flora. J. Am. Vet. Med. Assoc. 1978, 172, 708–711. [Google Scholar] [PubMed]
- Osbaldiston, G.W.; Nuru, S.; Mosier, J.E. Vaginal Cytology and Microflora of Infertile Bitches. J. Am. Anim. Hosp. Assoc. 1972, 8, 93–101. [Google Scholar]
- Watts, J.R.; Wright, P.J.; Whithear, K.C. Uterine, cervical and vaginal microflora of the normal bitch throughout the reproductive cycle. J. Small Anim. Pract. 1996, 37, 54–60. [Google Scholar] [CrossRef]
- Bjurström, L. Aerobic Bacteria Occurring in the Vagina of Bitches with Reproductive Disorders. Acta Vet. Scand. 1993, 34, 29–34. [Google Scholar] [CrossRef]
- Pretzer, S. Bacterial and protozoal causes of pregnancy loss in the bitch and queen. Theriogenology 2008, 70, 320–326. [Google Scholar] [CrossRef]
- Givens, M.D.; Marley, M. Infectious causes of embryonic and fetal mortality. Theriogenology 2008, 70, 270–285. [Google Scholar] [CrossRef]
- Graham, E.M.; Taylor, D.J. Bacterial Reproductive Pathogens of Cats and Dogs. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 561–582. [Google Scholar] [CrossRef]
- Wilborn, R.R.; Maxwell, H.S. Clinical Approaches to Infertility in the Bitch. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 457–468. [Google Scholar] [CrossRef]
- Schäfer-Somi, S. Antibiotics in small animal reproduction: Dilemmas on health, welfare and effectiveness. In Proceedings of the XVI Congress Problems in Small Animal Reproduction, Wroclaw, Poland, 24–26 September 2022. [Google Scholar]
- Milani, C.; Corrò, M.; Drigo, M.; Rota, A. Antimicrobial resistance in bacteria from breeding dogs housed in kennels with differing neonatal mortality and use of antibiotics. Theriogenology 2012, 78, 1321–1328. [Google Scholar] [CrossRef]
- Rota, A.; Milani, C.; Corrò, M.; Drigo, I.; Börjesson, S. Misuse of Antimicrobials and Selection of Methicillin-Resistant Staphylococcus pseudintermedius Strains in Breeding Kennels: Genetic Characterization of Bacteria after a Two-Year Interval. Reprod. Domest. Anim. 2012, 48, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Boerling, P.W.; David, G. Antimicrobial Resistance and Its Epidemiology. In Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Giguère, S., Prescott, J.F., Dowling, P.M., Eds.; Blackwell Publishing: Danvers, MA, USA, 2013. [Google Scholar]
- EUCAST. Expected Resistant Phenotypes Version 1.2 2023 January 2023. (accessed on 8 July 2023). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2023/Expected_Resistant_Phenotypes_v1.2_20230113.pdf (accessed on 1 August 2024).
- Guardabassi, L.; Apley, M.; Olsen, J.E.; Toutain, P.-L.; Weese, S. Optimization of Antimicrobial Treatment to Minimize Resistance Selection. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Butaye, P.; Dockrell, D.H.; Fitzgerald, J.R.; Kuijper, E.J. One Health: A multifaceted concept combining diverse approaches to prevent and control antimicrobial resistance. Clin. Microbiol. Infect. 2020, 26, 1604–1605. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Giguère, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J. Vet. Intern. Med. 2015, 29, 487–498. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List). World Health Organization: Geneva, Switzerland. 2019. Available online: https://iris.who.int/handle/10665/325036 (accessed on 28 November 2023).
- Lee, J.-H. Perspectives towards antibiotic resistance: From molecules to population. J. Microbiol. 2019, 57, 181–184. [Google Scholar] [CrossRef]
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2019, 88, 26–40. [Google Scholar] [CrossRef]
- Grundy, S.A.; Feldman, E.; Davidson, A. Evaluation of infertility in the bitch. Clin. Tech. Small Anim. Pract. 2002, 17, 108–115. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Bousquet-Melou, A.; Damborg, P.; Ferran, A.A.; Mevius, D.; Pelligand, L.; Veldman, K.T.; Lees, P. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach. Front. Microbiol. 2017, 8, 2344. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. In The 4th CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; Available online: https://www.dbt.univr.it/documenti/OccorrenzaIns/matdid/matdid485539.pdf (accessed on 1 October 2024).
- Sykes, J.E.; Blondeau, J.M. Pradofloxacin: A novel veterinary fluoroquinolone for treatment of bacterial infections in cats. Vet. J. 2014, 201, 207–214. [Google Scholar] [CrossRef]
- Silley, P.; Stephan, B.; Greife, H.A.; Pridmore, A. Bactericidal properties of pradofloxacin against veterinary pathogens. Vet. Microbiol. 2012, 157, 106–111. [Google Scholar] [CrossRef]
- Silley, P.; Stephan, B.; Greife, H.A.; Pridmore, A. Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats. J. Antimicrob. Chemother. 2007, 60, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Schink, A.-K.; Kadlec, K.; Hauschild, T.; Michael, G.B.; Dörner, J.C.; Ludwig, C.; Werckenthin, C.; Hehnen, H.-R.; Stephan, B.; Schwarz, S. Susceptibility of canine and feline bacterial pathogens to pradofloxacin and comparison with other fluoroquinolones approved for companion animals. Vet. Microbiol. 2012, 162, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Sander, S. Abgabemengenerfassung von Antibiotika in Deutschland 2021—Auswertung der an das BVL übermittelten Daten 2021 und Vergleich mit Daten aus den Vorjahren. Deutsches Tierärzteblatt 2022, 70, 1316–1324. [Google Scholar]
- Hahn. Bekanntmachung über die Zulassung von Tierarzneimitteln sowie anderen Zulassungen vom; Lebensmittelsicherheit, B.f.V.u., Ed.; Bundesanzeiger: Berlin, Germany, 2017; p. 2. [Google Scholar]
- Sobkowich, K.E.; Weese, J.S.; Poljak, Z.; Plum, A.; Szlosek, D.; Bernardo, T.M. Epidemiology of companion animal AMR in the United States of America: Filling a gap in the one health approach. Front. Public Health 2023, 11, 1161950. [Google Scholar] [CrossRef]
- Van Duijkeren, E.; Catry, B.; Greko, C.; Moreno, M.A.; Pomba, M.C.; Pyörälä, S.; Ružauskas, M.; Sanders, P.; Threlfall, E.J.; Torren-Edo, J.; et al. Review on methicillin-resistant Staphylococcus pseudintermedius. J. Antimicrob. Chemother. 2011, 66, 2705–2714. [Google Scholar] [CrossRef]
- Devriese, L.A.; Hermans, K.; Baele, M.; Haesebrouck, F. Staphylococcus pseudintermedius versus Staphylococcus intermedius. Vet. Microbiol. 2008, 133, 206–207. [Google Scholar] [CrossRef]
- Sasaki, T.; Kikuchi, K.; Tanaka, Y.; Takahashi, N.; Kamata, S.; Hiramatsu, K. Reclassification of Phenotypically Identified Staphylococcus intermedius Strains. J. Clin. Microbiol. 2007, 45, 2770–2778. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. In CLSI Document VET01-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2013; Available online: https://clsi.org/media/1530/vet01s_sample.pdf (accessed on 1 October 2024).
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. In CLSI Supplement VET01S, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Available online: https://clsi.org/media/1530/vet01s_sample.pdf (accessed on 1 October 2024).
Number of Samples | Number of Samples with ASTs * | |||
---|---|---|---|---|
time frame | TF 1 | TF 2 | TF 1 | TF 2 |
total | 5848 | 9307 | 5333 | 8619 |
median (Q1/Q3) | 135.5 (124.8/182.3) | 201.0 (178.0/218.0) | 126.5 (113.3/168.3) | 187.0 (163.0/202.3) |
min.–max. | 104–255 | 151–270 | 96–231 | 137–247 |
Antimicrobial | TF 1 | TF 2 | p | OR | 95% CI of OR | ||
---|---|---|---|---|---|---|---|
Non-Susceptible | Susceptible | Non-Susceptible | Susceptible | ||||
amoxicillin/ampicillin | 498 (26.18%) | 1404 (73.82%) | 817 (24.71%) | 2490 (75.29%) | 0.2463 | 1.081 | 0.9499–1.230 |
amoxicillin-clavulanic acid | 201 (10.57%) | 1701 (89.43%) | 342 (10.34%) | 2965 (89.66%) | 0.8139 | 1.024 | 0.8514–1.229 |
cefalexin | 544 (28.6%) | 1358 (71.4%) | 2047 (61.9%) | 1260 (38.1%) | <0.0001 | 0.2466 | 0.2185–0.278 |
cefovecin | 451 (23.71%) | 1451 (76.29%) | 431 (13.03%) | 2876 (86.97%) | <0.0001 | 2.074 | 1.789–2.398 |
gentamicin | 41 (2.16%) | 1861 (97.84%) | 80 (2.42%) | 3227 (97.58%) | 0.5680 | 0.8887 | 0.6035–1.295 |
enrofloxacin | 140 (7.36%) | 1762 (92.64%) | 167 (5.05%) | 3140 (94.95%) | 0.0008 | 1.494 | 1.182–1.880 |
marbofloxacin | 137 (7.2%) | 1765 (92.8%) | 161 (4.87%) | 3146 (95.13%) | 0.0006 | 1.517 | 1.201–1.921 |
pradofloxacin | 121 (6.36%) | 1781 (93.64%) | 122 (3.69%) | 3185 (96.31%) | <0.0001 | 1.774 | 1.365–2.303 |
doxycycline | 382 (20.08%) | 1520 (79.92%) | 323 (9.77%) | 2984 (90.23%) | <0.0001 | 2.322 | 1.978–2.730 |
trimethoprim-sulfamethoxazole | 227 (11.93%) | 1675 (88.07%) | 291(8.8%) | 3016 (91.2%) | 0.0004 | 1.405 | 1.171–1.686 |
Antimicrobial | TF 1 | TF 2 | p | OR | 95% CI of OR | ||
---|---|---|---|---|---|---|---|
Non-Susceptible | Susceptible | Non-Susceptible | Susceptible | ||||
penicillin | 15 (0.98%) | 1522 (99.02%) | 28 (1.13%) | 2445 (98.87%) | 0.753 | 0.8606 | 0.4464–1.617 |
amoxicillin/ampicillin | 7 (0.46%) | 1530 (99.54%) | 7 (0.28%) | 2466 (99.72%) | 0.4143 | 1.612 | 0.6039–4.3 |
amoxicillin-clavulanic acid | 4 (0.26%) | 1533 (99.74%) | 4 (0.16%) | 2469 (99.84%) | 0.4921 | 1.611 | 0.4678–5.543 |
cefalexin | 5 (0.33%) | 1532 (99.67%) | 12 (0.49%) | 2461 (99.51%) | 0.6186 | 0.6693 | 0.2602–1.818 |
cefovecin | 7 (0.46%) | 1530 (99.54%) | 7 (0.28%) | 2466 (99.72%) | 0.4143 | 1.612 | 0.6039–4.3 |
enrofloxacin | 22 (1.43%) | 1515 (98.57%) | 39 (1.58%) | 2434 (98.42%) | 0.7913 | 0.9063 | 0.5409–1.516 |
marbofloxacin | 39 (2.54%) | 1498 (97.64%) | 64 (2.59%) | 2409 (97.41%) | >0.9999 | 0.98 | 0.6527–1.475 |
pradofloxacin | 1 (0.07%) | 1536 (99.93%) | 14 (0.57%) | 2459 (99.43%) | 0.0136 | 0.1144 | 0.01075–0.6759 |
doxycycline | 83 (5.4%) | 1454 (94.6%) | 174 (7.04%) | 2299 (92.96%) | 0.04 | 0.7542 | 0.5767–0.9906 |
trimethoprim-sulfamethoxazole | 26 (1.69%) | 1511 (98.31%) | 64 (2.59%) | 2409 (97.41%) | 0.0632 | 0.6477 | 0.4068–1.023 |
Antimicrobial | TF 1 | TF 2 | p | OR | 95% CI of OR | ||
---|---|---|---|---|---|---|---|
Non-Susceptible | Susceptible | Non-Susceptible | Susceptible | ||||
penicillin | 1173 (73.18%) | 430 (26.82%) | 1786 (70.01%) | 765 (29.99%) | 0.0291 | 1.168 | 1.016–1.342 |
amoxicillin/ampicillin | 1047 (65.32%) | 556 (34.68%) | 1781 (69.82%) | 770 (30.18%) | 0.0026 | 0.8141 | 0.7127–0.9300 |
amoxicillin-clavulanic acid | 130 (8.11%) | 1473 (91.89%) | 154 (6.04%) | 2397 (93.96%) | 0.0114 | 1.374 | 1.080–1.752 |
cefalexin | 179 (11.17%) | 1424 (88.83%) | 145 (5.68%) | 2406 (94.32%) | <0.0001 | 2.086 | 1.658–2.619 |
cefovecin | 144 (8.98%) | 1459 (91.02%) | 139 (5.45%) | 2412 (94.55%) | <0.0001 | 1.713 | 1.341–2.189 |
gentamicin | 96 (5.99%) | 1507 (94.01%) | 126 (4.94%) | 2425 (95.06%) | 0.1564 | 1.226 | 0.9374–1.604 |
enrofloxacin | 116 (7.24%) | 1487 (92.76%) | 155 (6.08%) | 2396 (93.92%) | 0.1556 | 1.206 | 0.9414–1.545 |
marbofloxacin | 143 (8.92%) | 1460 (91.08%) | 167 (6.55%) | 2384 (93.45%) | 0.0052 | 1.398 | 1.105–1.762 |
pradofloxacin | 22 (1.37%) | 1581 (98.63%) | 111 (4.35%) | 2440 (95.65%) | <0.0001 | 0.3059 | 0.1934–0.4823 |
doxycycline | 55 (3.43%) | 1548 (96.57%) | 153 (6%) | 2398 (94%) | 0.0002 | 0.5569 | 0.4037–0.7622 |
trimethoprim-sulfamethoxazole | 140 (8.73%) | 1463 (91.27%) | 216 (8.47%) | 2335 (91.53%) | 0.7761 | 1.034 | 0.8264–1.291 |
Antimicrobial Class | Active Ingredients in the Test Panel |
---|---|
beta-lactams | penicillin G |
ampicillin/amoxicillin | |
amoxicillin-clavulanic acid | |
cephalexin | |
cefovecin | |
aminoglycosides | gentamicin |
fluoroquinolones | enrofloxacin |
marbofloxacin | |
pradofloxacin | |
tetracyclines | doxycycline |
sulfonamide-trimethoprim combination | trimethoprim/sulfamethoxazole |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leps, A.S.; Klein, B.; Schneider, M.; Goericke-Pesch, S. How Restrictive Legislation Influences Antimicrobial Susceptibility in Selected Bacterial Isolates from the Canine Vagina. Antibiotics 2024, 13, 946. https://doi.org/10.3390/antibiotics13100946
Leps AS, Klein B, Schneider M, Goericke-Pesch S. How Restrictive Legislation Influences Antimicrobial Susceptibility in Selected Bacterial Isolates from the Canine Vagina. Antibiotics. 2024; 13(10):946. https://doi.org/10.3390/antibiotics13100946
Chicago/Turabian StyleLeps, Anna Sophia, Babette Klein, Marianne Schneider, and Sandra Goericke-Pesch. 2024. "How Restrictive Legislation Influences Antimicrobial Susceptibility in Selected Bacterial Isolates from the Canine Vagina" Antibiotics 13, no. 10: 946. https://doi.org/10.3390/antibiotics13100946
APA StyleLeps, A. S., Klein, B., Schneider, M., & Goericke-Pesch, S. (2024). How Restrictive Legislation Influences Antimicrobial Susceptibility in Selected Bacterial Isolates from the Canine Vagina. Antibiotics, 13(10), 946. https://doi.org/10.3390/antibiotics13100946