Molecular Evolution and Pathogenicity of Methicillin-Resistant Staphylococcus aureus
Conflicts of Interest
List of Contributions
- Ullah, N.; Dar, H.A.; Naz, K.; Andleeb, S.; Rahman, A.; Saeed, M.T.; Hanan, F.; Bae, T.; Ali, A. Genomic investigation of methicillin-resistant Staphylococcus aureus ST113 strains isolated from tertiary care hospitals in Pakistan. Antibiotics 2021, 10, 1121. https://doi.org/10.3390/antibiotics10091121.
- Uehara, Y. Current status of staphylococcal cassette chromosome mec (SCCmec). Antibiotics 2022, 11, 86. https://doi.org/10.3390/antibiotics11010086.
- Chai, M.; Sukiman, M.Z.; Kamarun Baharin, A.H.; Ramlan, I.; Lai, L.Z.; Liew, Y.; Malayandy, P.; Mohamad, N.M.; Choong, S.; Ariffin, S.M.Z.; et al. Methicillin-Resistant Staphylococcus aureus from peninsular Malaysian animal handlers: Molecular profile, antimicrobial resistance, immune evasion cluster and genotypic categorization. Antibiotics 2022, 11, 103. https://doi.org/10.3390/antibiotics11010103.
- Tenover, F.C.; Tickler, I.A. Detection of methicillin-resistant Staphylococcus aureus infections using molecular methods. Antibiotics 2022, 11, 239. https://doi.org/10.3390/antibiotics11020239.
- Pulia, M.S.; Anderson, J.; Ye, Z.; Elsayed, N.S.; Le, T.; Patitucci, J.; Ganta, K.; Hall, M.; Singh, V.K.; Shukla, S.K. Expression of staphylococcal virulence genes in situ in human skin and soft tissue infections. Antibiotics 2022, 11, 527. https://doi.org/10.3390/antibiotics11040527.
- Leão, C.; Clemente, L.; Cara d’Anjo, M.; Albuquerque, T.; Amaro, A. Emergence of cfr-mediated linezolid resistance among livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) from healthy pigs in Portugal. Antibiotics 2022, 11, 1439. https://doi.org/10.3390/antibiotics11101439.
- Kim, B.; Lee, H.-J.; Jo, S.-H.; Kim, M.-G.; Lee, Y.; Lee, W.; Kim, W.; Joo, H.-S.; Kim, Y.-G.; Kim, J.-S.; et al. Study of sarA by DNA affinity capture assay (DACA) employing three promoters of key virulence and resistance genes in methicillin-resistant Staphylococcus aureus. Antibiotics 2022, 11, 1714. https://doi.org/10.3390/antibiotics11121714.
- Iurescia, M.; Diaconu, E.L.; Alba, P.; Feltrin, F.; Buccella, C.; Onorati, R.; Giacomi, A.; Caprioli, A.; Franco, A.; Battisti, A.; et al. Genomics insight into cfr-mediated linezolid-resistant LA-MRSA in Italian pig holdings. Antibiotics 2023, 12, 530. https://doi.org/10.3390/antibiotics12030530.
- De Rose, D.U.; Pugnaloni, F.; Martini, L.; Bersani, I.; Ronchetti, M.P.; Diociaiuti, A.; El Hachem, M.; Dotta, A.; Auriti, C. Staphylococcal infections and neonatal skin: Data from literature and suggestions for the clinical management from four challenging patients. Antibiotics 2023, 12, 632. https://doi.org/10.3390/antibiotics12040632.
- Al-Trad, E.I.; Chew, C.H.; Che Hamzah, A.M.; Suhaili, Z.; Rahman, N.I.A.; Ismail, S.; Puah, S.M.; Chua, K.H.; Kwong, S.M.; Yeo, C.C. The plasmidomic landscape of clinical methicillin-resistant Staphylococcus aureus isolates from Malaysia. Antibiotics 2023, 12, 733. https://doi.org/10.3390/antibiotics12040733.
- Hwang, Y.-J. Comparing the phylogenetic distribution of multilocus sequence typing, staphylococcal protein A, and staphylococcal cassette chromosome mec types in methicillin-resistant Staphylococcus aureus (MRSA) in Korea from 1994 to 2020. Antibiotics 2023, 12, 1397. https://doi.org/10.3390/antibiotics12091397.
- Saei, H.D.; McClure, J.; Kashif, A.; Chen, S.; Conly, J.M.; Zhang, K. The role of prophage φSa3 in the adaption of Staphylococcus aureus ST398 sublineages from human to animal hosts. Antibiotics 2024, 13, 112. https://doi.org/10.3390/antibiotics13020112.
- Cheung, G.Y.C.; Lee, J.H.; Liu, R.; Lawhon, S.D.; Yang, C.; Otto, M. Methicillin resistance elements in the canine pathogen Staphylococcus pseudintermedius and their association with the peptide toxin PSM-mec. Antibiotics 2024, 13, 130. https://doi.org/10.3390/antibiotics13020130.
References
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, 4. [Google Scholar] [CrossRef] [PubMed]
- Howden, B.P.; Giulieri, S.G.; Wong Fok Lung, T.; Baines, S.L.; Sharkey, L.K.; Lee, J.Y.H.; Hachani, A.; Monk, I.R.; Stinear, T.P. Staphylococcus aureus host interactions and adaptation. Nat. Rev. Microbiol. 2023, 21, 380–395. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, M.; Frees, D.; Ingmer, H. Antibiotic resistance and the MRSA problem. Microbiol. Spectr. 2019, 7, GPP3-0057-2018. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Kirby, W.M. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 1944, 99, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Lowy, F.D. Antimicrobial resistance: The example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef]
- Rammelkamp, C.H.; Maxon, T. Resistance of Staphylococcus aureus to the action of penicillin. Proc. Soc. Exp. Biol. Med. 1942, 51, 386–389. [Google Scholar] [CrossRef]
- Bondi, A., Jr.; Dietz, C.C. Penicillin resistant staphylococci. Proc. Soc. Exp. Biol. Med. 1945, 60, 55–58. [Google Scholar] [CrossRef]
- Jevons, M.P. “Celbenin”-resistant Staphylococci. Br. Med. J. 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Thompson, R.L.; Cabezudo, I.; Wenzel, R.P. Epidemiology of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. Ann. Intern. Med. 1982, 97, 309–317. [Google Scholar] [CrossRef]
- Hanifah, Y.A.; Hiramatsu, K.; Yokota, T. Characterization of methicillin-resistant Staphylococcus aureus associated with nosocomial infections in the University Hospital, Kuala Lumpur. J. Hosp. Infect. 1992, 21, 15–28. [Google Scholar] [CrossRef]
- Faoagali, J.L.; Thong, M.L.; Grant, D. Ten years’ experience with methicillin-resistant Staphylococcus aureus in a large Australian hospital. J. Hosp. Infect. 1992, 20, 113–119. [Google Scholar] [CrossRef]
- Cafferkey, M.T.; Hone, R.; Coleman, D.; Pomeroy, H.; McGrath, B.; Ruddy, R.; Keane, C.T. Methicillin-resistant Staphylococcus aureus in Dublin 1971-84. Lancet 1985, 2, 705–708. [Google Scholar] [CrossRef]
- Bradley, J.M.; Noone, P.; Townsend, D.E.; Grubb, W.B. Methicillin-resistant Staphylococcus aureus in a London hospital. Lancet 1985, 1, 1493–1495. [Google Scholar] [CrossRef]
- Torvaldsen, S.; Roberts, C.; Riley, T.V. The continuing evolution of methicillin-resistant Staphylococcus aureus in Western Australia. Infect. Control Hosp. Epidemiol. 1999, 20, 133–135. [Google Scholar] [CrossRef]
- Tiemersma, E.W.; Bronzwaer, S.L.; Lyytikainen, O.; Degener, J.E.; Schrijnemakers, P.; Bruinsma, N.; Monen, J.; Witte, W.; Grundman, H. European Antimicrobial Resistance Surveillance System Participants. Methicillin-resistant Staphylococcus aureus in Europe, 1999–2002. Emerg. Infect. Dis. 2004, 10, 1627–1634. [Google Scholar] [CrossRef]
- Takizawa, Y.; Taneike, I.; Nakagawa, S.; Oishi, T.; Nitahara, Y.; Iwakura, N.; Ozaki, K.; Takano, M.; Nakayama, T.; Yamamoto, T. A Panton-Valentine leucocidin (PVL)-positive community-acquired methicillin-resistant Staphylococcus aureus (MRSA) strain, another such strain carrying a multiple-drug resistance plasmid, and other more-typical PVL-negative MRSA strains found in Japan. J. Clin. Microbiol. 2005, 43, 3356–3363. [Google Scholar] [CrossRef]
- Song, J.H.; Hsueh, P.R.; Chung, D.R.; Ko, K.S.; Kang, C.I.; Peck, K.R.; Yeom, J.S.; Kim, S.W.; Chang, H.H.; Kim, Y.S.; et al. Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: An ANSORP study. J. Antimicrob. Chemother. 2011, 66, 1061–1069. [Google Scholar] [CrossRef]
- Rountree, P.M.; Beard, M.A. Hospital strains of Staphylococcus aureus, with particular reference to methicillin-resistant strains. Med. J. Aust. 1968, 2, 1163–1168. [Google Scholar] [CrossRef]
- Kerttula, A.M.; Lyytikainen, O.; Karden-Lilja, M.; Ibrahem, S.; Salmenlinna, S.; Virolainen, A.; Vuopio-Varkila, J. Nationwide trends in molecular epidemiology of methicillin-resistant Staphylococcus aureus, Finland, 1997–2004. BMC Infect. Dis. 2007, 7, 94. [Google Scholar] [CrossRef]
- Kayaba, H.; Kodama, K.; Tamura, H.; Fujiwara, Y. The spread of methicillin-resistant Staphylococcus aureus in a rural community: Will it become a common microorganism colonizing among the general population? Surg. Today 1997, 27, 217–219. [Google Scholar] [CrossRef]
- Griffiths, C.; Lamagni, T.L.; Crowcroft, N.S.; Duckworth, G.; Rooney, C. Trends in MRSA in England and Wales: Analysis of morbidity and mortality data for 1993–2002. Health Stat. Q. 2004, 21, 15–22. [Google Scholar]
- Givney, R.; Vickery, A.; Holliday, A.; Pegler, M.; Benn, R. Evolution of an endemic methicillin-resistant Staphylococcus aureus population in an Australian hospital from 1967 to 1996. J. Clin. Microbiol. 1998, 36, 552–556. [Google Scholar] [CrossRef]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef]
- Rodríguez-Noriega, E.; Seas, C.; Guzmán-Blanco, M.; Mejía, C.; Alvarez, C.; Bavestrello, L.; Zurita, J.; Lebarca, J.; Luna, C.M.; Salles, M.J.C.; et al. Evolution of methicillin-resistant Staphylococcus aureus clones in Latin America. Int. J. Infect. Dis. 2010, 14, e560–e566. [Google Scholar] [CrossRef] [PubMed]
- Moodley, A.; Oosthuysen, W.F.; Duse, A.G.; Marais, E. South African MRSA Surveillance group. Molecular characterization of clinical methicillin-resistant Staphylococcus aureus isolates in South Africa. J. Clin. Microbiol. 2010, 48, 4608–4611. [Google Scholar] [CrossRef]
- Ghaznavi-Rad, E.; Nor Shamsudin, M.; Sekawi, Z.; Khoon, L.Y.; Aziz, M.N.; Hamat, R.A.; Othman, N.; Chong, P.P.; van Belkum, A.; Ghasemzadeh-Moghaddam, H.; et al. Predominance and emergence of clones of hospital-acquired methicillin-resistant Staphylococcus aureus in Malaysia. J. Clin. Microbiol. 2010, 48, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Feil, E.J.; Cooper, J.E.; Grundmann, H.; Robinson, D.A.; Enright, M.C.; Berendt, T.; Peacock, S.J.; Smith, J.M.; Murphy, M.; Sratt, B.G.; et al. How clonal is Staphylococcus aureus? J. Bacteriol. 2003, 185, 3307–3316. [Google Scholar] [CrossRef]
- D’Souza, N.; Rodrigues, C.; Mehta, A. Molecular characterization of methicillin-resistant Staphylococcus aureus with emergence of epidemic clones of sequence type (ST) 22 and ST 772 in Mumbai, India. J. Clin. Microbiol. 2010, 48, 1806–1811. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Jiang, X.; Chen, M.; Wang, H. Rapid change of methicillin-resistant Staphylococcus aureus clones in a Chinese tertiary care hospital over a 15-year period. Antimicrob. Agents Chemother. 2010, 54, 1842–1847. [Google Scholar] [CrossRef]
- Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Campanile, F.; Bongiorno, D.; Borbone, S.; Stefani, S. Methicillin-resistant Staphylococcus aureus evolution: The multiple facets of an old pathogen. Eur. Infect. Dis. 2010, 4, 70–76. [Google Scholar]
- Breurec, S.; Fall, C.; Pouillot, R.; Boisier, P.; Brisse, S.; Diene-Sarr, F.; Djibo, S.; Etienne, J.; Fonkoua, M.C.; Perrier-Gros-Claude, J.D.; et al. Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in five major African towns: High prevalence of Panton-Valentine leukocidin genes. Clin. Microbiol. Infect. 2011, 17, 633–639. [Google Scholar] [CrossRef]
- Udo, E.E.; Pearman, J.W.; Grubb, W.B. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 1993, 25, 97–108. [Google Scholar] [CrossRef]
- Otter, J.A.; French, G.L. Community-associated meticillin-resistant Staphylococcus aureus strains as a cause of healthcare-associated infection. J. Hosp. Infect. 2011, 79, 189–193. [Google Scholar] [CrossRef]
- Elston, D.M. Community-acquired methicillin-resistant Staphylococcus aureus. J. Am. Acad. Dermatol. 2007, 56, 1–16, quiz 17–20. [Google Scholar] [CrossRef]
- David, M.Z.; Glikman, D.; Crawford, S.E.; Peng, J.; King, K.J.; Hostetler, M.A.; Boyle-Vavra, S.; Daum, R.S. What is community-associated methicillin-resistant Staphylococcus aureus? J. Infect. Dis. 2008, 197, 1235–1243. [Google Scholar] [CrossRef]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef]
- Coombs, G.W.; Pearson, J.C.; O’Brien, F.G.; Murray, R.J.; Grubb, W.B.; Christiansen, K.J. Methicillin-resistant Staphylococcus aureus clones, Western Australia. Emerg. Infect. Dis. 2006, 12, 241–247. [Google Scholar] [CrossRef]
- Centers for Disease Contol and Prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus-Minnesota and North Dakota, 1997–1999. MMWR Morb. Mortal. Wkly. Rep. 1999, 48, 707–710. [Google Scholar]
- Weese, J.S. Methicillin-resistant Staphylococcus aureus in animals. ILAR J. 2010, 51, 233–244. [Google Scholar] [CrossRef]
- Graveland, H.; Wagenaar, J.A.; Bergs, K.; Heesterbeek, H.; Heederik, D. Persistence of livestock associated MRSA CC398 in humans is dependent on intensity of animal contact. PLoS ONE 2011, 6, e16830. [Google Scholar] [CrossRef]
- Cuny, C.; Friedrich, A.; Kozytska, S.; Layer, F.; Nubel, U.; Ohlsen, K.; Strommenger, B.; Walther, B.; Wieler, L.; Witte, W. Emergence of methicillin-resistant Staphylococcus aureus (MRSA) in different animal species. Int. J. Med. Microbiol. 2010, 300, 109–117. [Google Scholar] [CrossRef]
- Wolk, D.M.; Struelens, M.J.; Pancholi, P.; Davis, T.; Della-Latta, P.; Fuller, D.; Picton, E.; Dickenson, R.; Denis, O.; Johnson, D.; et al. Rapid detection of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in wound specimens and blood cultures: Multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J. Clin. Microbiol. 2009, 47, 823–826. [Google Scholar] [CrossRef]
- Whitby, M.; McLaws, M.L.; Berry, G. Risk of death from methicillin-resistant Staphylococcus aureus bacteraemia: A meta-analysis. Med. J. Aust. 2001, 175, 264–267. [Google Scholar] [CrossRef]
- Thampi, N.; Showler, A.; Burry, L.; Bai, A.D.; Steinberg, M.; Ricciuto, D.R.; Bell, C.M.; Morris, A.M. Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: Impact of length of stay and intensity of care. Am. J. Infect. Control 2015, 43, 739–744. [Google Scholar] [CrossRef]
- Fortuin-de Smidt, M.C.; Singh-Moodley, A.; Badat, R.; Quan, V.; Kularatne, R.; Nana, T.; Lekalakala, R.; Govender, N.P.; Perovic, O.; for GERMS-SA. Staphylococcus aureus bacteraemia in Gauteng academic hospitals, South Africa. Int. J. Infect. Dis. 2015, 30, 41–48. [Google Scholar] [CrossRef]
- Antonanzas, F.; Lozano, C.; Torres, C. Economic features of antibiotic resistance: The case of methicillin-resistant Staphylococcus aureus. Pharmacoeconomics 2015, 33, 285–325. [Google Scholar] [CrossRef]
- Rupp, M.E.; Archer, G.L. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin. Infect. Dis. 1994, 19, 231–243, quiz 244–245. [Google Scholar] [CrossRef]
- Banerjee, S.N.; Emori, T.G.; Culver, D.H.; Gaynes, R.P.; Jarvis, W.R.; Horan, T.; Edwards, J.R.; Tolson, J.; Henderson, T.; Martone, W.J. Secular trends in nosocomial primary bloodstream infections in the United States, 1980-1989. National Nosocomial Infections Surveillance System. Am. J. Med. 1991, 91, 86S–89S. [Google Scholar] [CrossRef]
- Otto, M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 2013, 35, 4–11. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, C.J.; Su, L.H.; Hu, S.; Yu, J.; Chiu, C.H. Evolution and pathogenesis of Staphylococcus aureus: Lessons learned from genotyping and comparative genomics. FEMS Microbiol. Rev. 2008, 32, 23–37. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K. Molecular Evolution and Pathogenicity of Methicillin-Resistant Staphylococcus aureus. Antibiotics 2024, 13, 953. https://doi.org/10.3390/antibiotics13100953
Zhang K. Molecular Evolution and Pathogenicity of Methicillin-Resistant Staphylococcus aureus. Antibiotics. 2024; 13(10):953. https://doi.org/10.3390/antibiotics13100953
Chicago/Turabian StyleZhang, Kunyan. 2024. "Molecular Evolution and Pathogenicity of Methicillin-Resistant Staphylococcus aureus" Antibiotics 13, no. 10: 953. https://doi.org/10.3390/antibiotics13100953
APA StyleZhang, K. (2024). Molecular Evolution and Pathogenicity of Methicillin-Resistant Staphylococcus aureus. Antibiotics, 13(10), 953. https://doi.org/10.3390/antibiotics13100953