Beneficial Effects Induced by a Proprietary Blend of a New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine in Urinary Tract Infections: Results from In Vitro and Ex Vivo Studies
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Characteristics of Blend of Natural Ingredients DIF17BRO®
3.2. Cell Lines and Treatments
3.3. Cell Viability Assay
3.4. Microbial Cultures
3.5. Antimicrobial Activity
3.6. Evaluation of the Formulation (DIF17BRO® Plus NAC)’s Activity on Bacterial Anti-Swim/Swarm and Anti-Twitch
3.7. Anti-Biofilm Effect of the Formulation (DIF17BRO® Plus NAC)
3.8. Animals
3.9. Ex Vivo Studies
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Naber, K.G.; Tirán-Saucedo, J.; Wagenlehner, F.M.E. Psychosocial Burden of Recurrent Uncomplicated Urinary Tract Infections. GMS Infect. Dis. 2022, 10, Doc01. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, L.; Mulgirigama, A.; Powell, M.; Schmiemann, G. The Emotional Impact of Urinary Tract Infections in Women: A Qualitative Analysis. BMC Womens Health 2022, 22, 182. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Lee, S.-J.; Choe, H.-S. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BioMed Res. Int. 2018, 2018, 7656752. [Google Scholar] [CrossRef] [PubMed]
- Lupo, F.; Ingersoll, M.A.; Pineda, M.A. The Glycobiology of Uropathogenic E. Coli Infection: The Sweet and Bitter Role of Sugars in Urinary Tract Immunity. Immunology 2021, 164, 3–14. [Google Scholar] [CrossRef]
- Ballén, V.; Cepas, V.; Ratia, C.; Gabasa, Y.; Soto, S.M. Clinical Escherichia Coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef]
- Jancel, T.; Dudas, V. Management of Uncomplicated Urinary Tract Infections. West. J. Med. 2002, 176, 51–55. [Google Scholar] [CrossRef]
- Shaheen, G.; Akram, M.; Jabeen, F.; Ali Shah, S.M.; Munir, N.; Daniyal, M.; Riaz, M.; Tahir, I.M.; Ghauri, A.O.; Sultana, S.; et al. Therapeutic Potential of Medicinal Plants for the Management of Urinary Tract Infection: A Systematic Review. Clin. Exp. Pharmacol. Physiol. 2019, 46, 613–624. [Google Scholar] [CrossRef]
- Sabih, A.; Leslie, S.W. Complicated Urinary Tract Infections. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hannan, T.J.; Mysorekar, I.U.; Hung, C.S.; Isaacson-Schmid, M.L.; Hultgren, S.J. Early Severe Inflammatory Responses to Uropathogenic E. Coli Predispose to Chronic and Recurrent Urinary Tract Infection. PLoS Pathog. 2010, 6, e1001042. [Google Scholar] [CrossRef]
- Mohammad, A.; Laboulaye, M.A.; Shenhar, C.; Dobberfuhl, A.D. Mechanisms of Oxidative Stress in Interstitial Cystitis/Bladder Pain Syndrome. Nat. Rev. Urol. 2024, 21, 433–449. [Google Scholar] [CrossRef]
- Das, S. Natural Therapeutics for Urinary Tract Infections-a Review. Futur. J. Pharm. Sci. 2020, 6, 64. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.J.; Mitra, S.; Tallei, T.E.; Tareq, A.M.; Nainu, F.; Cicia, D.; Dhama, K.; Emran, T.B.; Simal-Gandara, J.; Capasso, R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life 2021, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Mamo, J.; Assefa, F. Antibacterial and Anticancer Property of Bromelain: A Plant Protease Enzyme from Pineapples (Ananas comosus). Curr. Trends. Biomed. Eng. Biosci. 2019, 19, 556009. [Google Scholar] [CrossRef]
- Gaspani, L.; Limiroli, E.; Ferrario, P.; Bianchi, M. In Vivo and in Vitro Effects of Bromelain on PGE(2) and SP Concentrations in the Inflammatory Exudate in Rats. Pharmacology 2002, 65, 83–86. [Google Scholar] [CrossRef]
- Engwerda, C.R.; Andrew, D.; Ladhams, A.; Mynott, T.L. Bromelain Modulates T Cell and B Cell Immune Responses In Vitro and In Vivo. Cell Immunol. 2001, 210, 66–75. [Google Scholar] [CrossRef]
- Seenak, P.; Kumphune, S.; Malakul, W.; Chotima, R.; Nernpermpisooth, N. Pineapple Consumption Reduced Cardiac Oxidative Stress and Inflammation in High Cholesterol Diet-Fed Rats. Nutr. Metab. 2021, 18, 36. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Paiva, L.; Baptista, J. Bromelain, a Group of Pineapple Proteolytic Complex Enzymes (Ananas comosus) and Their Possible Therapeutic and Clinical Effects. A Summary. Foods 2021, 10, 2249. [Google Scholar] [CrossRef]
- Kansakar, U.; Trimarco, V.; Manzi, M.V.; Cervi, E.; Mone, P.; Santulli, G. Exploring the Therapeutic Potential of Bromelain: Applications, Benefits, and Mechanisms. Nutrients 2024, 16, 2060. [Google Scholar] [CrossRef]
- Faramarzi, M.; Sadighi, M.; Shirmohamadi, A.; Kazemi, R.; Zohdi, M. Effectiveness of Bromelain in the Control of Postoperative Pain after Periodontal Surgery: A Crossover Randomized Clinical Trial. J. Adv. Periodontol. Implant. Dent. 2023, 15, 22–27. [Google Scholar] [CrossRef]
- George, S.; Bhasker, S.; Madhav, H.; Nair, A.; Chinnamma, M. Functional Characterization of Recombinant Bromelain of Ananas comosus Expressed in a Prokaryotic System. Mol. Biotechnol. 2013, 56, 166–174. [Google Scholar] [CrossRef]
- Tenório, M.C.D.S.; Graciliano, N.G.; Moura, F.A.; Oliveira, A.C.M.d.; Goulart, M.O.F. N-Acetylcysteine (NAC): Impacts on Human Health. Antioxidants 2021, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Abd, E.-B.R.M.; Ela, D.M.M.A.E.; Gad, G.F.M. N-Acetylcysteine Inhibits and Eradicates Candida albicans Biofilms. Am. J. Infect. Dis. Microbiol. 2014, 2, 122–130. [Google Scholar] [CrossRef]
- Cacciatore, I.; Di Giulio, M.; Fornasari, E.; Di Stefano, A.; Cerasa, L.S.; Marinelli, L.; Turkez, H.; Di Campli, E.; Di Bartolomeo, S.; Robuffo, I.; et al. Carvacrol Codrugs: A New Approach in the Antimicrobial Plan. PLoS ONE 2015, 10, e0120937. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.; Gomaa, A.; Mohamed, F.; Ragab, R.; Eid, M.; Ahmed, A.-H.; Khalaf, A.; Kamal, M.; Mokhtar, S.; Mohamed, H.; et al. Antibacterial, Anti-Biofilm Activity of Some Non-Steroidal Anti-Inflammatory Drugs and N-Acetyl Cysteine against Some Biofilm Producing Uropathogens. Am. J. Epidemiol. 2015, 3, 1–9. [Google Scholar] [CrossRef]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef]
- Dodd, S.; Dean, O.; Copolov, D.L.; Malhi, G.S.; Berk, M. N-Acetylcysteine for Antioxidant Therapy: Pharmacology and Clinical Utility. Expert. Opin. Biol. Ther. 2008, 8, 1955–1962. [Google Scholar] [CrossRef]
- Radomska-Leśniewska, D.M.; Skopiński, P. N-Acetylcysteine as an Anti-Oxidant and Anti-Inflammatory Drug and Its Some Clinical Applications. Centr. Eur. J. Immunol. 2012, 37, 57–66. [Google Scholar]
- Manoharan, A.; Ognenovska, S.; Paino, D.; Whiteley, G.; Glasbey, T.; Kriel, F.H.; Farrell, J.; Moore, K.H.; Manos, J.; Das, T. N-Acetylcysteine Protects Bladder Epithelial Cells from Bacterial Invasion and Displays Antibiofilm Activity against Urinary Tract Bacterial Pathogens. Antibiotics 2021, 10, 900. [Google Scholar] [CrossRef]
- Taussig, S.J.; Yokoyama, M.M.; Chinen, A.; Onari, K.; Yamakido, M. Bromelain: A Proteolytic Enzyme and Its Clinical Application. A Review. Hiroshima J. Med. Sci. 1975, 24, 185–193. [Google Scholar]
- Jančič, U.; Gorgieva, S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021, 14, 76. [Google Scholar] [CrossRef]
- Palma, V.; Gutiérrez, M.S.; Vargas, O.; Parthasarathy, R.; Navarrete, P. Methods to Evaluate Bacterial Motility and Its Role in Bacterial-Host Interactions. Microorganisms 2022, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Rütschlin, S.; Böttcher, T. Inhibitors of Bacterial Swarming Behavior. Chemistry 2020, 26, 964–979. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.T.; Shirtliff, M.E. Complicated Catheter-Associated Urinary Tract Infections Due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef] [PubMed]
- Kwak, Y.; Kim, H.G.; Seok, J.; Kim, S.; Kim, E.-M.; Kim, A. The Critical Role of Intracellular Bacterial Communities in Uncomplicated Recurrent Urinary Cystitis: A Comprehensive Review of Detection Methods and Diagnostic Potential. Int. Neurourol. J. 2024, 28, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, N.; Vatansever, C.; Zengin Ersoy, G.; Adakli Aksoy, B.; Fışgın, T. The Effect of Biofilm Inhibitor N-Acetylcysteine on the Minimum Inhibitory Concentration of Antibiotics Used in Gram-Negative Bacteria in the Biofilm Developed on Catheters. Int. J. Artif. Organs 2022, 45, 865–870. [Google Scholar] [CrossRef]
- Kumar, V.; Mangla, B.; Javed, S.; Ahsan, W.; Kumar, P.; Garg, V.; Dureja, H. Bromelain: A Review of Its Mechanisms, Pharmacological Effects and Potential Applications. Food Funct. 2023, 14, 8101–8128. [Google Scholar] [CrossRef]
- Recinella, L.; Chiavaroli, A.; Ronci, M.; Menghini, L.; Brunetti, L.; Leone, S.; Tirillini, B.; Angelini, P.; Covino, S.; Venanzoni, R.; et al. Multidirectional Pharma-Toxicological Study on Harpagophytum procumbens DC. Ex Meisn.: An IBD-Focused Investigation. Antioxidants 2020, 9, 168. [Google Scholar] [CrossRef]
- Recinella, L.; Gorica, E.; Chiavaroli, A.; Fraschetti, C.; Filippi, A.; Cesa, S.; Cairone, F.; Martelli, A.; Calderone, V.; Veschi, S.; et al. Anti-Inflammatory and Antioxidant Effects Induced by Allium Sativum L. Extracts on an ex Vivo Experimental Model of Ulcerative Colitis. Foods 2022, 11, 3559. [Google Scholar] [CrossRef]
- Hannan, T.J.; Roberts, P.L.; Riehl, T.E.; van der Post, S.; Binkley, J.M.; Schwartz, D.J.; Miyoshi, H.; Mack, M.; Schwendener, R.A.; Hooton, T.M.; et al. Inhibition of Cyclooxygenase-2 Prevents Chronic and Recurrent Cystitis. EBioMedicine 2014, 1, 46–57. [Google Scholar] [CrossRef]
- Abdel-Mageed, A.B.; Bajwa, A.; Shenassa, B.B.; Human, L.; Ghoniem, G.M. NF-kappaB-Dependent Gene Expression of Proinflammatory Cytokines in T24 Cells: Possible Role in Interstitial Cystitis. Urol. Res. 2003, 31, 300–305. [Google Scholar] [CrossRef]
- Logadottir, Y.; Hallsberg, L.; Fall, M.; Peeker, R.; Delbro, D. Bladder Pain Syndrome/Interstitial Cystitis ESSIC Type 3C: High Expression of Inducible Nitric Oxide Synthase in Inflammatory Cells. Scand. J. Urol. 2013, 47, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Kurutas, E.B.; Ciragil, P.; Gul, M.; Kilinc, M. The Effects of Oxidative Stress in Urinary Tract Infection. Mediat. Inflamm. 2005, 2005, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Chobotova, K.; Vernallis, A.B.; Majid, F.A.A. Bromelain’s Activity and Potential as an Anti-Cancer Agent: Current Evidence and Perspectives. Cancer Lett. 2010, 290, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Bhui, K.; Prasad, S.; George, J.; Shukla, Y. Bromelain Inhibits COX-2 Expression by Blocking the Activation of MAPK Regulated NF-Kappa B against Skin Tumor-Initiation Triggering Mitochondrial Death Pathway. Cancer Lett. 2009, 282, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-R.; Wu, C.-C.; Hou, R.C.-W.; Jeng, K.-C. Bromelain Inhibits Lipopolysaccharide-Induced Cytokine Production in Human THP-1 Monocytes via the Removal of CD14. Immunol. Investig. 2008, 37, 263–277. [Google Scholar] [CrossRef]
- Hou, R.C.-W.; Chen, Y.-S.; Huang, J.-R.; Jeng, K.-C.G. Cross-Linked Bromelain Inhibits Lipopolysaccharide-Induced Cytokine Production Involving Cellular Signaling Suppression in Rats. J. Agric. Food Chem. 2006, 54, 2193–2198. [Google Scholar] [CrossRef]
- Akhter, J.; Quéromès, G.; Pillai, K.; Kepenekian, V.; Badar, S.; Mekkawy, A.H.; Frobert, E.; Valle, S.J.; Morris, D.L. The Combination of Bromelain and Acetylcysteine (BromAc) Synergistically Inactivates SARS-CoV-2. Viruses 2021, 13, 425. [Google Scholar] [CrossRef]
- Veschi, S.; De Lellis, L.; Florio, R.; Lanuti, P.; Massucci, A.; Tinari, N.; De Tursi, M.; di Sebastiano, P.; Marchisio, M.; Natoli, C.; et al. Effects of Repurposed Drug Candidates Nitroxoline and Nelfinavir as Single Agents or in Combination with Erlotinib in Pancreatic Cancer Cells. J. Exp. Clin. Cancer Res. 2018, 37, 236. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W.; EUCAST-AFST. EUCAST Technical Note on the EUCAST Definitive Document EDef 7.2: Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef]
- Di Giulio, M.; Zappacosta, R.; Di Lodovico, S.; Di Campli, E.; Siani, G.; Fontana, A.; Cellini, L. Antimicrobial and Antibiofilm Efficacy of Graphene Oxide against Chronic Wound Microorganisms. Antimicrob. Agents Chemother. 2018, 62, e00547-18. [Google Scholar] [CrossRef]
- Recinella, L.; Libero, M.L.; Citi, V.; Chiavaroli, A.; Martelli, A.; Foligni, R.; Mannozzi, C.; Acquaviva, A.; Di Simone, S.; Calderone, V.; et al. Anti-Inflammatory and Vasorelaxant Effects Induced by an Aqueous Aged Black Garlic Extract Supplemented with Vitamins D, C, and B12 on Cardiovascular System. Foods 2023, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Libero, M.L.; Lucarini, E.; Recinella, L.; Ciampi, C.; Veschi, S.; Piro, A.; Chiavaroli, A.; Acquaviva, A.; Nilofar, N.; Orlando, G.; et al. Anti-Inflammatory and Anti-Hyperalgesic Effects Induced by an Aqueous Aged Black Garlic Extract in Rodent Models of Ulcerative Colitis and Colitis-Associated Visceral Pain. Phytother. Res. 2024, 38, 4177–4188. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Bacteria | MIC | MBC |
---|---|---|
E. coli ATCC 10536 | NAC: 5 mg/mL DIF17BRO®: >40 mg/mL | NAC: 10 mg/mL DIF17BRO®: >40 mg/mL |
E. coli ATCC 700926 | NAC: 5 mg/mL DIF17BRO®: >40 mg/mL | NAC: 10 mg/mL DIF17BRO®: >40 mg/mL |
E. coli PNT | NAC: 5 mg/mL DIF17BRO®: >40 mg/mL | NAC: 5 mg/mL DIF17BRO®: >40 mg/mL |
E. coli PCA | NAC: 5 mg/mL DIF17BRO®: >40 mg/mL | NAC: 10 mg/mL DIF17BRO®: >40 mg/mL |
Botanical family | Bromeliaceae |
Botanical name | Ananas comosus (L.) Merr. |
Part of plant used | Fruit and stem |
Appearance | Off-white/beige fine powder |
Proteolytic activity as bromelain | 1.825 GDU/g * |
Loss on drying | <=5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recinella, L.; Pinti, M.; Libero, M.L.; Di Lodovico, S.; Veschi, S.; Piro, A.; Generali, D.; Acquaviva, A.; Nilofar, N.; Orlando, G.; et al. Beneficial Effects Induced by a Proprietary Blend of a New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine in Urinary Tract Infections: Results from In Vitro and Ex Vivo Studies. Antibiotics 2024, 13, 985. https://doi.org/10.3390/antibiotics13100985
Recinella L, Pinti M, Libero ML, Di Lodovico S, Veschi S, Piro A, Generali D, Acquaviva A, Nilofar N, Orlando G, et al. Beneficial Effects Induced by a Proprietary Blend of a New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine in Urinary Tract Infections: Results from In Vitro and Ex Vivo Studies. Antibiotics. 2024; 13(10):985. https://doi.org/10.3390/antibiotics13100985
Chicago/Turabian StyleRecinella, Lucia, Morena Pinti, Maria Loreta Libero, Silvia Di Lodovico, Serena Veschi, Anna Piro, Daniele Generali, Alessandra Acquaviva, Nilofar Nilofar, Giustino Orlando, and et al. 2024. "Beneficial Effects Induced by a Proprietary Blend of a New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine in Urinary Tract Infections: Results from In Vitro and Ex Vivo Studies" Antibiotics 13, no. 10: 985. https://doi.org/10.3390/antibiotics13100985
APA StyleRecinella, L., Pinti, M., Libero, M. L., Di Lodovico, S., Veschi, S., Piro, A., Generali, D., Acquaviva, A., Nilofar, N., Orlando, G., Chiavaroli, A., Ferrante, C., Menghini, L., Di Simone, S. C., Brunetti, L., Di Giulio, M., & Leone, S. (2024). Beneficial Effects Induced by a Proprietary Blend of a New Bromelain-Based Polyenzymatic Complex Plus N-Acetylcysteine in Urinary Tract Infections: Results from In Vitro and Ex Vivo Studies. Antibiotics, 13(10), 985. https://doi.org/10.3390/antibiotics13100985