Resilience of Loin Meat Microbiota and of Resistance Genes to a Chlortetracycline Treatment in Weaned Piglets
Abstract
:1. Introduction
2. Results
2.1. Taxonomical Composition
2.2. Antibiotic Resistance
3. Discussion
4. Materials and Methods
4.1. Animals and Treatment
4.2. Sample Collection and Processing
4.3. Sequencing and Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Antimicrobial Resistance and Use Surveillance System (Glass) Report: Early Implementation 2020. Available online: https://www.who.int/publications/i/item/9789240005587 (accessed on 16 June 2024).
- Wright, G.D.; Poinar, H. Antibiotic resistance is ancient: Implications for drug discovery. Trends Microbiol. 2012, 20, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Archambault, M.; Butaye, P. Antimicrobial use and resistance in animals from a one health perspective. Vet. Sci. 2023, 10, 319. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Tiseo, K.; Huber, L.; Gilbert, M.; Robinson, T.P.; Van Boeckel, T.P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918. [Google Scholar] [CrossRef] [PubMed]
- OIE. Annual Report on Antimicrobial Agents Intended for Use in Animals. Available online: https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/AMR/A_Third_Annual_Report_AMR.pdf (accessed on 17 June 2024).
- WHO. One Health. Available online: https://www.who.int/health-topics/one-health#tab=tab_1 (accessed on 12 August 2024).
- McAllister, T.A.; Wang, Y.; Diarra, M.S.; Alexander, T.; Stanford, K. Challenges of a one-health approach to the development of alternatives to antibiotics. Anim. Front. 2018, 8, 10–20. [Google Scholar] [CrossRef]
- Monger, X.C.; Gilbert, A.-A.; Saucier, L.; Vincent, A.T. Antibiotic resistance: From pig to meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef]
- Canibe, N.; Hojberg, O.; Kongsted, H.; Vodolazska, D.; Lauridsen, C.; Nielsen, T.S.; Schonherz, A.A. Review on preventive measures to reduce post-weaning diarrhoea in piglets. Animals 2022, 12, 2585. [Google Scholar] [CrossRef]
- Amezcua, R.; Friendship, R.M.; Dewey, C.E.; Gyles, C.; Fairbrother, J.M. Presentation of postweaning Escherichia coli diarrhea in southern ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns. Can. J. Vet. Res. 2002, 66, 73–78. [Google Scholar]
- Wei, X.; Tsai, T.; Howe, S.; Zhao, J. Weaning induced gut dysfunction and nutritional interventions in nursery pigs: A partial review. Animals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Tuchscherer, M.; Puppe, B.; Tuchscherer, A.; Tiemann, U. Early identification of neonates at risk: Traits of newborn piglets with respect to survival. Theriogenology 2000, 54, 371–388. [Google Scholar] [CrossRef]
- Sun, J.; Liao, X.P.; D’Souza, A.W.; Boolchandani, M.; Li, S.H.; Cheng, K.; Martinez, J.L.; Li, L.; Feng, Y.J.; Fang, L.X.; et al. Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 2020, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Monger, X.C.; Saucier, L.; Guay, F.; Turcotte, A.; Lemieux, J.; Pouliot, E.; Fournaise, S.; Vincent, A.T. Effect of a probiotic and an antibiotic on the mobilome of the porcine microbiota. Front. Genet. 2024, 15, 1355134. [Google Scholar] [CrossRef] [PubMed]
- Laforge, P.; Vincent, A.T.; Duchaine, C.; Feutry, P.; Dion-Fortier, A.; Plante, P.-L.; Pouliot, É.; Fournaise, S.; Saucier, L. Contribution of farms to the microbiota in the swine value chain. Front. Sys. Biol. 2023, 3, 1183868. [Google Scholar] [CrossRef]
- Braley, C.; Fravalo, P.; Gaucher, M.L.; Lariviere-Gauthier, G.; Shedleur-Bourguignon, F.; Longpre, J.; Thibodeau, A. Similar carcass surface microbiota observed following primary processing of different pig batches. Front. Microbiol. 2022, 13, 849883. [Google Scholar] [CrossRef] [PubMed]
- Gaire, T.N.; Odland, C.; Zhang, B.Z.; Slizovskiy, I.; Jorgenson, B.; Wehri, T.; Meneguzzi, M.; Wass, B.; Schuld, J.; Hanson, D.; et al. Slaughtering processes impact microbial communities and antimicrobial resistance genes of pig carcasses. Sci. Total Environ. 2024, 946, 174394. [Google Scholar] [CrossRef]
- Braley, C.; Gaucher, M.L.; Fravalo, P.; Shedleur-Bourguignon, F.; Longpré, J.; Thibodeau, A. Slight temperature deviation during a 56-day storage period does not affect the microbiota of fresh vacuum-packed pork loins. Foods 2023, 12, 1695. [Google Scholar] [CrossRef]
- Endo, A.; Koizumi, R.; Nakazawa, Y.; Shiwa, Y.; Maeno, S.; Kido, Y.; Irisawa, T.; Muramatsu, Y.; Tada, K.; Yamazaki, M.; et al. Characterization of the microbiota and chemical properties of pork loins during dry aging. MicrobiologyOpen 2021, 10, e1157. [Google Scholar] [CrossRef]
- Gweon, H.S.; Shaw, L.P.; Swann, J.; De Maio, N.; AbuOun, M.; Niehus, R.; Hubbard, A.T.M.; Bowes, M.J.; Bailey, M.J.; Peto, T.E.A.; et al. The impact of sequencing depth on the inferred taxonomic composition and amr gene content of metagenomic samples. Environ. Microbiome 2019, 14, 7. [Google Scholar] [CrossRef]
- Liu, Z.B.; Klümper, U.; Shi, L.; Ye, L.; Li, M. From pig breeding environment to subsequently produced pork: Comparative analysis of antibiotic resistance genes and bacterial community composition. Front. Microbiol. 2019, 10, 43. [Google Scholar] [CrossRef]
- Hölzel, C.S.; Huther, S.K.; Schwaiger, K.; Kämpf, P.; Bauer, J. Quantity of the tetracycline resistance gene tet(m) differs substantially between meat at slaughterhouses and at retail. J. Food Sci. 2011, 76, M318–M323. [Google Scholar] [CrossRef]
- Zhang, R.M.; Liu, X.; Wang, S.L.; Fang, L.X.; Sun, J.; Liu, Y.H.; Liao, X.P. Distribution patterns of antibiotic resistance genes and their bacterial hosts in pig farm wastewater treatment systems and soil fertilized with pig manure. Sci. Total Environ. 2021, 758, 143654. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xie, G.; Mi, J.; Wen, X.; Cao, Z.; Ma, B.; Zou, Y.; Zhang, N.; Wang, Y.; Liao, X.; et al. Recovery of the structure and function of the pig manure bacterial community after enrofloxacin exposure. Microbiol. Spectr. 2022, 10, e0200421. [Google Scholar] [CrossRef] [PubMed]
- Guitart-Matas, J.; Ballester, M.; Fraile, L.; Darwich, L.; Giler-Baquerizo, N.; Tarres, J.; López-Soria, S.; Ramayo-Caldas, Y.; Migura-Garcia, L. Gut microbiome and resistome characterization of pigs treated with commonly used post-weaning diarrhea treatments. Anim. Microbiome 2024, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- CCAC. The Care and Use of Farm Animals in Research, Teaching and Testing. Available online: https://www.ccac.ca/Documents/Standards/Guidelines/Farm_Animals.pdf (accessed on 19 June 2024).
- Bushnell, B. Bbmap. Available online: https://sourceforge.net/projects/bbmap/ (accessed on 13 October 2021).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data, P. The sequence alignment/map format and samtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Tamames, J.; Puente-Sanchez, F. Squeezemeta, a highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 2019, 9, 3349. [Google Scholar] [CrossRef]
- Puente-Sanchez, F.; Garcia-Garcia, N.; Tamames, J. Sqmtools: Automated processing and visual analysis of ‘omics data with r and anvi’o. BMC Bioinform. 2020, 21, 358. [Google Scholar] [CrossRef]
- Dixon, P. Vegan, a package of r functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Phyloseq: An r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. Card 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids. Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Galiot, L.; Monger, X.C.; Vincent, A.T. Studying the association between antibiotic resistance genes and insertion sequences in metagenomes: Challenges and pitfalls. Antibiotics 2023, 12, 175. [Google Scholar] [CrossRef] [PubMed]
Parameters | AS Farrowing Barn a | LS Farrowing Barn |
---|---|---|
Initial number of piglets | 1020 | 1200 |
Initial piglet weight (kg) | 6.0 | 6.5 |
Piglet weight at end of nursery period (Ctl b; kg) | 27.0 | 29.2 |
Piglet weight at end of nursery period (Med b; kg) | 27.1 | 30.7 |
Piglet weight before slaughter (Ctl; kg) | 140.3 | 125.6 |
Piglet weight before slaughter (Med; kg) | 142.4 | 124.9 |
Vaccination age during nursery period (d) | 35 | 32 |
Age at vitamins and selenium suppl. for 4 d (d) | 115 | NA c |
Age at salicylic acid treatment for 7 d/cough (d) | 122 | NA |
Age at 2.5 ppm iodine treatment for 7 d/cough (d) | 157 | NA |
Age at arrival at the nursery barn (d) | 21 | 21 |
Age at beginning of antibiotic treatment (d) | 40 | 36 |
Age at beginning of fattening phase (d) | 71 | 69 |
Number of pens in nursery barn | 34 | 40 |
Number of piglets/pen in nursery barn (0.29 m2/piglet) | 15 | 15 |
Number of pens in finishing barn per experimental group | 20 | 14 |
Number of pigs/pen in finishing barn | 25 | 21 |
Number of pens sampled | 10 | 10 |
Feed withdrawal time (h) before transport: | ||
Nursery to the finishing barn | 12 | 12 |
Finishing barn to the abattoir | 5 | 6 |
Total feed withdrawal time (h) before slaughter | 14 | 16 |
Distance from the farrowing to the nursery barn (km) | 7.6 | 98 |
Distance from the nursery to the finishing barn (km) | 10 | 50 |
Distance from the finishing barn to the abattoir (km) | 12 | 40 |
Number of animals sent to the abattoir (Ctl) | 198 | 165 |
Number of animals sent to the abattoir (Med) | 157 | 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monger, X.C.; Saucier, L.; Gilbert, A.-A.; Gosselin, S.; Pouliot, É.; Fournaise, S.; Vincent, A.T. Resilience of Loin Meat Microbiota and of Resistance Genes to a Chlortetracycline Treatment in Weaned Piglets. Antibiotics 2024, 13, 997. https://doi.org/10.3390/antibiotics13100997
Monger XC, Saucier L, Gilbert A-A, Gosselin S, Pouliot É, Fournaise S, Vincent AT. Resilience of Loin Meat Microbiota and of Resistance Genes to a Chlortetracycline Treatment in Weaned Piglets. Antibiotics. 2024; 13(10):997. https://doi.org/10.3390/antibiotics13100997
Chicago/Turabian StyleMonger, Xavier C., Linda Saucier, Alex-An Gilbert, Sophie Gosselin, Éric Pouliot, Sylvain Fournaise, and Antony T. Vincent. 2024. "Resilience of Loin Meat Microbiota and of Resistance Genes to a Chlortetracycline Treatment in Weaned Piglets" Antibiotics 13, no. 10: 997. https://doi.org/10.3390/antibiotics13100997
APA StyleMonger, X. C., Saucier, L., Gilbert, A.-A., Gosselin, S., Pouliot, É., Fournaise, S., & Vincent, A. T. (2024). Resilience of Loin Meat Microbiota and of Resistance Genes to a Chlortetracycline Treatment in Weaned Piglets. Antibiotics, 13(10), 997. https://doi.org/10.3390/antibiotics13100997