In Vitro Susceptibility and Synergistic Effect of Bismuth Against Helicobacter pylori
Abstract
:1. Introduction
2. Results
2.1. Bismuth MICs for H. pylori Strains
2.2. Synergistic Effect Between Antibiotics and CBS
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Antimicrobial Susceptibility Testing
4.3. Checkerboard Assay for Synergy Test
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marshall, B.J.; Warren, J.R. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984, 1, 1311–1315. [Google Scholar] [CrossRef]
- Suerbaum, S.; Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 2002, 347, 1175–1186. [Google Scholar] [CrossRef]
- Kim, T.J.; Lee, H. Benefits of Helicobacter pylori Eradication on Extragastric Diseases. Korean J. Helicobacter Up. Gastrointest. Res. 2021, 21, 275–286. [Google Scholar] [CrossRef]
- Ford, A.C.; Delaney, B.C.; Forman, D.; Moayyedi, P. Eradication therapy in Helicobacter pylori positive peptic ulcer disease: Systematic review and economic analysis. Am. J. Gastroenterol. 2004, 99, 1833–1855. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chiang, T.H.; Chou, C.K.; Tu, Y.K.; Liao, W.C.; Wu, M.S.; Graham, D.Y. Association Between Helicobacter pylori Eradication and Gastric Cancer Incidence: A Systematic Review and Meta-analysis. Gastroenterology 2016, 150, 1113–1124.e5. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef]
- Jung, H.K.; Kang, S.J.; Lee, Y.C.; Yang, H.J.; Park, S.Y.; Shin, C.M.; Kim, S.E.; Lim, H.C.; Kim, J.H.; Nam, S.Y.; et al. Evidence based guidelines for the treatment of Helicobacter pylori infection in Korea 2020. Korean J. Intern. Med. 2021, 36, 807–838. [Google Scholar] [CrossRef]
- Thung, I.; Aramin, H.; Vavinskaya, V.; Gupta, S.; Park, J.Y.; Crowe, S.E.; Valasek, M.A. Review article: The global emergence of Helicobacter pylori antibiotic resistance. Aliment. Pharmacol. Ther. 2016, 43, 514–533. [Google Scholar] [CrossRef]
- Fallone, C.A.; Moss, S.F.; Malfertheiner, P. Reconciliation of Recent Helicobacter pylori Treatment Guidelines in a Time of Increasing Resistance to Antibiotics. Gastroenterology 2019, 157, 44–53. [Google Scholar] [CrossRef]
- Gong, E.J.; Yun, S.C.; Jung, H.Y.; Lim, H.; Choi, K.S.; Ahn, J.Y.; Lee, J.H.; Kim, D.H.; Choi, K.D.; Song, H.J.; et al. Meta-analysis of first-line triple therapy for helicobacter pylori eradication in Korea: Is it time to change? J. Korean Med. Sci. 2014, 29, 704–713. [Google Scholar] [CrossRef]
- Kung, N.N.; Sung, J.J.; Yuen, N.W.; Li, T.H.; Ng, P.W.; Lai, W.M.; Lui, Y.H.; Lam, K.N.; Choi, C.H.; Leung, E.M. One-week ranitidine bismuth citrate versus colloidal bismuth subcitrate-based anti-Helicobacter triple therapy: A prospective randomized controlled trial. Am. J. Gastroenterol. 1999, 94, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.M.; Ryu, S.; Pendland, S.L.; Danziger, L.H. In vitro synergy testing of clarithromycin and 14-hydroxyclarithromycin with amoxicillin or bismuth subsalicylate against Helicobacter pylori. Antimicrob. Agents Chemother. 1997, 41, 1607–1608. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.P. The mode of action of colloidal bismuth subcitrate. Scand. J. Gastroenterol. 1991, 185, 1–6. [Google Scholar] [CrossRef]
- Wagstaff, A.J.; Benfield, P.; Monk, J.P. Colloidal bismuth subcitrate. A review of its pharmacodynamic and pharmacokinetic properties, and its therapeutic use in peptic ulcer disease. Drugs 1988, 36, 132–157. [Google Scholar] [CrossRef]
- Marshall, B.J.; Valenzuela, J.E.; McCallum, R.W.; Dooley, C.P.; Guerrant, R.L.; Cohen, H.; Frierson, H.F., Jr.; Field, L.G.; Jerdack, G.R.; Mitra, S. Bismuth subsalicylate suppression of Helicobacter pylori in nonulcer dyspepsia: A double-blind placebo-controlled trial. Dig. Dis. Sci. 1993, 38, 1674–1680. [Google Scholar] [CrossRef]
- Alkim, H.; Koksal, A.R.; Boga, S.; Sen, I.; Alkim, C. Role of Bismuth in the Eradication of Helicobacter pylori. Am. J. Ther. 2017, 24, e751–e757. [Google Scholar] [CrossRef] [PubMed]
- Van Caekenberghe, D.L.; Breyssens, J. In vitro synergistic activity between bismuth subcitrate and various antimicrobial agents against Campylobacter pyloridis (C. pylori). Antimicrob. Agents Chemother. 1987, 31, 1429–1430. [Google Scholar] [CrossRef]
- Andersen, L.P.; Colding, H.; Kristiansen, J.E. Potentiation of the action of metronidazole on Helicobacter pylori by omeprazole and bismuth subcitrate. Int. J. Antimicrob. Agents 2000, 14, 231–234. [Google Scholar] [CrossRef]
- McNulty, C.A.; Dent, J.; Wise, R. Susceptibility of clinical isolates of Campylobacter pyloridis to 11 antimicrobial agents. Antimicrob. Agents Chemother. 1985, 28, 837–838. [Google Scholar] [CrossRef]
- Hall, D.W. Review of the modes of action of colloidal bismuth subcitrate. Scand. J. Gastroenterol. 1989, 157, 3–6; discussion 21–22. [Google Scholar] [CrossRef]
- Lambert, J.R.; Midolo, P. The actions of bismuth in the treatment of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 1997, 11 (Suppl. S1), 27–33. [Google Scholar] [CrossRef]
- Kumar, S.; Vinella, D.; De Reuse, H. Nickel, an essential virulence determinant of Helicobacter pylori: Transport and trafficking pathways and their targeting by bismuth. Adv. Microb. Physiol. 2022, 80, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Dore, M.P.; Lu, H.; Graham, D.Y. Role of bismuth in improving Helicobacter pylori eradication with triple therapy. Gut 2016, 65, 870–878. [Google Scholar] [CrossRef]
- Phillips, R.H.; Whitehead, M.W.; Lacey, S.; Champion, M.; Thompson, R.P.; Powell, J.J. Solubility, absorption, and anti-Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate: In vitro data Do not predict In vivo efficacy. Helicobacter 2000, 5, 176–182. [Google Scholar] [CrossRef]
- Koo, J.; Ho, J.; Lam, S.K.; Wong, J.; Ong, G.B. Selective coating of gastric ulcer by tripotassium dicitrato bismuthate in the rat. Gastroenterology 1982, 82 Pt 5, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Dore, M.P.; Graham, D.Y.; Mele, R.; Marras, L.; Nieddu, S.; Manca, A.; Realdi, G. Colloidal bismuth subcitrate-based twice-a-day quadruple therapy as primary or salvage therapy for Helicobacter pylori infection. Am. J. Gastroenterol. 2002, 97, 857–860. [Google Scholar] [CrossRef]
- Ko, S.W.; Kim, Y.J.; Chung, W.C.; Lee, S.J. Bismuth supplements as the first-line regimen for Helicobacter pylori eradication therapy: Systemic review and meta-analysis. Helicobacter 2019, 24, e12565. [Google Scholar] [CrossRef]
- Graham, D.Y.; Dore, M.P.; Lu, H. Understanding treatment guidelines with bismuth and non-bismuth quadruple Helicobacter pylori eradication therapies. Expert Rev. Anti-Infect. Ther. 2018, 16, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Rauws, E.A.; Langenberg, W.; Houthoff, H.J.; Zanen, H.C.; Tytgat, G.N. Campylobacter pyloridis-associated chronic active antral gastritis. A prospective study of its prevalence and the effects of antibacterial and antiulcer treatment. Gastroenterology 1988, 94, 33–40. [Google Scholar] [CrossRef]
- Jin, L.; Szeto, K.Y.; Zhang, L.; Du, W.; Sun, H. Inhibition of alcohol dehydrogenase by bismuth. J. Inorg. Biochem. 2004, 98, 1331–1337. [Google Scholar] [CrossRef]
- Bland, M.V.; Ismail, S.; Heinemann, J.A.; Keenan, J.I. The action of bismuth against Helicobacter pylori mimics but is not caused by intracellular iron deprivation. Antimicrob. Agents Chemother. 2004, 48, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.J.; Armstrong, J.A.; Francis, G.J.; Nokes, N.T.; Wee, S.H. Antibacterial action of bismuth in relation to Campylobacter pyloridis colonization and gastritis. Digestion 1987, 37 (Suppl. S2), 16–30. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.N.; Ho, K.S.; Sun, H.; Chan, W.T. Tracking bismuth antiulcer drug uptake in single Helicobacter pylori cells. J. Am. Chem. Soc. 2011, 133, 7355–7357. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Z.; Xie, Y.; Hu, X.; Wang, H.; Xia, W.; Wang, Y.; Li, H.; Wang, Y.; Sun, H. Multi-omics and temporal dynamics profiling reveal disruption of central metabolism in Helicobacter pylori on bismuth treatment. Chem. Sci. 2018, 9, 7488–7497. [Google Scholar] [CrossRef]
- Stratton, C.W.; Warner, R.R.; Coudron, P.E.; Lilly, N.A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: Ultrastructural evidence for a mechanism of action for bismuth salts. J. Antimicrob. Chemother. 1999, 43, 659–666. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Wee, S.H.; Goodwin, C.S.; Wilson, D.H. Response of Campylobacter pyloridis to antibiotics, bismuth and an acid-reducing agent in vitro--an ultrastructural study. J. Med. Microbiol. 1987, 24, 343–350. [Google Scholar] [CrossRef]
- Ge, R.; Sun, X.; Gu, Q.; Watt, R.M.; Tanner, J.A.; Wong, B.C.; Xia, H.H.; Huang, J.D.; He, Q.Y.; Sun, H. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori. J. Biol. Inorg. Chem. 2007, 12, 831–842. [Google Scholar] [CrossRef]
- Cun, S.; Li, H.; Ge, R.; Lin, M.C.; Sun, H. A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: Implication for nickel homeostasis and bismuth susceptibility. J. Biol. Chem. 2008, 283, 15142–15151. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Chen, Z.; Zhou, Q. The actions of bismuth in the treatment of Helicobacter pylori infections: An update. Met. Integr. Biometal Sci. 2012, 4, 239–243. [Google Scholar] [CrossRef]
- Keogan, D.M.; Griffith, D.M. Current and potential applications of bismuth-based drugs. Molecules 2014, 19, 15258–15297. [Google Scholar] [CrossRef]
- Marcus, E.A.; Sachs, G.; Scott, D.R. Colloidal bismuth subcitrate impedes proton entry into Helicobacter pylori and increases the efficacy of growth-dependent antibiotics. Aliment. Pharmacol. Ther. 2015, 42, 922–933. [Google Scholar] [CrossRef] [PubMed]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Kesisoglou, F. Impaired drug absorption due to high stomach pH: A review of strategies for mitigation of such effect to enable pharmaceutical product development. Mol. Pharm. 2013, 10, 3970–3979. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Kim, N.; Nam, R.H.; Kim, J.M.; Park, J.Y.; Lee, S.M.; Kim, J.S.; Lee, D.H.; Jung, H.C. High Efficacy of Finafloxacin on Helicobacter pylori Isolates at pH 5.0 Compared with That of Other Fluoroquinolones. Antimicrob. Agents Chemother. 2015, 59, 7629–7636. [Google Scholar] [CrossRef]
- Debets-Ossenkopp, Y.J.; Namavar, F.; MacLaren, D.M. Effect of an acidic environment on the susceptibility of Helicobacter pylori to trospectomycin and other antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 1995, 14, 353–355. [Google Scholar] [CrossRef]
- Marcus, E.A.; Inatomi, N.; Nagami, G.T.; Sachs, G.; Scott, D.R. The effects of varying acidity on Helicobacter pylori growth and the bactericidal efficacy of ampicillin. Aliment. Pharmacol. Ther. 2012, 36, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Grayson, M.L.; Eliopoulos, G.M.; Ferraro, M.J.; Moellering, R.C., Jr. Effect of varying pH on the susceptibility of Campylobacter pylori to antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 1989, 8, 888–889. [Google Scholar] [CrossRef]
- Malanoski, G.J.; Eliopoulos, G.M.; Ferraro, M.J.; Moellering, R.C., Jr. Effect of pH variation on the susceptibility of Helicobacter pylori to three macrolide antimicrobial agents and temafloxacin. Eur. J. Clin. Microbiol. Infect. Dis. 1993, 12, 131–133. [Google Scholar] [CrossRef]
- Cheng, A.; Sheng, W.H.; Liou, J.M.; Wang, H.P.; Wu, M.S.; Lin, J.T.; Chang, S.C. Comparative in vitro antimicrobial susceptibility and synergistic activity of antimicrobial combinations against Helicobacter pylori isolates in Taiwan. J. Microbiol. Immunol. Infect. 2015, 48, 72–79. [Google Scholar] [CrossRef]
- Lee, S.P. A potential mechanism of action of colloidal bismuth subcitrate: Diffusion barrier to hydrochloric acid. Scand. J. Gastroenterol. 1982, 80, 17–21. [Google Scholar]
- Gong, E.J.; Ahn, J.Y.; Jung, D.K.; Lee, S.M.; Pih, G.Y.; Kim, G.H.; Na, H.K.; Lee, J.H.; Jung, H.Y.; Kim, J.M. Isolation of Helicobacter pylori using leftover tissue in the rapid urease test kit. Helicobacter 2020, 25, e12733. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpreration of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 20 February 2024).
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
Inhibitory Concentration (μg/mL) | Resistance (%) | Breakpoint Criteria (μg/mL) | |||
---|---|---|---|---|---|
Range | MIC50 | MIC90 | |||
Antibiotics | |||||
Amoxicillin | 0.004–0.125 | 0.016 | 0.06 | 0 | >0.125 |
Clarithromycin | 0.008–32 | 0.03 | 16 | 16.7 | >0.25 |
Metronidazole | 0.5–128 | 2 | 64 | 25.0 | >8 |
Tetracycline | 0.016–1 | 0.125 | 0.5 | 0 | >1 |
Levofloxacin | 0.125–8 | 0.25 | 0.5 | 8.3 | >1 |
Bismuth | |||||
Bismuth subsalicylate | 4–32 | 8 | 16 | NA | NA |
Bismuth potassium citrate | 2–16 | 4 | 16 | NA | NA |
Colloidal bismuth subcitrate | 1–8 | 4 | 8 | NA | NA |
Minimum Inhibitory Concentration (μg/mL) | p-Value | ||||
---|---|---|---|---|---|
pH 5.0 | pH 6.0 | pH 7.0 | pH 8.0 | ||
Bismuth subsalicylate | |||||
H. pylori strain 26695 | 2 (2–2) | 8 (8–16) | 8 (8–16) | 8 (8–16) | 0.337 |
J99 | 8 (4–8) | 8 (8–16) | 16 (8–16) | 8 (8–16) | 0.069 |
ATCC 43504 | 2 (1–4) | 8 (4–16) | 8 (8–32) | 8 (8–16) | 0.287 |
Bismuth potassium citrate | |||||
H. pylori strain 26695 | 4 (2–8) | 8 (4–8) | 16 (8–16) | 8 (8–8) | 0.337 |
J99 | 4 (4–8) | 8 (4–8) | 16 (8–16) | 8 (8–8) | 0.038 |
ATCC 43504 | 4 (2–4) | 8 (4–8) | 16 (8–16) | 8 (8–8) | 0.011 |
Colloidal bismuth subcitrate | |||||
H. pylori strain 26695 | 1 (1–2) | 4 (4–4) | 8 (4–8) | 4 (4–4) | 0.168 |
J99 | 4 (2–4) * | 4 (4–4) | 8 (4–8) | 4 (4–8) | 0.004 |
ATCC 43504 | 2 (1–4) | 4 (4–8) | 8 (4–8) | 4 (4–8) | 0.166 |
Antibiotics Combined with Colloidal Bismuth Subcitrate | FIC Index Range | ||
---|---|---|---|
H. pylori 26695 | J99 | ATCC 43504 | |
Amoxicillin | 1.00–1.25 | 1.00–1.25 | 1.13–1.25 |
Clarithromycin | 1.00–1.13 | 0.75–1.00 | 0.63–1.06 |
Metronidazole | 0.63–0.75 | 0.56–1.00 | 0.50–1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, J.; Bang, C.S.; Lee, J.J.; Ahn, J.Y.; Kim, J.M.; Jung, H.-Y.; Gong, E.J. In Vitro Susceptibility and Synergistic Effect of Bismuth Against Helicobacter pylori. Antibiotics 2024, 13, 1004. https://doi.org/10.3390/antibiotics13111004
Woo J, Bang CS, Lee JJ, Ahn JY, Kim JM, Jung H-Y, Gong EJ. In Vitro Susceptibility and Synergistic Effect of Bismuth Against Helicobacter pylori. Antibiotics. 2024; 13(11):1004. https://doi.org/10.3390/antibiotics13111004
Chicago/Turabian StyleWoo, Jieun, Chang Seok Bang, Jae Jun Lee, Ji Yong Ahn, Jung Mogg Kim, Hwoon-Yong Jung, and Eun Jeong Gong. 2024. "In Vitro Susceptibility and Synergistic Effect of Bismuth Against Helicobacter pylori" Antibiotics 13, no. 11: 1004. https://doi.org/10.3390/antibiotics13111004
APA StyleWoo, J., Bang, C. S., Lee, J. J., Ahn, J. Y., Kim, J. M., Jung, H. -Y., & Gong, E. J. (2024). In Vitro Susceptibility and Synergistic Effect of Bismuth Against Helicobacter pylori. Antibiotics, 13(11), 1004. https://doi.org/10.3390/antibiotics13111004