Anti-Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains
Abstract
:1. Introduction
2. Results
2.1. Anti-S. aureus Activity of Conventional Antibiotics and Volatile Phytochemicals Alone
2.2. Binary Combinations of Phytochemicals and Combinations with Conventional Antibiotics
2.2.1. Synergistic Combinations Determined by the Checkerboard Method
2.2.2. Growth Inhibition Kinetics of Synergistic Binary Combinations
2.3. Biofilm Quantification
2.3.1. Biofilm Eradication Activity of Antibiotics and Phytochemicals Alone
2.3.2. Biofilm Eradication Activity of Antibiotics, and Phytochemicals in Combination
3. Discussion
3.1. Anti-S. aureus Activity of Volatile Phytochemicals
3.2. Anti-S. aureus Activity of Antibiotics and Phytochemicals in Combination
3.2.1. Anti-S. aureus Activity of Combinations
3.2.2. Time Kinetics of Bacterial Growth Inhibition for Synergistic Interaction
3.3. Biofilm Formation
3.3.1. Biofilm Eradication Effects of Individual Agents
3.3.2. Biofilm Eradication Effects of Combinations
4. Materials and Methods
4.1. Materials
4.1.1. Bacterial Strains and Culture Conditions
4.1.2. Antimicrobial Agents
4.2. Anti-S. aureus Activity of Conventional Antibiotics and Volatile Phytochemicals Alone
Microdilution Method
4.3. Anti-S. aureus Activity of Binary Combinations
4.3.1. Pre-Checkerboard Method and Checkerboard Method
4.3.2. Time-Kill Curve Method
4.4. Biofilm Quantification Assay
4.4.1. Single-Agent Biofilm Eradication Assay
4.4.2. Binary Combination Biofilm Eradication Assay
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okesola, A.O. Community-acquired methicillin-resistant Staphylococcus aureus-a review of literature. Afr. J. Med. Health Sci. 2011, 40, 97–107. [Google Scholar]
- Klein, E.; Smith, D.L.; Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis. 2007, 13, 1840–1846. [Google Scholar] [CrossRef] [PubMed]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States-Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Pantosti, A.; Sanchini, A.; Monaco, M. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2007, 2, 323–334. [Google Scholar] [CrossRef]
- Gould, I.M. Treatment of bacteremia: Meticillin-resistant Staphylococcus aureus (MRSA) to vancomycin-resistant S. aureus (VRSA). Int. J. Antimicrob. Agents 2013, 42, S17–S21. [Google Scholar] [CrossRef]
- Mishra, A.; Tabassum, N.; Aggarwal, A.; Kim, Y.-M.; Khan, F. Artificial intelligence-driven analysis of antimicrobial-resistant and biofilm-forming pathogens on biotic and abiotic surfaces. Antibiotics 2024, 13, 788. [Google Scholar] [CrossRef]
- Ryder, V.J.; Chopra, I.; O’Neill, A.J. Increased mutability of staphylococci in biofilms as a consequence of oxidative stress. PLoS ONE 2012, 7, e47695. [Google Scholar] [CrossRef]
- Savage, V.J.; Chopra, I.; O’Neill, A.J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 2013, 57, 1968–1970. [Google Scholar] [CrossRef]
- Mah, T.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Monteiro Lopes, P.; de Azevedo, M.M.B.; Machado Costa, D.C.; Sales Alviano, C.; Sales Alviano, D. Biological activities of α-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Diniz do Nascimento, L.; Moraes, A.A.B.; Costa, K.S.D.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.S.; Vostinaru, O.; Rigano, D.; de Aguiar Andrade, E.H. Editorial: Bioactive compounds present in essential oils: Advances and pharmacological applications. Front. Pharmacol. 2023, 14, 1130097. [Google Scholar] [CrossRef] [PubMed]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Rout, S.; Tambe, S.; Deshmukh, R.K.; Mali, S.; Cruz, J.; Srivastav, P.P.; Amin, P.D.; Gaikwad, K.K.; Andrade, E.H.d.A.; de Oliveira, M.S. Recent trends in the application of essential oils: The next generation of food preservation and food packaging. Trends Food Sci. Technol. 2022, 129, 421–439. [Google Scholar] [CrossRef]
- Gavaric, N.; Smole Mozina, S.; Kladar, N.; Bozin, B. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J. Essent. Oil Bear. 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Netopilova, M.; Houdkova, M.; Rondevaldova, J.; Kmet, V.; Kokoska, L. Evaluation of in vitro growth-inhibitory effect of carvacrol and thymol combination against Staphylococcus aureus in liquid and vapour phase using new broth volatilization chequerboard method. Fitoterapia 2018, 129, 185–190. [Google Scholar] [CrossRef]
- Vasconcelos, S.E.C.B.; Melo, H.M.; Cavalcante, T.T.A.; Júnior, F.E.A.C.; de Carvalho, M.G.; Menezes, F.G.R.; de Sousa, O.V.; Costa, R.A. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. BMC Complement. Altern. Med. 2017, 17, 462. [Google Scholar] [CrossRef]
- Rani, S.; Singh, H.; Ram, C. Efficacy and mechanism of carvacrol with octanoic acid against mastitis causing multi-drug-resistant pathogens. Braz. J. Microbiol. 2022, 53, 385–399. [Google Scholar] [CrossRef]
- Lambert, R.J.W.; Skandamis, P.N.; Coote, P.J.; Nychas, G.-J.E. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 2001, 91, 453–462. [Google Scholar] [CrossRef]
- Rúa, J.; Del Valle, P.; De Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of carvacrol and thymol: Antimicrobial activity against Staphylococcus aureus and antioxidant activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.; Langa, E.; Valenzuela, A.; Ballestero, D.; Pino-Otín, M.R. Synergistic activity of thymol with commercial antibiotics against critical and high WHO priority pathogenic bacteria. Plants 2023, 12, 1868. [Google Scholar] [CrossRef] [PubMed]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, K.X.; Pan, S.; Su, C.; Bi, J.; Lu, X. Thymol disrupts cell homeostasis and inhibits the growth of Staphylococcus aureus. Contrast Media Mol. Imaging 2022, 2022, 8743096. [Google Scholar] [CrossRef]
- Souza, E.L.; Oliveira, C.E.; Stamford, T.L.; Conceição, M.L.; Neto, N.J. Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods. Braz. J. Microbiol. 2013, 44, 29–35. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Abd El-Hamid, M.I.; Ibrahim, D.; El-Malt, R.M.S.; El-Ghareeb, W.R.; Ismail, H.A.; Al-Sultan, S.I.; Meligy, A.M.A.; ELTarabili, R.M. Future scope of plant-derived bioactive compounds in the management of methicillin-resistant Staphylococcus aureus: In vitro antimicrobial and antivirulence prospects to combat MRSA. Microb. Pathog. 2023, 183, 106301. [Google Scholar] [CrossRef]
- Miladi, H.; Zmantar, T.; Chaabouni, Y.; Fedhila, K.; Bakhrouf, A.; Mahdouani, K.; Chaieb, K. Antibacterial and efflux pump inhibitors of thymol and carvacrol against food-borne pathogens. Microb. Pathog. 2016, 99, 95–100. [Google Scholar] [CrossRef]
- Silveira, Z.d.S.; Macêdo, N.S.; dos Santos, J.F.S.; de Freitas, T.S.; Barbosa, C.R.d.S.; Júnior, D.L.d.S.; Muniz, D.F.; de Oliveira, L.C.C.; Júnior, J.P.S.; da Cunha, F.A.B.; et al. Evaluation of the antibacterial activity and efflux pump reversal of thymol and carvacrol against Staphylococcus aureus and their toxicity in Drosophila melanogaster. Molecules 2020, 25, 2103. [Google Scholar] [CrossRef]
- Mouwakeh, A.; Kincses, A.; Nové, M.; Mosolygó, T.; Mohácsi-Farkas, C.; Kiskó, G.; Spengler, G. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother. Res. 2019, 33, 1010–1018. [Google Scholar] [CrossRef]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef]
- Yuan, Z.; Dai, Y.; Ouyang, P.; Rehman, T.; Hussain, S.; Zhang, T.; Yin, Z.; Fu, H.; Lin, J.; He, C.; et al. Thymol inhibits biofilm formation, eliminates pre-existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model. Microorganisms 2020, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Tang, X.; Dong, W.; Zhi, Z.; Zhong, T.; Lin, S.; Ye, J.; Qian, X.; Chen, F.; Yuan, W. Carvacrol inhibits bacterial polysaccharide intracellular adhesin synthesis and biofilm formation of mucoid Staphylococcus aureus: An in vitro and in vivo study. RSC Adv. 2023, 13, 28743–28752. [Google Scholar] [CrossRef] [PubMed]
- Swetha, T.K.; Vikraman, A.; Nithya, C.; Prasath, N.H.; Pandian, S.K. Synergistic antimicrobial combination of carvacrol and thymol impairs single and mixed-species biofilms of Candida albicans and Staphylococcus epidermidis. Biofouling 2021, 36, 1256–1271. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Cellini, L.; Zimbalatti, V.; Blanco, A.R.; Marino, A.; Pizzimenti, F.; Giulio, M.D.; Bisignano, G. Enhanced activity of carvacrol against biofilm of Staphylococcus aureus and Staphylococcus epidermidis in an acidic environment. APMIS 2012, 120, 967–973. [Google Scholar] [CrossRef]
- Kifer, D.; Mužinić, V.; Ševgić Klarić, M. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against Staphylococcus aureus planktonic and biofilm growth. J. Antibiot. 2016, 69, 689–696. [Google Scholar] [CrossRef]
- Cirino, I.C.S.; Menezes-Silva, S.M.P.; Silva, H.T.D.; De Souza, E.L.; Siqueira-Júnior, J.P. The essential oil from Origanum vulgare L. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy 2014, 60, 290–293. [Google Scholar] [CrossRef]
- Veras, H.N.H.; Rodrigues, F.F.G.; Botelho, M.A.; Menezes, I.R.A.; Coutinho, H.D.M.; Costa, J.G.M. Enhancement of aminoglycosides and β-lactams antibiotic activity by essential oil of Lippia sidoides Cham. and the thymol. Arab. J. Chem. 2017, 10, S2790–S2795. [Google Scholar] [CrossRef]
- Grădinaru, A.C.; Trifan, A.; Şpac, A.; Brebu, M.; Miron, A.; Aprotosoaie, A.C. Antibacterial activity of traditional spices against lower respiratory tract pathogens: Combinatorial effects of Trachyspermum ammi essential oil with conventional antibiotics. Lett. Appl. Microbiol. 2018, 67, 449–457. [Google Scholar] [CrossRef]
- Miladi, H.; Zmantar, T.; Kouidhi, B.; Al Qurashi, Y.M.A.; Bakhrouf, A.; Chaabouni, Y.; Mahdouani, K.; Chaieb, K. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb. Pathog. 2017, 112, 156–163. [Google Scholar] [CrossRef]
- Peng, L.; Xiong, Y.; Wang, M.; Han, M.; Cai, W.; Li, Z. Chemical composition of essential oil in Mosla chinensis Maxim cv. Jiangxiangru and its inhibitory effect on Staphylococcus aureus biofilm formation. Open Life Sci. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Wang, T.-H.; Hsia, S.-M.; Wu, C.-H.; Ko, S.-Y.; Chen, M.Y.; Shih, Y.-H.; Shieh, T.-M.; Chuang, L.-C.; Wu, C.-Y. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS ONE 2016, 11, e0163147. [Google Scholar] [CrossRef] [PubMed]
- İşcan, G. Antibacterial and anticandidal activities of common essential oil constituents. Rec. Nat. Prod. 2017, 11, 374–388. [Google Scholar]
- Cristani, M.; D’Arrigo, M.; Mandalari, G.; Castelli, F.; Sarpietro, M.G.; Micieli, D.; Venuti, V.; Bisignano, G.; Saija, A.; Trombetta, D. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J. Agric. Food Chem. 2007, 55, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Angioni, A.; Barra, A.; Russo, T.M.; Coroneo, V.; Dessí, S.; Cabras, P. Chemical composition of the essential oils of Juniperus from ripe and unripe berries and leaves and their antimicrobial activity. J. Agric. Food Chem. 2003, 51, 3073–3078. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Mo, Y.; Chen, K.; Shang, X.; Yang, Z.; Hao, B.; Shang, R.; Liang, J.; Liu, Y. Integration of metabolomics and transcriptomics indicates changes in MRSA exposed to terpinen-4-ol. BMC Microbiol. 2021, 21, 305. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef]
- Ghazal, T.S.A.; Schelz, Z.; Vidács, L.; Szemerédi, N.; Veres, K.; Spengler, G.; Hohmann, J. Antimicrobial, multidrug resistance reversal and biofilm formation inhibitory effect of Origanum majorana extracts, essential oil and monoterpenes. Plants 2022, 11, 1432. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Effects of Melaleuca alternifolia (Tea Tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob. Agents. Chemother. 2012, 56, 909–915. [Google Scholar] [CrossRef]
- Sun, L.M.; Zhang, C.L.; Li, P. Characterization, antibiofilm, and mechanism of action of novel PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol. J. Agric. Food Chem. 2012, 60, 6150–6156. [Google Scholar] [CrossRef]
- Filipowicz, N.; Kamiński, M.; Kurlenda, J.; Asztemborska, M.; Ochocka, J.R. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phytother. Res. 2003, 17, 227–231. [Google Scholar] [CrossRef]
- Gambino, E.; Maione, A.; Guida, M.; Albarano, L.; Carraturo, F.; Galdiero, E.; Di Onofrio, V. Evaluation of the pathogenic-mixed biofilm formation of Pseudomonas aeruginosa/Staphylococcus aureus and treatment with limonene on three different materials by a dynamic model. Int. J. Environ. Res. Public Health 2022, 19, 3741. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.; Lima, E.D.O.; Souza, E.L.D.; Diniz, M.D.F.F.M.; Trajano, V.N.; Medeiros, I.A.D. Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Braz. J. Pharm. Sci. 2007, 43, 121–126. [Google Scholar] [CrossRef]
- Ngassapa, O.D.; Runyoro, D.K.B.; Vagionas, K.; Graikou, K.; Chinou, I.B. Chemical composition and antimicrobial activity of Geniosporum rotundifolium Briq and Haumaniastrum villosum (Bene) AJ Paton (Lamiaceae) essential oils from Tanzania. Trop. J. Pharm. Res. 2016, 15, 107–113. [Google Scholar] [CrossRef]
- Salinas, C.; Florentín, G.; Rodríguez, F.; Alvarenga, N.; Guillén, R. Terpenes combinations inhibit biofilm formation in Staphyloccocus aureus by interfering with initial adhesion. Microorganisms 2022, 10, 1527. [Google Scholar] [CrossRef]
- García-Salinas, S.; Elizondo-Castillo, H.; Arruebo, M.; Mendoza, G.; Irusta, S. Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules 2018, 23, 1399. [Google Scholar] [CrossRef]
- Ahmad, A.; Van Vuuren, S.; Viljoen, A. Unravelling the complex antimicrobial interactions of essential oils-The case of Thymus vulgaris (Thyme). Molecules 2014, 19, 2896–2910. [Google Scholar] [CrossRef]
- Özel, Y.; Yilmaz, U.; Ünlü, M.; Vardar Ünlü, G. Antibacterial activity and synergistic interaction of various essential oil components and antibiotics. Mikrobiyol. Bul. 2022, 56, 95–102. [Google Scholar] [CrossRef]
- Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.E.; Pagès, J.-M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection-Bacteria and their synergistic potential with antibiotics. Phytomedicine 2012, 19, 464–471. [Google Scholar] [CrossRef]
- Van Zyla, R.L.; Tsietsi Seatlholo, S.; Van Vuuren, S.F.; Viljoen, A. Pharmacological interactions of essential oil constituents on the viability of micro-organisms. Nat. Prod. Commun. 2010, 5, 1381–1386. [Google Scholar]
- Kwiatkowski, P.; Łopusiewicz, Ł.; Pruss, A.; Kostek, M.; Sienkiewicz, M.; Bonikowski, R.; Wojciechowska-Koszko, I.; Dołęgowska, B. Antibacterial activity of selected essential oil compounds alone and in combination with β-lactam antibiotics against MRSA strains. Int. J. Mol. Sci. 2020, 21, 7106. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Nikolic, I.; Mimica-Dukic, N.; Knezevic, P. Anti-Acinetobacter baumannii activity of selected phytochemicals alone, in binary combinations and in combinations with conventional antibiotics. Nat. Prod. Res. 2020, 35, 5964–5967. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.M.; Eisenbrand, G.; Fukushima, S.; Gooderham, N.J.; Guengerich, P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Davidsen, M.; Harman, C.L.; et al. FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food Chem. Toxicol. 2021, 155, 112378. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Aslam, M.; Alsagaby, S.A.; Saeed, F.; Ahmad, I.; Afzaal, M.; Arshad, U.M.; Abdelgawad, M.A.; El-Ghorab, A.H.; Ahmed, K.; et al. Therapeutic application of carvacrol: A comprehensive review. Food Sci. Nutr. 2022, 10, 3529–4088. [Google Scholar] [CrossRef] [PubMed]
- Nagoor Meeran, F.M.; Javed, H.; Al Taee, H.; Azimullah, S.; Ojha, S. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development. Front. Pharmacol. 2017, 8, 380. [Google Scholar] [CrossRef]
- Xie, K.; Tashkin, D.P.; Luo, M.Z.; Zhang, J.Y. Chronic toxicity of inhaled thymol in lungs and respiratory tracts in mouse model. Pharmacol. Res. Perspect. 2019, 7, e00516. [Google Scholar] [CrossRef]
- Lade, H.; Park, J.H.; Chung, S.H.; Kim, I.H.; Kim, J.M.; Joo, H.S.; Kim, J.S. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med. 2019, 8, 1853. [Google Scholar] [CrossRef]
- Waldrop, R.; McLaren, A.; Calara, F.; McLemore, R. Biofilm growth has a threshold response to glucose in vitro. Clin. Orthop. Relat. Res. 2014, 472, 3305–3310. [Google Scholar] [CrossRef]
- Croes, S.; Deurenberg, R.H.; Boumans, M.L.; Beisser, P.S.; Neef, C.; Stobberingh, E.E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009, 9, 229. [Google Scholar] [CrossRef]
- Cruz, C.D.; Shah, S.; Tammela, P. Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol. 2018, 18, 173. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćircović, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Kostoglou, D.; Protopappas, I.; Giaouris, E. Common plant-derived terpenoids present increased anti-biofilm potential against Staphylococcus bacteria compared to a quaternary ammonium biocide. Foods 2020, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Vetas, D.; Dimitropoulou, E.; Mitropoulou, G.; Kourkoutas, Y.; Giaouris, E. Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite. Int. J. Food Microbiol. 2017, 257, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.J.T.; Levin, B.R. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 2013, 9, e1003123. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Lin, M.H.; Chen, C.C.; Chien, S.C.; Cheng, Y.H.; Su, I.N.; Shu, J.C. Vancomycin promotes the bacterial autolysis, release of extracellular DNA, and biofilm formation in vancomycin-non-susceptible Staphylococcus aureus. FEMS Microbiol. Immunol. 2011, 63, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complement. Alternat. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Mo, H.; Zhao, Y.; Li, H.; Zhang, H.; Hu, L.; Zhou, X. Thymol mediates bactericidal activity against Staphylococcus aureus by targeting an aldo-keto reductase and consequent depletion of NADPH. J. Agric. Food Chem. 2019, 67, 8382–8392. [Google Scholar] [CrossRef]
- Thieme, L.; Hartung, A.; Tramm, K.; Klinger-strobel, M.; Jandt, K.D.; Makarewicz, O.; Pletz, M.W. MBEC versus MBIC: The lack of differentiation between biofilm reducing and inhibitory effects as a current problem in biofilm methodology. Biol. Proced. Online 2019, 21, 18. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 10th ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2015; M07-A10. [Google Scholar]
- Knezevic, P.; Aleksic, V.; Simin, N.; Svircev, E.; Petrovic, A.; Mimica-Dukic, N. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. J. Ethnopharmacol. 2016, 178, 125–136. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Frisciaa, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef]
- Aleksic, V.; Mimica-Dukic, N.; Simin, N.; Nedeljkovic, N.S.; Knezevic, P. Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine 2014, 21, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, P.; Curcin, S.; Aleksic, V.; Petrusic, M.; Vlaski, L. Phage-antibiotic synergism: A possible approach to combatting Pseudomonas aeruginosa. Res. Microbiol. 2013, 164, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
MIC (μg mL−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chemical Class | Density (g mL−1) | MSSA | MRSA | |||||||||
ATCC 11632 | ATCC 6538 | ATCC 25923 | ATCC 43300 | ATCC 33591 | ATCC BAA-1708 | ATCC BAA-2312 | ATCC 700699 | ATCC 700698 | NCTC 12493 | |||
α-pinene | Terpene | 0.0858 | ≥2048.0 | ≥2048.0 | ≥2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | 2048 |
(R)-(+)-limonene | 0.842 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | |
sabinene | 0.842 | 2048.0 | 2048.0 | 2048.0 | ≥2048.0 | ≥2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | |
3-carene | 0.857 | 1625.5 | >2048.0 | >2048.0 | 2048.0 | 1024.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | |
α-terpinene | 0.837 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | |
ℽ-terpinene | 0.850 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | |
terpinolene | 0.861 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | |
(−)-terpinene-4-ol | Terpenoid | 0.934 | 1722.2 | 2048.0 | 2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 | >2048.0 |
thymol | 0.965 | 256.0 | 512.0 | 724.1 | 512.0 | 512.0 | >2048.0 | >2048.0 | 2048 | >2048.0 | 2048 | |
carvacrol | 0.976 | 128.0 | 203.2 | 181.0 | 430.0 | 362.0 | 861.1 | 1024.0 | 861.1 | 724.1 | 724.1 | |
CAZ | Antibiotics 1 | - | 16.0 | 8.0 | 32.0 | ≥64.0 | >64.0 | >64.0 | >64.0 | >64.0 | >64.0 | >64.0 |
CTX | - | 8.0 | >64.0 | 4.0 | 32.0 | >64.0 | 32.0 | 32.0 | >64.0 | >64.0 | >64.0 | |
STR | - | 8.0 | 2.0 | 4.0 | 4.0 | >64.0 | 16.0 | 8.0 | 8.0 | 8.0 | >64.0 | |
CHL | - | 16 | 8.0 | 16.0 | 8.0 | 64.0 | 16.0 | 8.0 | 4.0 | 8.0 | 8.0 | |
TET | - | 2 | <0.5 | 0.5 | 1.0 | >64.0 | 1.0 | 1.0 | 64.0 | 64.0 | >64.0 | |
AMC | - | 1 | <0.5 | 0.5 | 32.0 | >64.0 | >64.0 | 32.0 | >64.0 | >64.0 | >64.0 | |
GEN | - | <0.5 | <0.5 | <0.5 | 64.0 | 8.0 | 1.0 | 1.0 | >64.0 | >64.0 | 1.0 | |
CIP | - | <0.5 | <0.5 | <0.5 | 0.5 | 0.5 | 64.0 | <0.5 | 16.0 | 16.0 | 1.0 | |
OXC | - | <0.5 | <0.5 | <0.5 | 4.0 | 4.0 | 2.0 | 1.0 | >64.0 | >64.0 | 32.0 | |
VAN | - | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 1.0 | 1.0 | 8.0 | 2.0 | 1.0 |
Strains | MHB | MHB + 1% Glucose | ||
---|---|---|---|---|
Incubation Period (h) | ||||
24 | 48 | 24 | 48 | |
ATCC 11632 | nonadherent | nonadherent | nonadherent | nonadherent |
ATCC 6538 | strongly | strongly | strongly | strongly |
ATCC 25923 | nonadherent | nonadherent | strongly | strongly |
ATCC 43300 | nonadherent | nonadherent | weakly | moderately |
ATCC 33591 | nonadherent | nonadherent | weakly | nonadherent |
ATCC BAA−1708 | weakly | weakly | strongly | strongly |
ATCC BAA−2312 | moderately | moderately | strongly | strongly |
ATCC 700699 | weakly | nonadherent | weakly | moderately |
ATCC 700698 | weakly | nonadherent | nonadherent | weakly |
NCTC 12493 | weakly | moderately | strongly | strongly |
Agent | Type of Effect | S. aureus Strains | |||||||
---|---|---|---|---|---|---|---|---|---|
MSSA ATCC 6538 | MRSA ATCC BAA−2312 | ||||||||
MIC | 2 × MIC | 4 × MIC | PEC (µg mL−1) 3 | MIC | 2 × MIC | 4 × MIC | PEC (µg mL−1) | ||
CAZ | I 1 | 28.5 | 59.8 | 70.6 | >32.0 | ||||
II 2 | 0.0 | 0.0 | 0.0 | ||||||
CHL | I | 51.6 | 56.6 | 60.3 | >32.0 | 94.0 | 96.0 | 97.6 | 8.0 |
II | 0.0 | 0.0 | 0.0 | 65.0 | 53.5 | 74.3 | |||
STR | I | 34.8 | 39.4 | 64.9 | >8.0 | 46.8 | 47.7 | 61.8 | ≤8.0 |
II | 0.0 | 0.0 | 0.0 | 47.0 | 30.4 | 0.0 | |||
VAN | I | 49.3 | 50.3 | 51.0 | >16.0 | 23.2 | 96.6 | 98.4 | 2.0 |
II | 0.0 | 0.0 | 0.0 | 32.0 | 72.0 | 74.3 | |||
CAR | I | 56.5 | 41.6 | 22.6 | 256.0 | 44.2 | 88.5 | 89.6 | 2048.0 |
II | 89.8 | 95.4 | 95.6 | 32.6 | 80.3 | 86.0 | |||
TYM | I | 40.3 | 47.0 | 48.2 | 1024.0 | ||||
II | 0.0 | 54.6 | 65.4 | ||||||
CTX | I | 89.7 | 90.8 | 84.5 | 32.0 | ||||
II | 82.2 | 85.5 | 86.2 | ||||||
TET | I | 92.2 | 94.7 | 96.8 | 1.0 | ||||
II | 54.0 | 58.0 | 51.0 | ||||||
GEN | I | 20.5 | 21.0 | 51.4 | 2.0 | ||||
II | 32.3 | 50.5 | 19.2 | ||||||
OXC | I | 91.0 | 92.3 | 96.2 | 1.0 | ||||
II | 71.1 | 70.8 | 73.3 |
MIC Combinations | CAR + STR | CAR + GEN | CHL + TYM | CHL + CAR | CAR + TYM | |||||
---|---|---|---|---|---|---|---|---|---|---|
BR 1 (%) | PCR 2 (%) | BR (%) | PCR (%) | BR (%) | PCR (%) | BR (%) | PCR (%) | BR (%) | PCR (%) | |
4 × MIC | 83.5 | 85.6 | 0.0 | 96.1 | 0.0 | 92.4 | 0.0 | 93.1 | 0.0 | 92.4 |
2 × MIC | 87.1 | 85.3 | 34.7 | 96.6 | 0.0 | 94.8 | 47.0 | 90.2 | 0.0 | 94.8 |
MIC | 87.6 | 76.3 | 38.3 | 90.7 | 52.1 | 89.3 | 44.0 | 89.4 | 52.1 | 89.3 |
1/2 × MIC | 75.0 | 34.6 | 64.4 | 85.1 | 68.1 | 87.0 | 83.4 | 81.6 | 68.1 | 87.0 |
1/4 × MIC | 31.0 | 24.1 | 78.3 | 56.2 | 74.6 | 44.7 | 79.3 | 83.9 | 74.6 | 44.7 |
PEC 3 (µg mL−1) | 1024.0 + 8.0 | 1024.0 + 1.0 | 2.0 + 128.0 | 2.0 + 50.8 | 101.5 + 256.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolic, I.; Aleksic Sabo, V.; Gavric, D.; Knezevic, P. Anti-Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics 2024, 13, 1030. https://doi.org/10.3390/antibiotics13111030
Nikolic I, Aleksic Sabo V, Gavric D, Knezevic P. Anti-Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics. 2024; 13(11):1030. https://doi.org/10.3390/antibiotics13111030
Chicago/Turabian StyleNikolic, Isidora, Verica Aleksic Sabo, Damir Gavric, and Petar Knezevic. 2024. "Anti-Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains" Antibiotics 13, no. 11: 1030. https://doi.org/10.3390/antibiotics13111030
APA StyleNikolic, I., Aleksic Sabo, V., Gavric, D., & Knezevic, P. (2024). Anti-Staphylococcus aureus Activity of Volatile Phytochemicals and Their Combinations with Conventional Antibiotics Against Methicillin-Susceptible S. aureus (MSSA) and Methicillin-Resistant S. aureus (MRSA) Strains. Antibiotics, 13(11), 1030. https://doi.org/10.3390/antibiotics13111030