Efficacy of Copper Ion Treatment on Bacteria and Antibiotic Residues Contained in Bovine Waste Milk
Abstract
:1. Introduction
2. Results
2.1. Microbiological Analysis
2.2. Metagenomic Analysis
2.3. Effect of Copper Ion Treatment on the Bacterial Population in Waste Milk Samples
2.4. Copper Quantification
2.5. Effect of Copper Ion Treatment on the Detection of Antibiotics
3. Discussion
4. Materials and Methods
4.1. Farm Description
4.2. Sampling of Waste Milk
4.3. Experimental Design
4.4. Copper Ion Treatment
4.5. Microbiological Analysis
- Total Bacterial Count (TBC): 100 µL of 10-fold dilutions of each milk sample were plate duplicated on plate count agar (Oxoid, Hampshire, UK). The plates were incubated at 37 °C for 24 h [19].
- Total coliforms: 100 µL of 10-fold dilutions of each milk sample were plate duplicated on MacConkey agar (Oxoid, Hampshire, UK), and the plates were incubated at 37 °C for 24 h [19].
- Streptococcus-like colonies: 50 µL of each milk sample were cultured in Edwards medium (Oxoid, Hampshire, UK), and the plates were incubated at 37 °C for 48 h [19].
- Staphylococcus spp. count: 50 µL of each milk sample, were plated on Mannitol salt agar (Oxoid, Hampshire, UK) and the plates were incubated at 37 °C for 48 h [19].
- Detection of Listeria spp.: 100 µL of each milk sample was taken and inoculated into a tube with 5 mL of Listeria Enrichment Broth (Oxoid, Hampshire, UK). The tubes were incubated at 37 °C for 24 h. Then, a 100 µL aliquot of the broth was taken and inoculated into Chromogenic Listeria agar (Oxoid, Hampshire, UK). These plates were incubated at 37 °C for 48 h [38].
- Detection of Prototheca spp.: 100 µL of each milk sample was taken and inoculated into a tube with 5 mL of Prototheca isolation medium (PIM) broth [19]. The tubes were incubated at 37 °C for 24 h. Subsequently, a 100 µL aliquot of the broth was taken and inoculated into PIM agar plates. These plates were incubated at 37 °C for 72 h.
- Detection of Salmonella spp.: 100 µL of each milk sample was taken and inoculated into a tube with 5 mL of Selenite Cysteine Broth (Oxoid, Hampshire, UK). The tubes were incubated at 37 °C for 16 h. Then, a 100 µL aliquot of the incubated broth was taken and inoculated into Xylose Lysine Deoxycholate (XLD) agar plates (Oxoid, Hampshire, UK). These plates were incubated at 37 °C for 48 h [39].
- Detection of Mycoplasma spp.: 100 µL of each milk sample was plated on a modified Hayflick medium (Oxoid, Hampshire, UK) and incubated at 37 °C for 12 days in an atmosphere with 10% CO2. The plates were checked after 3, 5, 7, and 12 days for typical colonies of Mycoplasma spp. [19].
- Detection of E. coli ESBL and Methicillin-resistant S. aureus (MRSA): two methods were employed to detect each pathogen direct plating and enrichment. For both E. coli ESBL [40] and MRSA [41], 100 µL of each milk sample was directly plated on CHROMagarTM selective media, ESBL and MRSA, respectively (Chromagar, Paris, France) and incubated at 37 °C for 24 h. Additionally, an enrichment step was performed for each pathogen. Counter samples of the same milk were cultured in Müller–Hinton broth or Müller–Hinton broth + 6.5% NaCl (Oxoid, Hampshire, UK) for 24 h at 37 °C. Subsequently, 50 µL of the enriched broth was plated on the corresponding CHROMagarTM selective medium and incubated under the same conditions.
4.6. Metagenomic Analysis
4.7. Detection of Antibiotic Residues
4.8. Measurement of Copper Concentration in Milk
4.9. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The Complex Microbiota of Raw Milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.; et al. Raw or Heated Cow Milk Consumption: Review of Risks and Benefits. Food Control 2013, 31, 251–262. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Koutsoumanis, K.; Lindqvist, R.; et al. Risk for the Development of Antimicrobial Resistance (AMR) Due to Feeding of Calves with Milk Containing Residues of Antibiotics. EFSA J. 2017, 15, 4665. [Google Scholar] [CrossRef]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk Factors for Antimicrobial Resistance in Fecal Escherichia coli from Preweaned Dairy Calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Amor, J.; Gallo, C. Dairy Calf Welfare and Factors Associated with Diarrhea and Respiratory Disease among Chilean Dairy Farms. Animals 2020, 10, 1115. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Deng, Y.; Cao, Z.; Li, S.; Wang, J. Effects of Feeding Untreated, Pasteurized and Acidified Waste Milk and Bunk Tank Milk on the Performance, Serum Metabolic Profiles, Immunity, and Intestinal Development in Holstein Calves. J. Anim. Sci. Biotechnol. 2017, 8, 53. [Google Scholar] [CrossRef]
- Pereira, R.V.V.; Siler, J.D.; Bicalho, R.C.; Warnick, L.D. In Vivo Selection of Resistant E. coli after Ingestion of Milk with Added Drug Residues. PLoS ONE 2014, 9, e115223. [Google Scholar] [CrossRef]
- Maynou, G.; Bach, A.; Terré, M. Feeding of Waste Milk to Holstein Calves Affects Antimicrobial Resistance of Escherichia coli and Pasteurella multocida Isolated from Fecal and Nasal Swabs. J. Dairy Sci. 2017, 100, 2682–2694. [Google Scholar] [CrossRef]
- Cellone, I.; Russi, N.; Calvinho, L.F.; Signorini, M.; Molineri, A. Effects of Feeding Pasteurized Waste Milk or Saleable Milk to Calves on Weight, Health and Fecal Escherichia coli Antimicrobial Resistance. J. Dairy Res. 2024, 91, 76–82. [Google Scholar] [CrossRef]
- Penati, M.; Sala, G.; Biscarini, F.; Boccardo, A.; Bronzo, V.; Castiglioni, B.; Cremonesi, P.; Moroni, P.; Pravettoni, D.; Addis, M.F. Feeding Pre-Weaned Calves With Waste Milk Containing Antibiotic Residues Is Related to a Higher Incidence of Diarrhea and Alterations in the Fecal Microbiota. Front. Vet. Sci. 2021, 8, 650150. [Google Scholar] [CrossRef]
- Armengol, R.; Fraile, L. Colostrum and Milk Pasteurization Improve Health Status and Decrease Mortality in Neonatal Calves Receiving Appropriate Colostrum Ingestion. J. Dairy Sci. 2016, 99, 4718–4725. [Google Scholar] [CrossRef] [PubMed]
- Grant, I.R.; Williams, A.G.; Rowe, M.T.; Muir, D.D. Efficacy of Various Pasteurization Time-Temperature Conditions in Combination with Homogenization on Inactivation of Mycobacterium Avium subsp. paratuberculosis in Milk. Appl. Environ. Microbiol. 2005, 71, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Steuer, P.; Tejeda, C.; Martinez, O.; Ramirez-Reveco, A.; González, N.; Grant, I.R.; Foddai, A.C.G.; Collins, M.T.; Salgado, M. Effectiveness of Copper Ions against Mycobacterium avium subsp. paratuberculosis and Bacterial Communities in Naturally Contaminated Raw Cow’s Milk. J. Appl. Microbiol. 2021, 131, 146–154. [Google Scholar] [CrossRef]
- Akhidime, I.D.; Saubade, F.; Benson, P.S.; Butler, J.A.; Olivier, S.; Kelly, P.; Verran, J.; Whitehead, K.A. The Antimicrobial Effect of Metal Substrates on Food Pathogens. Food Bioprod. Process. 2019, 113, 68–76. [Google Scholar] [CrossRef]
- Tarrant, E.; Riboldi, G.P.; McIlvin, M.R.; Stevenson, J.; Barwinska-Sendra, A.; Stewart, L.J.; Saito, M.A.; Waldron, K.J. Copper Stress in Staphylococcus aureus Leads to Adaptive Changes in Central Carbon Metabolism. Metallomics 2019, 11, 183–200. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef] [PubMed]
- Steuer, P.; Avilez, C.; Tejeda, C.; Gonzalez, N.; Ramirez-Reveco, A.; Ulloa, F.; Mella, A.; Grant, I.R.; Collins, M.T.; Salgado, M. In Vitro Inactivation of Mycobacterium avium subsp. paratuberculosis (MAP) by Use of Copper Ions. BMC Microbiol. 2018, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, F.; Villegas, M. Experimental Assessment of the Efficacy of Copper Ion Treatment against Penicillin G Contained in UHT Milk and PBS. Austral J. Vet. Sci. 2024, 56, 55–58. [Google Scholar] [CrossRef]
- Adkins, P.R.F.; Middleton, J.R.; Fox, L.K.; Pighetti, G.; Petersson-Wolfe, C.; National Mastitis Council. Laboratory Handbook on Bovine Mastitis; National Mastitis Council: New Prague, MN, USA, 2017. [Google Scholar]
- Aust, V.; Knappstein, K.; Kunz, H.-J.; Kaspar, H.; Wallmann, J.; Kaske, M. Feeding Untreated and Pasteurized Waste Milk and Bulk Milk to Calves: Effects on Calf Performance, Health Status and Antibiotic Resistance of Faecal Bacteria. Anim. Physiol. Nutr. 2013, 97, 1091–1103. [Google Scholar] [CrossRef]
- Ma, Y.; Khan, M.Z.; Xiao, J.; Alugongo, G.M.; Chen, X.; Li, S.; Wang, Y.; Cao, Z. An Overview of Waste Milk Feeding Effect on Growth Performance, Metabolism, Antioxidant Status and Immunity of Dairy Calves. Front. Vet. Sci. 2022, 9, 898295. [Google Scholar] [CrossRef]
- Klaas, I.C.; Zadoks, R.N. An Update on Environmental Mastitis: Challenging Perceptions. Transbound. Emerg. Dis. 2018, 65, 166–185. [Google Scholar] [CrossRef] [PubMed]
- Renaud, D.L.; Duffield, T.F.; LeBlanc, S.J.; Haley, D.B.; Kelton, D.F. Management Practices for Male Calves on Canadian Dairy Farms. J. Dairy Sci. 2017, 100, 6862–6871. [Google Scholar] [CrossRef]
- Heinemann, C.; Leubner, C.D.; Hayer, J.J.; Steinhoff-Wagner, J. Hygiene Management in Newborn Individually Housed Dairy Calves Focusing on Housing and Feeding Practices. J. Anim. Sci. 2021, 99, skaa391. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.A.; Taylor, J.; Hartman, M.L.; Sischo, W.M. Quality Assessments of Waste Milk at a Calf Ranch. J. Dairy Sci. 2009, 92, 3503–3509. [Google Scholar] [CrossRef]
- Gilardoni, L.R.; Paolicchi, F.A.; Mundo, S.L. Bovine Paratuberculosis: A Review of the Advantages and Disadvantages of Different Diagnostic Tests. Rev. Argent Microbiol. 2012, 44, 201–215. [Google Scholar]
- Raffo, E.; Steuer, P.; Tomckowiack, C.; Tejeda, C.; Collado, B.; Salgado, M. More Insights about the Interfering Effect of Mycobacterium avium subsp. paratuberculosis (MAP) Infection on Mycobacterium bovis (M. bovis) Detection in Dairy Cattle. Trop. Anim. Health Prod. 2020, 52, 1479–1485. [Google Scholar] [CrossRef]
- Reyes-Jara, A.; Cordero, N.; Aguirre, J.; Troncoso, M.; Figueroa, G. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis. Front. Microbiol. 2016, 7, 626. [Google Scholar] [CrossRef]
- De Vliegher, S.; Fox, L.K.; Piepers, S.; McDougall, S.; Barkema, H.W. Invited Review: Mastitis in Dairy Heifers: Nature of the Disease, Potential Impact, Prevention, and Control. J. Dairy Sci. 2012, 95, 1025–1040. [Google Scholar] [CrossRef]
- Naqvi, S.A.; De Buck, J.; Dufour, S.; Barkema, H.W. Udder Health in Canadian Dairy Heifers during Early Lactation. J. Dairy Sci. 2018, 101, 3233–3247. [Google Scholar] [CrossRef]
- Camussone, C.M.; Molineri, A.I.; Signorini, M.L.; Neder, V.E.; Vitulich, C.A.; Calvinho, L.F. Risk Factors of S. aureus Intramammary Infection in Pre Partum Dairy Heifers under Grazing Conditions and Molecular Characterization of Isolates from Heifers and Cows. J. Dairy Res. 2020, 87, 82–88. [Google Scholar] [CrossRef]
- Petzer, I.-M.; Karzis, J.; Lesosky, M.; Watermeyer, J.C.; Badenhorst, R. Host Adapted Intramammary Infections in Pregnant Heifers Which Were Co-Housed and Reared on Fresh Milk as Calves. BMC Vet. Res. 2013, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Agudelo, J.M.; Bartolotti, C.; Tejeda, C.; Tomckowiak, C.; Soto, J.P.; Steuer, P.; Ulloa, F.; Salgado, M. Molecular and Serological Prevalence of Coxiella burnetii in Bovine Dairy Herds in Southern Chile: A PCR and ELISA-Based Assessment of Bulk Tank Milk Samples. Acta Trop. 2023, 247, 107008. [Google Scholar] [CrossRef] [PubMed]
- Kitazono, Y.; Ihara, I.; Yoshida, G.; Toyoda, K.; Umetsu, K. Selective Degradation of Tetracycline Antibiotics Present in Raw Milk by Electrochemical Method. J. Hazard. Mater. 2012, 243, 112–116. [Google Scholar] [CrossRef]
- Kitazono, Y.; Ihara, I.; Toyoda, K.; Umetsu, K. Antibiotic Removal from Waste Milk by Electrochemical Process: Degradation Characteristics in Concentrated Organic Solution. J. Mater. Cycles Waste Manag. 2017, 19, 1261–1269. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Huo, M.; Xu, X.; Mi, K.; Ma, W.; Zhou, Q.; Lin, X.; Cheng, G.; Huang, L. Co-Selection Mechanism for Bacterial Resistance to Major Chemical Pollutants in the Environment. Sci. Total Environ. 2024, 912, 169223. [Google Scholar] [CrossRef]
- Terzi Gulel, G.; Gucukoglu, A.; Cadirci, O.; Saka, E.; Alisarli, M. Serotyping and Antibiotic Resistance of Listeria monocytogenes Isolated from Raw Water Buffalo Milk and Milk Products. J. Food Sci. 2020, 85, 2889–2895. [Google Scholar] [CrossRef] [PubMed]
- Karolenko, C.E.; Bhusal, A.; Gautam, D.; Muriana, P.M. Selenite Cystine Agar for Enumeration of Inoculated Salmonella Serovars Recovered from Stressful Conditions during Antimicrobial Validation Studies. Microorganisms 2020, 8, 338. [Google Scholar] [CrossRef]
- Gelalcha, B.D.; Mohammed, R.I.; Gelgie, A.E.; Kerro Dego, O. Molecular Epidemiology and Pathogenomics of Extended-Spectrum Beta-Lactamase Producing- Escherichia coli and -Klebsiella pneumoniae Isolates from Bulk Tank Milk in Tennessee, USA. Front. Microbiol. 2023, 14, 1283165. [Google Scholar] [CrossRef]
- Virgin, J.E.; Van Slyke, T.M.; Lombard, J.E.; Zadoks, R.N. Short Communication: Methicillin-Resistant Staphylococcus aureus Detection in US Bulk Tank Milk. J. Dairy Sci. 2009, 92, 4988–4991. [Google Scholar] [CrossRef]
- Foddai, A.C.G.; Grant, I.R. A Novel One-Day Phage-Based Test for Rapid Detection and Enumeration of Viable Mycobacterium avium subsp. paratuberculosis in Cows’ Milk. Appl. Microbiol. Biotechnol. 2020, 104, 9399–9412. [Google Scholar] [CrossRef] [PubMed]
- Bagherian, G.; Arab Chamjangali, M.; Shariati Evari, H.; Ashrafi, M. Determination of Copper(II) by Flame Atomic Absorption Spectrometry after Its Perconcentration by a Highly Selective and Environmentally Friendly Dispersive Liquid–Liquid Microextraction Technique. J. Anal. Sci. Technol. 2019, 10, 3. [Google Scholar] [CrossRef]
Sample | TBC * | Streptococcus | Staphylococcus | Coliforms |
---|---|---|---|---|
1 | 3.6 × 105 ± 1.1 × 104 | 3.0 × 106 ± 0.0 × 100 | 9.4 × 102 ± 4.4 × 101 | 4.5 × 104 ± 2.5 × 103 |
2 | 7.7 × 104 ± 9.1 × 103 | 3.0 × 106 ± 0.0 × 100 | 1.2 × 102 ± 5.3 × 101 | 4.4 × 103 ± 2.1 × 102 |
3 | 2.4 × 107 ± 9.2 × 105 | 3.0 × 106 ± 0.0 × 100 | 1.2 × 102 ± 3.5 × 101 | 3.0 × 104 ± 2.1 × 103 |
4 | 8.4 × 105 ± 2.0 × 104 | 3.0 × 106 ± 0.0 × 100 | 2.8 × 102 ± 6.1 × 101 | 3.5 × 104 ± 1.4 × 103 |
5 | 3.9 × 104 ± 8.8 × 103 | 1.3 × 104 ± 2.3 × 103 | 1.2 × 103 ± 1.2 × 102 | 5.1 × 102 ± 6.6 × 101 |
6 | 8.5 × 104 ± 3.7 × 103 | 3.0 × 106 ± 0.0 × 100 | 6.4 × 102 ± 7.2 × 101 | 1.6 × 103 ± 2.4 × 102 |
7 | 2.4 × 106 ± 1.9 × 105 | 3.0 × 106 ± 0.0 × 100 | 4.6 × 102 ± 9.6 × 101 | 5.6 × 102 ± 6.8 × 101 |
OTU * | Relative Abundance |
---|---|
Pseudomonas | 28.45% |
Lactococcus raffinolactis | 14.45% |
Lactococcus lactis | 8.36% |
Escherichia coli | 7.41% |
Lactococcus | 7.13% |
Enterobacteriaceae | 6.91% |
Kluyvera | 6.35% |
Streptococcus uberis | 5.39% |
Chryseobacterium | 3.21% |
Acinetobacter | 2.69% |
Serratia | 1.74% |
Groups | Minutes of Treatment | ||
---|---|---|---|
0 | 15 | 30 | |
TBC * | |||
Sample 1 | 3.6 × 105 ± 1.1 × 104 | 8.0 × 103 ± 3.3 × 102 | 1.0 × 102 ± 4.4 × 101 |
Sample 2 | 7.7 × 104 ± 9.1 × 103 | 2.0 × 102 ± 5.3 × 101 | 2.0 × 101 ± 1.9 × 101 |
Sample 3 | 2.4 × 107 ± 9.2 × 105 | 1.0 × 103 ± 1.6 × 102 | <detection limit |
Sample 4 | 8.4 × 105 ± 2.0 × 104 | 9.6 × 103 ± 2.0 × 102 | 6.6 × 102 ± 1.8 × 102 |
Sample 5 | 3.9 × 104 ± 8.8 × 103 | 2.5 × 101 ± 1.5 × 101 | 1.0 × 101 ± 7.2 × 100 |
Sample 6 | 8.5 × 104 ± 3.7 × 103 | 2.0 × 102 ± 5.3 × 101 | <detection limit |
Sample 7 | 2.4 × 106 ± 1.9 × 105 | 6.0 × 101 ± 3.6 × 101 | <detection limit |
Average | 4.0 × 106 | 2.7 × 103 | 1.1 × 102 |
Streptococcus | |||
Sample 1 | 3.0 × 106 ± 0.0 × 100 | 9.6 × 102 ± 2.3 × 102 | <detection limit |
Sample 2 | 3.0 × 106 ± 0.0 × 100 | 6.0 × 101 ± 1.9 × 101 | <detection limit |
Sample 3 | 3.0 × 106 ± 0.0 × 100 | <detection limit | <detection limit |
Sample 4 | 3.0 × 106 ± 0.0 × 100 | <detection limit | <detection limit |
Sample 5 | 1.3 × 104 ± 2.3 × 103 | <detection limit | <detection limit |
Sample 6 | 3.0 × 106 ± 0.0 × 100 | <detection limit | <detection limit |
Sample 7 | 3.0 × 106 ± 0.0 × 100 | <detection limit | <detection limit |
Average | 2.6 × 106 | 1.5 × 102 | <detection limit |
Staphylococcus | |||
Sample 1 | 9.4 × 102 ± 4.4 × 101 | 2.0 × 101 ± 1.2 × 101 | <detection limit |
Sample 2 | 1.2 × 102 ± 5.3 × 101 | 2.0 × 101 ± 1.8 × 101 | <detection limit |
Sample 3 | 1.2 × 102 ± 3.5 × 101 | 2.0 × 101 ± 1.8 × 101 | <detection limit |
Sample 4 | 2.8 × 102 ± 6.1 × 101 | 2.0 × 101 ± 1.8 × 101 | <detection limit |
Sample 5 | 1.2 × 103 ± 1.2 × 102 | <detection limit | <detection limit |
Sample 6 | 6.4 × 102 ± 7.2 × 101 | <detection limit | <detection limit |
Sample 7 | 4.6 × 102 ± 9.6 × 101 | <detection limit | <detection limit |
Average | 5.4 × 102 | 1.1 × 101 | <detection limit |
Coliforms | |||
Sample 1 | 4.5 × 104 ± 2.5 × 103 | 4.0 × 101 ± 4.0 × 101 | <detection limit |
Sample 2 | 4.4 × 103 ± 2.1 × 102 | <detection limit | <detection limit |
Sample 3 | 3.0 × 104 ± 2.1 × 103 | 1.2 × 103 ± 2.0 × 102 | <detection limit |
Sample 4 | 3.5 × 104 ± 1.4 × 103 | <detection limit | <detection limit |
Sample 5 | 5.1 × 102 ± 6.6 × 101 | <detection limit | <detection limit |
Sample 6 | 1.6 × 103 ± 2.4 × 102 | <detection limit | <detection limit |
Sample 7 | 5.6 × 102 ± 6.8 × 101 | <detection limit | <detection limit |
Average | 1.7 × 104 | 1.8 × 102 | <detection limit |
Sample Name | 0 | 15 | 30 |
---|---|---|---|
Sample 1 | + | + | + |
Sample 2 | + | + | + |
Sample 3 | + | + | + |
Sample 4 | - | - | - |
Sample 5 | + | + | - |
Sample 6 | - | - | - |
Sample 7 | + | + | Invalid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulloa, F.; Penati, M.; Naegel, C.; Tejeda, C.; Hernández-Agudelo, M.; Steuer, P.; Salgado, M. Efficacy of Copper Ion Treatment on Bacteria and Antibiotic Residues Contained in Bovine Waste Milk. Antibiotics 2024, 13, 1085. https://doi.org/10.3390/antibiotics13111085
Ulloa F, Penati M, Naegel C, Tejeda C, Hernández-Agudelo M, Steuer P, Salgado M. Efficacy of Copper Ion Treatment on Bacteria and Antibiotic Residues Contained in Bovine Waste Milk. Antibiotics. 2024; 13(11):1085. https://doi.org/10.3390/antibiotics13111085
Chicago/Turabian StyleUlloa, Fernando, Martina Penati, Constanza Naegel, Carlos Tejeda, Miguel Hernández-Agudelo, Pamela Steuer, and Miguel Salgado. 2024. "Efficacy of Copper Ion Treatment on Bacteria and Antibiotic Residues Contained in Bovine Waste Milk" Antibiotics 13, no. 11: 1085. https://doi.org/10.3390/antibiotics13111085
APA StyleUlloa, F., Penati, M., Naegel, C., Tejeda, C., Hernández-Agudelo, M., Steuer, P., & Salgado, M. (2024). Efficacy of Copper Ion Treatment on Bacteria and Antibiotic Residues Contained in Bovine Waste Milk. Antibiotics, 13(11), 1085. https://doi.org/10.3390/antibiotics13111085